Apache OpenJPA User's Guide

Apache OpenJPA User's Guide

O 1 1o o [o T P 1

T o= PP 3
I AN o o 10 | I 4 TES B o o U 1 1< | 3

2. JAVA PEI S S ENCE AP ..ot e 4
R 1110 T 11 T o 9
O 0 (a0 = I AN U0 1= < 9

1.2, LightWeight PErSISIENCE .. .ceeiiiieiii ettt e et e et e s 9

22T £ N PR 10
3. Java PersiStenCe APl ATCRITECIUIEu.iieii ettt e e e et e et et et et et e e et e e e et eaaaaananas 12
3L JPA EXCEPUIONS ... ceee ettt ettt ettt e e e e et e et e e an e e e aa e 13
1 15
4.1. ReStIICtiONS ON PEISISLENT CIASSES ...u.vuiiniiniiiii e e e e e e e e s s e s e s e s ans e e aneenss 16
4.1.1. Default or NO-ATG CONSITUCLOccuuueiiiiiee ettt e e et e e aan s 16

N = T = TP 16

IR A o (=] VA = o S 16

A1A VErSONFIEI ..o e 16

T 1 4] <] =T XN 17

4.1.6. PErSISIENE FIEIAS ..uvniiiiiiiei e et e e e e e e e e e e e e an e e 17

o R O3 e 11 o PP 18

A2 ENLLY TABNLTY ..eeeettiee ittt ettt e et e ettt e et e e et e e e naa s 18
N o (=] O S 19

4.2.1.1. Identity HIErarChiesccouiiiiiiii e 20

G B) (=0 1Y @ 1 o 21
T IR O | o= o2 Q1Y =1 0o - 21

4.3.2. Using Calback MEthOOSuuiiiiiiiee e 22

4.3.3. USING ENLItY LISEENEIS ..uuiiiiii ettt ettt ettt e e e e e e ne s 22

4.3.4. Entity LiStenerS HIEIaIrChYccuuiiiuiiiii et e e 23

R e Tox 11 1= 0] Y 24

LTV L<: =" 7= - N 25
I O =Y 1Y/ == o v - 26

ST O = o 11 PSPPSR 26

LI 2 [O = 27

5.1.3. MaPPEd SUPEICIASSn ittt aaas 27

L I 3 011 o<l [0 =1 o [T 27

I BT 011 I E = 1= £ 28

B LB, EXAMPI et 28

5.2. Field and Property METBOEIAoeeeieiieei ettt e 29
LI N 1 = 0= 1< L 30

LN I o ISR 31

I R €T a1 = (<0 ANV A= 11 1N 31

L 1] o<l [0 1< N o 32

SIS 4= = o o T 32

LA s T == = T 32

B.2.6. 1. FEICN Ty e 33

I A = 0110 =T [0 /<" IR 33

5.2.8. MANY TO OB ..ttt e e e e e e e e e anas 34

I S B = = o (TN 8/ o= 34

L3228 O 1= I o T/ = VY 35

5.2.9.1. BidireCtional REIGLIONScuiviinieiiiie ettt e e eaaes 36

LI L0 I o TSI 1o O TN 37

I (Y = 10V o 11V - 12 S 37

N R © (0 = o = PP 38

LT8G T = N L= 38

5.2.14. PerSiStent FIEld DEFAUITSivnieiiiee et e e e e e e e e e enas 38

SR Y [v 01< 1 = LR 39

LI O] o2 11 = T) [55

(ST = £ 1 (<[0T 60
6.1, PEISISIENCEXIMI ..ttt et et ettt ettt e et e et e e e e et 60

Apache OpenJPA User's Guide

B.2. NONFEE USE ..ottt et et ettt et e ea e 62
8 0101 LY== 1= = ox (0 Y 63
7.1. Obtaining an EntityManagerFatioryoouuuuiiiii e 63
7.2. Obtaining ENtLYMENAGEScoovuiiiiiiie ettt ettt e e e 63
7.3 PErSISEENCE CONLEXE .. .eeniiiteeit ettt e et e et e ettt et e et e e et e e et e e et e e ean e aeanaaennnas 64
7.3.1. Transaction PersiStenCe CONLEXToiiuuiiiiieiie et e e eeenes 64
7.3.2. Extended PersiStenCe CONLEXEvveuueieeeiiie et e et e e e et e e e e e e ean s 65

7.4. Closing the ENtityManagerFaCtOryceuuciiuiiei e ee e e e e e e e e e e et e e et s e e e e e e eaanaees 66
o =L VY= =T = USRI 67
8.1, TranSaCtiON ASSOCIALION .. .euuiiitee ittt ettt e e e e e et e et e e e e e et e e et s e et aeetn e eenneeeenaes 67
8.2. Entity LifecyCle Managementt e e ea 68
8.3. LIfECYCIE EXAIMPIES ...ttt et e e e e e et e e e e e ea e 71
8.4. Entity Identity ManagemMENtccouniiiiiiiii e e e e e e e e e e r e 73
I O o 1 =RV =0T o (< 11 o | 73
8.6. QUENY FBCIONY ...ttt ettt e et et et e et en e 74
A O o= 1 o [PPSR UPPPTR 75
LS R 7= o1 o PP 76
0.1, TrANSACION TYPES et ettt ettt ettt ettt et ettt e e et ettt et a e e et e ettt eeaa et et e e et e e ean e e ean e e ea e eeaa e 76
9.2. The Entity TransaCtion INTEITACEiviieiiii e e e e e e 77
O TN 1= 79
0 N 1 L S 79
TO.1.1. QUENY BASICS ...ueieiiieeeeei ettt ettt enaas 79
O o L Lo R I Y = 82
00 e T = oo o 83

0 0 | @ g o o 83
10.1.5. POlymMOrPhiC QUENES ... ceeiieeiiiii ettt e e e e e e e e e et e e et e e eanaeeees 85
10.1.6. QUENY ParaMELENS ... eeieeeie ettt ettt ettt e et e e e et e e e e enes 85
TO.1.7. QUENY HINES .oeeiiiiie ettt ettt e et et e e e n e e enaas 86
05 I o o (1T [11 £ P 86

10.1.7.2. RESUIE SEE SIZE HIME .oeviiieieii e e et eeeaeas 87

10.1.7.3. 1s0l@tion LeVEl HINuiiiiiiii et e e 87

10.1.7.4. Other Fetchplan HiNtSoiiieiiii e e e e e e e e 87

10.1.7.5. Oracle QUENY HINESouuuiiiii ettt eeaas 87

10.1.7.6. Named QUENY HINESuuuiiiiii it eeeeas 87

L0 RS T @ (o (= 11 0o PP 88
O e B o | (=0 = - PRSPPI 88
10.1.20. NAMEA QUEKIEScevueeiieeeie e et e e ettt e e e e e e et e e e e e et e e et e e et e e et e e an e aateeeaneeeanaeeees 88
Ot B I T = (= = L= 89
10.1.12. UPAELE BY QUENY ...ttt ettt e et e e et e e et e e e eaa e e eenans 89

10.2. JPQL LangUage REFEIEINCE ... cceeiiieiiiii ettt ettt e e e eeneas 90
10.2.1. JPQL SEEEMENE TYPES evvuuetertteereriieeeettteeeestnaeeastnaeeesenaeeeasnaeeessnaererenaeeannnaeeennns 90
10.2.1.1. JPQL SElCt SLALEMENTieeeiieeiiiiii e et et e ettt e e e e e et e e e et e e e e e e eaan e eeenens 90

10.2.1.2. JPQL Update and Delete StAtEMENESccevueieeieiiiiieei e e e e e e e e e e e e eaeas 91

10.2.2. JPQL Abstract Schema Types and QUEry DOMAINScccuevueiieiieeieeeie e e e e eeeeeees 91
10.2.2.1. JPQL ENtity NAMINGvuniiiiiieiiiii e e e e eeeens 91

10.2.2.2. JPQL SChEMa EXAMPIE ... it 1

10.2.3. JIPQL FROM Clause and Navigational DeClarationsvevveriieeeiiiiieeeiiineereiineeennens 92
10.2.3.1. JPQL FROM ENETIEIS .. eeeeiieeeeiiie ettt e e e et e eeeaa e e eeenns 93

10.2.3.2. JPQL Identification Variablescccuiiiiiiiiiiiiciii e 95

10.2.3.3. JPQL RaNGE DECIAratiONScvvvieveieeeiee e e e e e e e e e e e e e e anas 95

10.2.3.4. JPQL Path EXPIrESSIONSceevuiiiiitieeeeiti ettt e e et e e e e eeaans 95

02 ST | @ EN o 114 1 R 96

10.2.3.5.1. JPQL Inner Joins (Relationship JOINS)cveuniieuniiiiieeiieeei e 96

10.2.3.5.2. JPQL OULEN JOINS ...eevvineeiiiieeeeii e e e et s e e et s e e et e e et s e e e eaa s e e eesan e eeenens 97

0T RC TG TN | = @ I = o: o T o1 o 97

10.2.3.6. JPQL Collection Member DeClarationscoccuvieiiiiiiiieiiieiieeeee e, 98

10.2.3.7. JPQL POIYMOIPRISITI . ceuiiieiiiiii ettt e et eeeeans 98

10.2.4. JPQL WHERE ClAUSEuuuiiiiiiieteiiiiaeteitaeeeett e e eeest s e e eaaa s e eaett s e eaestn e eaeaan e eassnnaaeannns 99
10.2.5. JPQL Conditional EXPrESSIONSeuueiitieiei et e e e e et e e et e e e ea e eaes 99

Apache OpenJPA User's Guide

10.2.5.10. JPQL LItOralS . oeeeeieeeeii ettt ettt ettt aaaas 99

10.2.5.2. JPQL Identification VariableScovuiiiiiiiiiiiii e 99

10.2.5.3. JPQL Path EXPIrESSIONScccvuiiiiitiieteiii ettt ettt e e e et e e eai e eeaans 99

10.2.5.4. IPQL INPUL ParamELErSuiiiiiiiiiiei et 100

10.2.5.4.1. JPQL PosSitional Parametersoieeiuuiiieiiiiiieeeeiiiieeeeiiise e e et eeeaieneeeens 100

10.2.5.4.2. JPQL Named Parameterscccuuiieiiiiiiieeiiiine e e e et eeeaiin e 100

10.2.5.5. JPQL Conditional Expression COMPOSItIONccuuieviinieiiiieeiiieeieeeineeeieeeeeeeens 100

10.2.5.6. JPQL Operators and Operator PrecedenCevvvvvivieiiieiiiie e 100

10.2.5.7. JPQL BEWEEN EXPIESSIONSueiiiiiieeiitieeeeeiie e et e e et e e et eeeeti e e eaae e eees 101

10.2.5.8. JPQL [N EXPrESSIONSvuueieiiiieeiitii e ettt e et e et e et et e et et e e e eabi e e eeaneaeeees 102

10.2.5.9. JPQL LiKE EXPrESSIONSciiiiiieeiitieeetitineeeeatiaeeeesttsaeeestesaeeessesaeeesseaeeessnnaaaees 102

10.2.5.10. JPQL Null CompariSon EXPreSSiONSeeeuiirieeiiaeiie e e e e e e ean e eeees 103

10.2.5.11. JPQL Empty Collection Comparison EXPreSSionScoeeevuveeennerinneeeineesnnnennns 103

10.2.5.12. JPQL Collection Member EXPreSSIONSocvvuereueeeieeeieeriieranneraneeeneeennaeeees 103

10.2.5.13. JPQL EXiStS EXPrESSIONS ...cevuueeiiiiieeeiti e et ettt e e et eeeeai e e eana e eees 104

10.2.5.14. JPQL Al Or ANY EXPIESSIONSccvvuiieiiiiiieeiiti e et e et e et eeeeti e e eenaaeeees 104

10.2.5.15. JPQL SUDGQUETTESevvviieeiiiiieee et e e et e e et e e e et e e e ee s e e e e et e e e eatenaeaeasenaeaees 104

10.2.5.16. JPQL FUNCLioNal EXPrESSIONSceuuietiiiiieeii et e e ettt e e e e ean e eees 105
10.2.5.16.1. JPQL String FUNCLIONSccuuiiiiiiiiieii e e e e e e e e e e e e e e 105

10.2.5.16.2. JPQL ArithmetiC FUNCLIONScovviiiiiiiiiie et 106

10.2.5.16.3. JPQL Datetime FUNCLIONSuviieeieiiieiie e ee e e e e e e 106

10.2.6. JIPQL GROUPBY , HAVINGuiiiiiiiiieiiiie ettt e e e et e e e aaaanaeeees 106
10.2.7. JPQL SELECT ClBUSE ..evvuuieiiitieeeittiieeeeitaeeeettt e e eeettsaeaeatesaeeesttaeaeateaeeestnaeeersnnaaaees 107
10.2.7.1. JPQL Result Type of the SELECT ClaUSEcccvvnieiiiiiiieiiiiiieeeeiin e 107

10.2.7.2. JPQL CONStrUCLOr EXPrESSIONScvvuueiereieiieeitieeeiieeesieeeteeeansesanaeeanneeenneeeanaeenes 108

10.2.7.3. JPQL Null Valuesinthe QUEry ReSUItccevuiiiiiiiiii e e 108

10.2.7.4. JPQL AQQOregate FUNCLIONScoiuttieiiiii ettt e e e 108

10.2.7.4.1. JPQL Aggregate EXamMPIEScouuiiiiiiiiiieiiiii e 109

10.2.8. JPQL ORDER BY ClaUSEctvttieiiitiieeeeite e e e eeis e e e eets e e e et s e e e eat s e aeate s aeseatenaeaessnaeaees 109
10.2.9. JPQL Bulk Update and DEIELEcccvunieiiiiiiieeiiis ettt e e e 109
10.2.10. JPQL NUH VBIUES ...ttt e e e e e e et e e e e et e e e eetanaeeees 110
10.2.11. JPQL Equality and CompariSON SEMANLICSc.uuvreruerenieiiiieeeieeeineesieeeeaeranaeeeneeennaens 111
20t I | @ I =\ PPt 111

S O I @ 11T 7= SPPRSPPN 115
11.1. Creating SQL QUENTEScuueiiieeie ettt ettt e et ettt e et e e et e e et e e et e e e an e e aneaeanas 115
11.2. Retrieving Persistent ObjectsWith SQLcouiiniii e 115
B V= To o TT aTo Y= T - P 117
2 I | o = PSPPI 118
12.2. UNIQUE CONSITBINTS ... eeeetieee ettt e ettt e ettt e ettt e ettt e e e e et e e e e et e e e e ett e e e eebt e e e eeba e eeeebaaaeee 120
2 T o] ¥ o PP 121
R N Lo =g (] VY =) o 1 o PP PP 122
R R €= o< = (0] £ T PP UPTPPPI 124
12.5.1. SEOUENCE GENEIGION . ..uetieeteie ettt et et et e et e e e e e e e e et e et e et e an e et e et e et e eaneeneaeneeaneeaneees 124
12.5.2. TADIEGENEIEION .. .eevtiieeeiii ettt ettt e et e e e e et e e e e et e e e eete e e e eabaaeeee 125
12.5.3. EXAMPIE L.ttt ae 126

A S g 0= g = Torc PP 128
TS T gl | L= I o = PN 128
T I N0 |V 4 1 = o (=SOSR 129

A B B TT= o Y o L= 129

G T o 14 1= o ST 129
12.6.2. 0. AQVANTAJES ... ettt ettt e et e et ee 131

12.6.2.2. DISBOVANAGESevvueeeiti ettt e et e ettt e e et et e e et e e et et e e e e et e e eara e aees 131

R R 1= o L= o = P 132
ST B I N0 Y 4 1 = o[USRI 133

12.6.3.2. DiSAOVANTAGES «..uueiveeeei e e et e aa 133

12.6.4. Putting it All TOQEHNErcoeeiie e e e 133

2 1T o 01T o P 136
12.8. FIEIA M@PIPING ..eieetieeetit ettt ettt et e ettt ettt e et e et e et et e e e e e e eera e aee 141
S TS Tl V=T o oo TN 141

Vi

Apache OpenJPA User's Guide

12.8.0. 1 LOBS iieiiiiiii ettt eeeeene 141

12.8.1.2. ENUMEIEEEHceiiiieeriii e e ettt e et e e e e e e e e e e e e e e e eeenes 141

12.8.1.3. TEMPOIA TYPES ovtneeeiti ettt ettt ettt e et et e e et et e e e eatt e e e eataaeaees 142

12.8.1.4. The Updated MapPiNgS ... ccevruueeeerieeeetia e et e et eeeeti e e eat e e eeti e eeanaaeeees 142

12.8.2. SeCONAAIY TADIES ... et et ea 146
12.8.3. Embedded Maping eeeeeieei ettt ea 148
12.8.4. DIr€Ct REIGHONScoiiieiiiii et e e e e 150
12.8.5. J0INTADIE ..ceieie e 153
12.8.6. BidireCtional MapPinNgoceeuuuieiiiii ettt ettt e et e 156
12.8.7. MEP MBDPING ...ttt ettt ettt ettt e et e e et et e et e e e en e aee 156

12.9. The COmMPIELE MADPINGSnueeeneteteeit et e e et e et et e e e et e e e e e et e e et e e et e aean e eanaeennns 157
L3, CONCIUSION ...ttt ettt ettt e ettt oo et e et e et et e et et et e e e e ee e e et ene e e et e nn e e e ee e aees 166
S REFEIENCE GUITE ...ttt e ettt e e e e e e ettt e e e e r e e e e et e an e e e e e enne 167
I g 1 (o [0 1o o TP PPPTT 174
0 g1 (= gTo o A 0o 1= = P 174
A o1 Lo 8= (oo EO TP PP PPPPPT 175
P2 B | oo [0 i1 o o RSP RTPPPRT 175
2.2. RUNLIME CONFIQUIATIONeeeie e et e e e e e e e et e et e et e et e eaeenas 175
2.3. Command Ling ConfigUIationccuuieiuuiiiiiieii eaneeanans 175
2 50 I oo (=] o 111 o 176

2.4, PlUgin CONfIQUIBLTIONceeeuieeiei ettt et e et e e et e e e et e e eenans 177
2.5, OPENIPA PrOPEITIES ...ttt ettt ettt e ettt eeaaas 178
2.5.1. OPENJPAAULOCTEAN ... et ittt et e e et e et e e e e e et e et e e e e eaas 178

2.5.2. 0peNjPAAULODEIACK ... ccueii e 178
2.5.3. 0PN PABIOKEIFACIONYciii e e 178
2.5.4. 0penpa BroKerlmplii e 179
2.5.5, 0PN PACIASSRESOIVEL ...ttt ettt ettt eaaas 179

2.5.6. 0penjpa.CompPatibDilitycoouriieiiii e 179

2.5.7. openjpa.ConneCtiONDIIVEINGITIEu it e e e et e eaa e eees 179
2.5.8. 0penjpa.ConnectioN2DIIVEINGIMEoiiuiiiie et 179
2.5.9. 0penjPa.CONNECHIONFACIONYiivteeei et e et e e e e e e e e e e et e e et e e et e e eanaeeees 180
2.5.10. 0penjpa.CoNNECLIONFACIONY2cveeeeeeeeei eanaeeees 180
2.5.11. openjpa.ConnectioNFACLONYNEBIMEcoeutieeiii et eaens 180
2.5.12. openjpa.ConnectioNFACLONY2NEITIEcuuuriiiiiiie ettt e e eeaens 180
2.5.13. openjpa.ConNeCtioNFaCtOrYMOUEuiiiiiiiii e 181
2.5.14. openjpa.ConNecti ONFaCLOrYPrOPEITIESiiue i 181
2.5.15. openjpa.ConnectioNFaCtory2PrOPEIMIESueiiiieei e e e e e e e e e e eees 181
2.5.16. 0penjpa.CoNNECLIONPESSWOITc..ueveeieeieeeieer e e e e e e e e e e e e e e e e eanaeeees 181
2.5.17. openjpa.ConNECtiON2PasSIWOITiiieiuieeeii ettt e e e eaans 182
2.5.18. 0penjpa.ConNECiONPIOPEITIESceuuuiieiii ettt et e e e eenens 182
2.5.19. 0penjpa.CoNNECLiON2PIOPEITIESu ittt e e et e eaa e eees 182
2.5.20. 0penjpa.ConNECLIONURLcouuiiiiieeii ettt e e e e et e eaa e eees 182
2.5.21. 0penjpa.ConNECION2URLuuiiiiieii e e e e e e e e e e e e e e eees 183
2.5.22. 0penjpa.ConnECtioNUSEINGIMIEccuuireiiiei e e e e e e e e e e e e e e e eaneeeees 183
2.5.23. openjpa.ConneCtioN2USENNEITIEuiiiiiii ettt e e e eaans 183
2.5.24. openjpa.ConnectioNRELAINMOOEcoeutiiiiiii et 183
2.5.25. 0penjpa.DataCaCheu e 183
2.5.26. openjpa.DataCacheManagercoouu i 184
2.5.27. openjpa.DataCaCheTiMEOULcocuiiiiiiiiie e e e e e e e e e e eees 184
2.5.28. OpENPADEIACNSEALEu iiei e e 184
2.5.29. 0penjpa.DYNamMiCD@ASIIUCESceeveeeeii ettt e e eaans 184
2.5.30. 0penjpaFEtChBAICNSIZEuiiiii e 185
2.5.31. 0penjPAFELCGIOUDS ... ettt aas 185
2.5.32. 0penjpa.FlUShBEfOrEQUENTESieeiiiiie et 185
2.5.33. 0penjPal gNOTECNANGESciveeeii i eeie et e e e e e e e e e 185
2.5.34. OPENIPAI ..cee e o 186
2.5.35. OpENPAINVErSEMANAGESeeeti ettt ettt 186
2.5.36. OPENPALLOCKIMANEGET ceeeii ettt ettt et e e e e e eaaas 186
2.5.37. 0pen)PALOCKTIMEOUL ...ttt e e e e e e e e et e eean e eees 186

Vii

Apache OpenJPA User's Guide

AT T 0o = o= T oo 187
2.5.39. 0penjpa.ManagedRUNIIMEo.uiiii e e e e e e e e e e e e e e ean e eeees 187
2.5.40. OPENJPAMBPPING ... eeeetiie ettt ettt eaans 187
2.5.41. openjpaMaxFetChDEDENuiiiii e 187
2.5.42. 0penjpa.MetaDalaFaCIONYccuuiiiieeii et e 188
2.5.43. 0penjpa.MetaDataREPOSITONYuieen ittt 188
2.5.44. openjpaMUItItNreadedccouniiiii e 188
2.5.45. 0pENPAOPLIMISIIC 1.vuiiiiieei e ee e e e e e e e e e e e e e 188
2.5.46. openjpa.Orphaned @YACHIONc..uuiiieii e 189
2.5.47. openjpa.NoNtransactioNalREAAcoieuuiiiiiii e 189
2.5.48. openjpa.NontransaCtioNaIWIITE oo e 189
2.5.49. 0pEN]PAPIOXYMBNEOENceuiiitee ittt 189
2.5.50. 0pENPAQUENYCECNE .. .ceviciei e e e 189
2.5.51. openjpa.QueryCompilatioNCathecocvuiiiiiii e 190
2.5.52. 0penjpaREAILOCKLEVELcooiiiiiiie et 190
2.5.53. 0penjpa.ReEMOtECOMMITPIOVIAESiiiiiie e 190
2.5.54. OPENPARESIOIESIALE ... ettt aas 190
2.5.55. OPENPARELAINSLALEniieieiit ettt e e eaes 191
2.5.56. openjpa.RetryClassREJISLIAtiONcc.uiiiiieii e e e e e e e e e e e eees 191
2.5.57. openjpa.RuntimelnenhanCedCIaSSaSuvevruieiiriieeii e e e e e e e e e e e e eeees 191
2.5.58. 0penjpa.SaVEPOINIMANAGES eiiiei ettt 191
2.5.50. O BN PALSEUENCE ...t eeti ettt ettt ettt ettt ettt e eeaaas 192
2.5.60. openjpa. TranSaCtiONMOUEiiie it e e a e e eaa e eees 192
2.5.61. openjpaWItELOCKLEVEL oo e 192

2.6. OPENIPA JDBC PrOPEITIES ... iii e e et e e e e e e e e e et e e e e e e e et e e e e aaa s 193
2.6.1. openjpa.jdbc.CoNNECtiONDECOIBEONSv.uuieiieeei ettt eeeie e e e e et e e e e e e e e e e e e e et eeanaeeees 193

2.6.2. 0penjpajdDC.DBDICHIONGIYuiieiiiiiei ettt 193

2.6.3. 0penjpajdDC.DIVErDEIASOUITEuiiiiiiieeeeii ettt e e e enens 193
2.6.4. openjpajdbC.EagerFetChMOOEc.uniiiiiiii e 193

2.6.5. 0penjpajdbC.FEICNDITECHIONc.uiiiie et 194

2.6.6. 0penjPajdDC.IDBCLISIENELScvut i e e e e e e e e e e e e e e e et e e et e e e eeees 194
2.6.7. 0PN PAJADC.LRSSIZE ...t 194

2.6.8. openjpajdbc.MappingDEFAUITSc.uuiiiiiie e 194

2.6.9. 0penjpajdbC.MapPiNGFACIONYcccuriieieii ettt 195
2.6.10. openjpa.jdbc.QUENYSQLCECHEceuniiiie et 195
2.6.11. 0penjpajdbC.RESUITSEITYPE .. .ceuiiiieeei et e aes 195
2.6.12. 0penjpajdbC.SCHEMA ... 195
2.6.13. 0penjpa.jdbC.SChEMEFACtOrYcouuiiii e e 196
2.6.14. openjPadiC.SChEMAS oo 196
2.6.15. 0penjpajdiC.SQLFACIONYuuiieiiiiie ettt et 196
2.6.16. openjpa.jdbc.SubclassFatChMOEoiiiii e 196
2.6.17. openjpa.jdbc.SynchroniZEMEPPINGSuieunei et 197
2.6.18. openjpa.jdbc. Transaction SOIAtioNc.uuiiiiiiiiii e e 197
2.6.19. openjpa.jdbc.UpdateManagereveuiiiiii e 197

I o o1 o T PP 198
3.1.L0OgOIiNG ChaNNEIS ...ttt ettt ettt e et ettt eeaaas 198
3.2 OPENIPA LOGUING etutetnaettaeetaeet e e et e eae e e at e e et e e et e et aa e e e e e et e aeaaaeeta e ean e e et e e et e aean e aan e eeanns 199
BTG T I 1" o 1T oo 8 o T T o S 200
G 30 oo N 200
3.5. Apache COmMMONS LOGGING ++.vvuueerneetnerenterateeeteeetseetneeeneeanaeetnreeanaeeanaeennaeenaerenernnaerennns 200
3.5.1. IDK 1.4 JaVaUtildOggiNg .. .cceeeueeiiii e 200

G @0 o 4 I oo I PP 201
N B | | O TSP PP PTP PO TPRUPPPPPPIN 203
4.1. UsiNg the OPENIPA DEASOUITEc.uuietn ettt e et e e et e e e e et e e et e e ean e e an e e eaaeean e 203
4.2.UsiNg @ Third-Party DalaSOUICEc.uuiiiuniiiiiei e e e e e e e e e e e e e e e e e et e e et e e ean s e ean e eeanaaennaees 203
4.2.1. Managed and XA DalaSOUICESc.uuieeruereieeetieeeteeetaestaeeataeeteeetnaeeanaeranereraernaeenes 204

4.3. RUNtIME ACCESS 1O DAASOUICEuueeiieeeieeei ettt e e e e e e e e e e e e et e e et e e e e e e an e e enneeeenaees 205
A4, DALADESE SUPPONT ..t eeeti ettt ettt ettt ettt e et ettt ettt e e e e s 206
4.4.1. DBDICtONArY PrOPEITIESc.unieieieiieeei ettt e e e et e et e eees 207

viii

Apache OpenJPA User's Guide

4.4.2. MySQLDICtioNary PrOPEItIESuviiiiiiieeiie e e e e e e e e e e e e e e e e et e e e e eees 214
4.4.3. OracleDicCtionary ProPerti€S ... vuuuiveiiiei et e e e e e e e e e e e e e e e aes 215

4.5. Setting the TransaCtion 1SOIAHONooiiuiiiiei e 215
4.6. Setting the SQL JOIN SYNEBXvuueiiiiieeeiiie ettt ettt e e e et et e et e e e ab e e enna s 216
4.7. Accessing MUItiPIe DataDESESoiueiiii e e 217
4.8. Configuring the Use of IDBC CONNECLIONSc.uiiiiiiiieiiie e e e e e e e e e e e e anaeans 217
LI RIS v (= 1= 10 == oo 218
400, LargE RESUIT SEESieuiiiii it e e et e e e e e e e e e e e e e e araae 219
T D T -0 S 1 = P 221
4.12. SChemMa REFIECHION ...t e e e e e e e e 221
N TS o 1= 0 T PSP 222
S o 4T 0 7= N ot (0] Y/ 222

e TS o1 1= 112 I o PSP 223
414, XML SChemMa FOMMEL it e et e e et e e e eaan s 226
I S £ 1 = L S-S 228
I = S S = O = P 228
B2 BNNANCEMENT ...ttt ettt et e et e e et e et e e e e aa s 228
5.2.1. Enhancing at BUild TIMEieniiii e e eaas 229
5.2.2. Enhancing JPA Entities 0N DePlOYMENtuiiiniiiiiiiee e e e e e e e e 230
5.2.3. ENhanCing @t RUNTIMIEuuiiiiieiii e e e e et e e e e e e e e e e e e e e e et e e et e e eanaeeees 230
5.2.4. Omitting the OPenJPA NNEINCESuiiiiiiie et 231

5.3. MANaGEA INTEITACES ... ettt ettt ettt e e e e e e e eenans 232
N ® o)1= ol L (=01 Y/ P 232
L I BT 7= (o (= o = Y/ 232
5.4.2. Entitiesas [dentity FIEIAScc.iiiiiiiii e 233

5.4.3. Application [dentity TOOIccouuiiiieirii e e e e e e e e e e e e e ees 234

5.4.4, Autoassign / ldentity Strategy CaVEALSveieuuuiiiiii e 235

B5.5. MANBGEA INVEISESeiiiiiiii ettt ettt et e e et e et e e et e e e eaaas 235
T = S B < | = o P 237
L S I (== (o] o = = 237
2 Y/ o T o =g To JL@ o = T oo R 237
5.6.3. Calendar FieldS and TIMEZONESccuuuiiiiiiiiiiiii ettt et e e e eeaens 237

I . (o)== 238
O IS 0 o . o) == PT PP 238

5.6.4.2. Large RESUIT SEL PrOXIES .. c.uuiitiiiiee ettt e e s 238

5.6.4.3. CUSIOM PrOXIESccuueiii ettt ettt et e e et e e e e e e e eann s 239

ST o 1= 1 0 T2 (o PP 240
B5.6.5. 1. EXIEINAl VEIUESoiiiiiiieiiii ettt eaans 243

A == (o 1 1 € (0T o= PP 243
5.7.1. CUSIOM FEICN GIOUDS ...evveeiiitieee ettt ettt ettt e e et e e e e e eenans 243
5.7.2. Custom Fetch Group Configurationeeuniiiiiii e e e e eees 245
5.7.3. Per-field Fetch Configurationccuioiiiiiiii e 246
B.7.4. IMPlEMENtatioN NOLESvuiie e e e e e e e e e e e et e e et e e eanaeeees 246

o3RS T =T 1= g = [1 oo 247
5.8.1. Configuring Eager FELChINGooieiiiieiii e 248
5.8.2. Eager Fetching Considerations and LimitalionScoooveveiiiiiiiiniiiiiieece e 249
LY=o = - PR 250
LV T = = N = ok o] Y 250
A VL= o v = = 0101 1 (o Y 251
6.3. AAdItioNal JPA MELBOBEAceeeveieeeiie ettt et e et e et e aaans 251
6.3.1. DAASIONE IABNLILY ... eeiettie ettt et e e e e e eaaas 251
6.3.2. SUIMOGELE VEISIONeiiiii ettt ettt ettt ettt e ettt e et et e et et e e e et e e e ena e eeenens 251

6.3.3. PErSIStENt FIEld VAlUESuiiiiiii ettt e e et e e e e e eeaens 251
6.3.4. Persistent ColleCtion FIElASc..uiiin e 252

6.3.5. Persistent Map FIElASuiiiiieii e e e e 252

6.4, Metadata EXLENSIONS ... cieiiiieiiii ettt e et e et e e et e e e e anans 253
Ot I O =Y 4 (= 1S o 0 253
B.4.1.1. FELCN GrOUDSeeviieieit ettt eaans 253

A DT - O TP 253

Apache OpenJPA User's Guide

6.4.1.3. DEtAChOT SEALEuu i eeeiiii e 253

L T o (= S o PP 254
B.4.2.1. DEPENUENTcieiitieeiit ettt aaans 254

6.4.2.2. LOAH FELCN GIOUD ...eeieiiiiii ettt 254

S B T I L PP 254

B.4.2.4. INVEISE-LOGICAl ...ouiiriieiei e e 254

B.4.2.5. READ-ONIY ..oiiiiiiii e et e et aaaas 254

L T 1Y/ o= 255

B A = 1 0 174 255

R T - ox (0 PP 255

6.4.2.9. EXIEINAl VEIUBSuiiiiiiiiiiiiii et e e e et e e et e eaaanns 255

B.4.3. EXAMPIE ..o e 256
781V, o] o 1 o [N 257
8 oo 1Y T o o 257
7.1.1. UsSing the Mapping TOOIccouuuiiiiiii ettt e 258

7.1.2. GENErating DDL SQL ...vvvuuiiiiiiiieet it e ettt e e e e et e e e et e e et e e e a et aaaan 259
7.1.3. Runtime FOrward MapPiNgccuuoeeuniii ettt e et e e e e e et eeaa e eaes 259

7.2. REVEISE MBPPING .. eeniitieiit ettt et ettt et et ettt e e e e e 260
7.2.1. Customizing REVEISE MBPPING ..vvvueveeneeeie et e e et e e e e e e e e e et e e e e et e e et e e et e e eanaeeees 262

7.3. Meet-in-the-Middle MaPPIiNGucveeieii eennas 264
T4, MAPPING DEFBLITSeuieeei ettt e e et eeaaas 264
7.5, MAPPING FBCIOMY ..ottt ettt ettt e et et e et e e eaaas 266
AT Lo g S =g o= o N o] P 267
7.7. Additional JPA M@DPINGSueeeneeetie ettt et e et ettt e et et e e e e 269
7.7.1. Datastore [dentity MappRingceeeeeeeeeeiieeieeeeeei e ee e e ere e et ae s e e e e eaneeateeetnaeranaerees 269
7.7.2. SUrrogate Version MapPiNgceeeueeeuneeeueeeieeeteesatseeeteeeteeetseeanaeeaneeenerenaeetnaeennaeenes 269

7.7.3. MUIti-COlUMN MBPPINGS .. ettt ettt et e et e e e e e eenans 270
7.7.4. 30in Column AHIHDULE TArGEIS ceiei et 270

AT AT = 11070 0= o 1Y =0 11 o 270
T.7.6. COIBCLIONS ...ttt ettt et e et e et e e e e e et e ean e eees 272
7.7.6.1. CONtAINET TADIE ...uuiieiiiiie et e et e e et eaans 272

7.7.6.2. E1ement JOiN COIUMNSoiiiiiiiiiiiiie ettt et e e e e et e e e eaa e e eenens 272

A A R T @ o [= o 11 4o o 272

7.7.7. One-Sided ONe-Many MaPPINGcccuunieiiuiiieeiii ettt eeer e eenans 273

AR S T .- oL 274
7.7.9. INdeXES AN CONSLFAINTS ... eeuiiiteeit ettt et e e ettt e e e et e et e ean e eeees 274
T.7.9. 0 INAEXES .ottt e et aaann 274

A A I o= Lo I = 274
7.7.9.3.UNIQUE CONSITAINTS ...eevtieeieiis ettt ettt e et e e e et e eenens 275

7.7.20. XML COlUMN MEPPING .. eteetieeeeet ettt e et ettt e e e et e e e e e e e era e e eenans 275
7.7.11. Stream LOB SUPPOIvuuieeiiieeeeeiiseetetis e e ettt s e e e et s e e e et s e e e esan s aeeesan e eeesen e eeesnnaeeeesnns 279

48 T 1=,V o [0 279
RS B =,V AN o 1 4 1 o1 0 P 279
7.10. Key EMbedded MapPingc.uueieeieeieeeee e e e e e e e e e e e e et r e e e e e e e e e et e e an s 279
A N o 0o = PP 280
7.12. Mapping LIMITaiONSo.uuniiiiiie ittt e e e eaaas 280
8 T - o 1= o = O PP 281

7.13. M@PPING EXTENSIONS ...ttt et et ettt e e e e et e e et e e e e eeanas 281
7.13. 1. ClASS EXEENSIONS ...uueiiiiiietiiii e ettt e ettt e e ettt e e et e e et s e e e et r e e e eatn e e e et neeeetanneeeenans 281
7.13.1.1. SUDCIASS FEICh MOOE ... ceiiiiieeiei e 281

A B B S 1 (= 1Y PP 281

7.13.1.3. DiSCHiMINGLOr SEFAEEOY ... ceevvueeentieeteti e eett ettt e et e e e e et e e ena e eenens 281

71304 VErSION SHALEOY .. evneetneeeneeet et e ettt e e et e e e et e et e e e e e et e e e e e e eeannas 281

7.13.2. FIEIA EXIENSIONS ..ottt ittt et ettt et ettt e e e et e e et e ean e eees 282
7.13.2.1. Eager FEICh MOGEccvv e e 282

7.13.2.2. NONPOIYMOIPIIC .vuiiieciie e e e e e e e e aa s 282

80 B0 T @ - =Y @ 1) =1 - 282

S - = o |V P 282

714, CUSLOM IMBPIINGS .- etne ettt ettt ettt e et et e et e et e et e et e e et e e et e e et e ettt s e e ea e e et e eetn e eeaneeennns 283

Apache OpenJPA User's Guide

7.14.1. CuStOM ClasS MAPPING «.uueerneiiiieei e e e e e e e e e e e e et e e e e e et e e e e e et e e et aeeanaeenes 283
7.14.2. Custom Discriminator and Version Strat@giesuuvveunieeiiieeiieriieeeieeeneeeneeei e eaneeeees 283
7.14.3. CUSIOM FIEld M@DPING ...ttt et e et e e e eaans 283
71431 VAUEHANAIEIS ..o e 283

A R B T o S g = o 1P 283

7.14.3.3. CONFIQUIBLION ...euieiie e e et e e e e e e e et et e e e e eenns 283

7.15. OrPhaned KEYS . .ovniiiiici i e e e e e e e e e e e e 284
S D 1= o oY1 1= 0| 285
8.1. FACtOry DEPIOYIMENE ...ttt ettt ettt e et e et e e e et e e e e e e e enans 285
8.1.1. StandalONe DEPIOYMENT ... cieiii ettt ettt e e e eaaas 285

8.1.2. EntityManager INJECHIONc.uiiit ittt et e et e et e eaa e eees 285

8.2. Integrating with the TransaCtion ManaQerccouiiiniiiiiii e e e e eaas 285
R A N I -0 £ o P 286
8.3.1. Using OpenJPA wWith XA TranSaCtiONSvevuuiiiiiiiiei e e ee e e e e e e e e e eaneeeees 286

LS 01T S o = o) 1 288
S N (o g1 = (1= PP 288
9.1.1. BroKer FINAlIZAHONccuuiiiieii e 288
9.1.2. Broker Customization and BEVICHONccouiiiiiiiiii e 288

SN N e [1= o P 289
9.2.1. OpenJPAENtItYManagerFaClOrycveuiieii e ee e e e e e e e e e e e e e eees 289

9.2.2. OPENIPAENTTYMANAGES ... ettt ettt e et eaaas 289

0.2.3. OPENIPAQUENY .ieiiieeeei ettt et e et e e et e e e et e et e et e e et aa et aaaaa 289
LS = o | P 290
0.2.5. SIOTECACNE ... 290
9.2.6. QUENYRESUITCACKEuiiiieii e e 290
.2.7. FEICNPIAN ..ot 290
9.2.8. OpenIPAENLIYTIANSACHION ...cevveiieiiii ettt et e e e eaans 290
9.2.9. OPENIPAPEISISIENCE ...ttt ettt et 291

LS RS A ® o= o I o To: (] oo P 291
9.3.1. Configuring Default LOCKINGuiiuneiiieiie e e e e e e e 291
9.3.2. Configuring Lock LevelSat RUNTIMEcccuuiiiiiiiiiiciee e e e e e e e e e e e 291

LS RCRCIN @ o] ox oo (1 o 172N 292
LS A oo g I K= 0= o L= PP 293
9.3.5. RUleSTOr LOCKING BENAVIOTiiiiiiiiiiiiii ettt 294
9.3.6. KNown 1SSues and LiMmitaliONSccuuieunieieeiiee et e e e e et eean e eees 294

S Y oo 4| KPP PP 294
S B S T T S Y=o o g = 295

9.4.2. CoNfigUING SAVEPOINTSueeee ettt eeet e e e e e e e et e e et e e e e e e e e e et r e e e e ean e e eneeetaeetnaeeanaeeees 296

LS ST 1V 1= 13 To o [P 296
R T 0= = (o= T PP 297
0.6. 1. RUNEIME ACCESS ... eeet ettt ettt ettt e e et e e et e ettt e e ta e e e et e e et e aeba e aeanaeees 299

O.7. TranSaCtiON EVENES ...t et e e e et e e e e 299
9.8. NON-REIBLIONE] SLOIESeeeviieiiiiiie ettt e e et e e e e e e e et n e e e eat e e e etan s e eeenans 300
0 o 11 o PP 301
0 50 I - = o 1= 301
10.1.1. Data Cache CONFIGUIALIONc.uuueiiitie ettt ettt e et e e et e e eebi e eees 301
10.1.2. Data CaCn@USAQE ...c.uuieiiiit ettt ettt e et et e et e et e e e ea e 303
10.1.3. QUENY CACHE ...uiiiiii et 305
O 0o 1] 4 =0 T o SRR 308
10.1.5. IMPOITANE NOLESuieeieee et e e e e et e e e et e e e e e eaneen s e aneeaneeaneees 308
10.1.6. Known Issues and Limitationsvvveeoieneriiei e e e e e e e e e e e e e e e e eeanaees 308

10.2. Query Compilation CAChEcoouiiiiii e e 309
10.3. QUENY SQL CBCNE . .eetiieeeiie ettt e e e et e e e e et e e e e et e e e e et e e e e et e e e e et e e e aaraaaaaes 309
11. Remote and OffliNE OPEIELIONcuuuiiiiiiitee ettt e e e et e et e et e e e at e e ea e eean s 311
R B T = 1= g Lo A 1 = PPN 311
11.1.1. DEtaCh BENAVIONvuuiiiiiiiee et e et e e et e e e eeaanaeeees 311
I N 1 = Tot g1 2 T o PP 311
11.1.3. Defining the Detached ODJECE Graphuuuiiiiiiiiieiiiii e 312
11.1.3.1. Detached StAat@ FIEldiiiiiiiiieeiiie e e e e et eees 313

Xi

Apache OpenJPA User's Guide

11.2. Remote Event Notification Frameworkooooiuiiiiiiiiis e 314
11.2.1. Remote Commit Provider ConfigUrationovviunieiiieiiieei e e e e e e e e 314

8 0t OO PN 314

0 2 1 = S UPUSPN 315

11.2.1.3. COMIMON PrOPEITIES .. .eenieiieeii ettt e e e e e e e e e ean e eeees 316

A O 01 (o1 4 2= 1 Lo o RO UPTRPPTRN 316

12, DiStITDULEO PEISISIENCE ... ittt et e et e e e e et e e e e et e e e eeta e e e e eateneeeaetenaeaaes 317
O = 4T PSPPI 317

S T g = (=P 317
N T =0 0= = 10 PP UPTIPPPI 317

12.2.2. Custom DistribUtioN POIICY ... oeeeiiieei e 317

12.2.3. HeterogeneoUS Datalase c.uivn it 318

12.2.4, Parall€] EXECULION ...uiiiiii et e et e e e e e e et e e e e et e e e eetaaeeees 318

A B TE o 1U 1= o 1 1= o P 318

12.2.6. TAGEIEA QUETY ..ottt ettt ettt e ettt e e ettt e e e et e e e e eat e e e eaba e eeees 318

12.2.7. Distributed TranSaCtioNoceueieii e e e e e e et e et e e e e eeanaas 318

12.2.8. CollOCatiON CONSITAINT ... ieeeeet et e e e e e et e et e et e e et eeeaeaeanans 319

2 O 1 o PSPPI 319
12.3.1. How to activate SHCE RUNLIME?couuiiiiiiiii i e e e e e e e 319

12.3.2. How to configure each database SlICE?ivvuiiiiiiiii e 319

12.3.3. Implement DistributionPolicy iNterfaceccoiiiiiiiiii e 320

2 3 320

12.4. GlODEI PrOPaItiES ... ettt ettt et et e a e aaaas 321
12.4.1. openjpa.dlice.DistribUtiONPOIICYcoouuiiiii e 321

12.4.2. 0penPASHCELENIENTiieiiii e e e e aa e 321

12.4.3. 0PN PASHCEIMASIESieiiii et 321

12.4.4, 0penjPasliCEINGIMESooii e e 321

12.4.5. openjpaslice. ThreadingPOlICYcc.uuieiiiii e e 321

12.4.6. openjpa.dlice. TranSaCtioNPOlICYoiiuu i 322

12,5, PEr-SliCE PrOPEITIES ..ttt et et aa s 322

B o T o = YA 01 =0 = 1 o PP 323
G 00 I N o o 1= A | 323
13.1.1. Common Ant Configuration OPtiONSiiiiiiiiieiiii e 323

13.1.2. ENNANCEr ANE TASK . ittiiiieeii ettt et e et e et e e e e e et e e et e e ea e eeanaaes 325

13.1.3. Application Identity TOOI ANt TASKccuuiiiiieiie e e e 325

13.1.4. MapPing TOOI ANE TASK ...ttt e e e e et e e e e ean s 326

13.1.5. Reverse Mapping TOOI ANt TASKivuuiiiii i eenaees 326

13.1.6. SChEMATOO! ANE TASK ..eevuiieeiiiiie e et e e e e et e e e et e e e eeba e eeees 327

14. OptimIiZation GUILEITNEScoue et e ettt e et e e e e et e e eeaa e aaees 328
L JPA RESOUICESeeieiiete ittt ettt ettt ettt ettt e et e e et e e eh e e ettt e et et a et et e ea et e e e e e et e et e ann e e et e b e e e eans 332
2. SUPPOITEA DAIADASES ceueiit ittt ettt e et e et et e et et et et ah e e e et e et e e e aaaaas 333
2.0 APACNE DY e 333
2.2. BOrand INEEIDESEu ittt e ettt e e e aaann 334
2.2.1. KNOWN iSSUES WIth INTErDASEuuiiiiiii e 334

G TN B T = S (o] = 334
24 IBM DB2 ...iiiiiiieei ettt e et e et e et a et e et aa et aaaran 334
241 KNOWN ISSUES WItN DB2 ...ttt et e e e e e e et e e e e eeanas 334

T = 1] 0= PP TP 335
2.5.1. KNOWN iSSUES WIith EMPIESS ...uuiiiiiii et e et e e e et e e et e et e et e e e e e e e eanaas 335

A o A BT - o = = 1= 335
2.6.1. Known issues With H2 Datalase ENGINEccoeuueiiiiiiieeeii ettt eeeaes 335

A B o 1Y o= £ o oSO PPPPPT 335
2.7.1. KNOWN iSSUES With HYPEISONICuieiieiei et e e e e et e e e e 336

P2 S 1= o1 o PR 336
2.8.1. KNown issUES With FIreDIrdoiiiiiiiiiiii et eaans 336

P2 1 01 o 1 1 PP 336
2.9.1. KNown issUeS With INFOMMIX ...veeniiieeie e e e e e e e e e e e e e e e enes 336

2.10. INEEISYSEEMS CACHE ... ettt ettt ettt e et e e e et e e e e e eaaas 337
2.10.1. Known issues With INterSystemS CaCheieuniiiiiiiii e 337

Xii

Apache OpenJPA User's Guide

2.11.

212

2.13.

2.14.

2.15.

2.16.

2.17.

2.18.

Lo oS o A o= PP 337
2.11.1. KNown isSUES With MICIOSOft ACCESSccvvuiiiiiiii ettt ettt e e e e eaens 337
e 0o O S o P 337
2.12.1. KNOWN iSSUES With SQL SEIVEYiieiiiii et e e e e e e e e e e e e e et e e e e eennas 338
I Te o= e) B o) o S PR PTRPRRN 338
2.13.1. Known issues With MICroSOft FOXPIOcouuniiiiii e 338
Y Y PP 338
2.14.2. KNOWN iSSUES WIth IMYSOQL ...uieiiiiii e e e e e e e e e e e e et e e e e e e e e e e anaeeennas 338
(@] 1= o [TP 339
2.15.1. Using Query HINtSWIth OraClecooeiiiiiiiiii et 339
2.15.2. KNOWN ISSUES WITN OFACIE ...t e e e e e 339
oL 0117 S PP UPTR PRI 340
2.16.1. KNown iSSUES With POINEDESEcevvviiiieii ettt e e e 340
00 > R 340
2.17.1. KNown issUeS With POSIOrESQLvuuiiiiiiieeiii ettt et eenans 340
SYDESE AQADLIVE SEIVEY ...ttt 341
2.18.1. KNOWN iSSUES With SYDESE ... 341

Xiii

List of Tables

2.1, PersiSteNCE IMECNANISITIS .. .uuiieeiiieeiiit ettt e ettt s e e e e et e e e et e e ettt e e E e e e e e e e e e nn e e e e e nn s 10
10.1. Interaction of ReadL ockMode hint and LOCKIMANAGEYcvuuiiii e e e e e e e e e e e e e e e eanaees 87
4.1. OpendPA AULOMELIC FIUSN BENAVIOcieeiiie et 218
5.1, EXEEINELIZEN OPLIONS ... eieiiii ettt ettt ettt ettt e e et e e et et bt et et et e e et e et e aa e e eaans 240
A = o (0] 4 VAL @ o 1o S PP SPPTPPT 241
10.1. Data @CCESS MELNOUSceeetieeeeii ettt ettt ettt ettt e et et e et et et e et e e e eete e e e eene e eeeereaeeees 301
10.2. Pre-defiNE0 @liBSESoeveeeiiiie ettt e n e e e e e eenn 309
10.3. Pre-defiNE0 @li8SESoiieeeiiie et reeenn 310
14.1. OptiMIZation GUIGETINESiiiiiiieieii ettt e ettt e et e e e e et e e e ee bt e e e eebe e eeeetaaeaees 328
2.1. Supported Databases and JIDBC DIVENSuuiiiiiiieieiie ettt ettt e e et et e e e et e e e ena e e eenans 333

Xiv

List of Examples

3.1. Interaction of INterfaces OULSIAE CONLBINETccuuuiiieii ettt e e e e e e e et e e e et e e e e tb e e e enenes 12
3.2. Interaction of INterfaces INSIAE CONLAINEYiiieii et e et e et e e et eeeaaa s 13
T = S B <1 1 15
N [L= o L1 Y O = TP TSP SPPRTR 19
I IO = Y 1Y o - P 28
A 0 410 [(SN Y 1 r=o - - 55
TR0 o= S T (=10 0 61
6.2. Obtaining an EntityManagerFaCloryiieuiiii et e e e e e e e e e e et e e et e e e e e et e e et aeeanaeeaes 62
7.1. Behavior of Transaction Persistence CONLEXEviiueiiie e e e e e e e e e e et e e e e e et e e e e e e e e eean e eeanaeeees 65
7.2. Behavior of Extended Persistence CONLEXEccuuiiieiiii e e e e et e e e et e e e e et e e et e eanaeeees 65
I e £ Es (o (O o 1= ot £ PP 71
LS B oo = 1] o 1] o= o = 71
TG = 141017710 @ = ox 72
ST B < = a1 o = To Y = o o 72
9.1. Grouping OperationS With TrANSACLIONSuuiiiiii et et e e et e e e e s 78
FO. 1. QUENY HINES ..ottt ettt ettt ettt e et et e et e e bt et e e b e ettt e et e et e et et e na e e enaas 86
10.2. Named QUENY USING HINLSuuiiti ittt e et e et ettt ettt e e tt e e et e e et e e et e ean e aeat e eaeanaaeanans 87
O TG T I = = = oV 1= 89
O U T = L=) 11T P 90
I = o = T = 115
11.2. RetrieVing PersiStent ODJECESuuuiiiiiiii ettt ettt e et et e e et et e e e e e bt e e e eetaaeeees 116
11.3. SQL QUENY ParBIMEBLENSietiei ittt ettt ettt et et e et et e et et e e et e e et e e et e et e et e e et e een e et e et e eaaenns 116
(Y = To o 1 o O = =SSP 118
12.2. DefiNiNg @aUNIQUE CONSEFAINL iuuiieeitei e e e e e e e e e e et e e e e e e e e e e e et e et e et e e e e e e eaneeaeenns 120
2 T o = 11 V20 1Y =" o1 T 122
2 1= 1= = (o 1Y/ =" o o1 oo 126
12.5. SINGIE TADIE MBPDPING ... eeetiieieei ettt et e et e ettt e e et et e e e ettt e e e ee bt e e e e ebaaeeeeba e aee 128
12.6. J0INE SUDCIASS TADIES ... ceeiieii ettt et e et e et e et e et e e et e e et e e e tn e eeneeennas 130
12.7. Tahle Per ClasS M@ADPINGcuuniii ettt ettt et e et ettt e et e e et e et ta e e et e e et e e ean e e et e aean e eanaeannns 132
2 g = gL =T e =B =T o) o 134
b2 I B TR o 1 o T= o 1Y =TT o1 o 138
2t O T = S Lo = Lo LY=o o o 143
12.11. Secondary Table FIeld MaPDINGccceuuieiiitieeei ettt e et e et et e et et e e e e et e e eeta e aees 147
12.12. Embedded FIeld MaDPINGcceuuueieiiieieit ettt ettt e et e et e e e e e e e e eee 148
12.13. Mapping Mapped SUPEICIBSS FIETccuu et e e e e 149
12.14. Direct Relation FIeld MaPPiNgoiuneiieiie et e e e e e e e e e e e e et e et e et e et e e e e e eaeenns 152
S LT o T T 1o =1V =T o o 154
N LT o T T I o) =Y =T B 1Y =T o1 T 156
12.17. FUIL ENLIEY MBPPINGS ... eeetieteeiie ettt et e ettt e ettt e et ettt e e et e ba e e e et ba e e e eebt e e e eebt e eeeetnaeaees 159
2.1. Code Formatting with the Application 1d TOOIcoieiuiiiiii e 176
3.1. Standard OpenJPA LOg CONFIGUIALTONc..uiitiitee ettt e et e e et e et e e et e e et e e e an e eenaaennns 199
3.2. Standard OpenJPA Log Configuration + All SQL StaleMENLScouiiiiiiiiie e e 199
GG T oo o 1o X (o 1= 1 1 = 200
TS = 110 = o T 7 N I o T 1 oo 200
TN B L I oo 1 0] 1 1] PP UPPP 201
3.6. CUSIOM LOGUING CIBSS ...eituiieiiiti ettt ettt ettt ettt ettt e et et e et e tbn e et e eb e e e e b n e e e etb e e eenans 201
4.1. Properties for the OPenJPA DElBSOUITEc.u.iiuu ittt e et e e e e et e e et e e et e e ean e eeanaaeanaas 203
4.2. Properties File for a Third-Party DaaSOUICEc.uiiiuiiiiiieiie et e e e e e e e e e e et e et e e eanas 204
4.3. Managed DataSource CONfIGUIALiONueeueieii i eeiee e e e e e e e e e e e e e e e et e e et e e et e e et e e et e eean e eenneennnaaes 204
4.4. Using the EntityManager's CONMECLIONivuuiiieeeii e e e e s e s ie e e e e e e e et e e et s e e e e et e e ean e eean s eeaneeenneeennaaes 205
4.5. Using the EntityM anagerFactory'S DAASOUICEccuuuuieiii ettt e et e et e et e e et eeeaen s 205
4.6. SPECITYING ADBDICHONAIYtuiiiitieetiet ettt ettt ettt e e et e b e e et et e e et e e et rb e e s 207
4.7. Specifying @ TranSaCtioN ISOIEHIONieue e et e e et e e et e et e e e e e e ea e eeanaaes 216
4.8. Specifying the Join Syntax DEfAUITcouiiiii e e 216

XV

Apache OpenJPA User's Guide

4.9. Specifying the Join SyntaX af RUNLIMIEccuuiiiiiiii e e e e e e e e e e e et e e et e e ean e e e an e e eaneeaanaaes 216
4.10. Specifying Connection Usage DEfAUITSiiiieiiii e e e e e e e e e e aaaees 218
4.11. Specifying Connection USage @l RUNLIMEuuuiiiiii et e e 218
4.12. Enable SQL Statement DAICHINGiiiieiiiiii ettt et 219
4.13. Disable SQL statement DAICHINGieun ittt e et e et e et e e e e e e 219
4.14. Plug-in custom statement batching implementation ... 219
4.15. Specifying RESUIT SEt DEfALITSciuuiiii e e e e e e e et e e et e e et e e e e e e e e aaaaes 221
4.16. Specifying Result Set Behavior at RUNTIMEiiii e e e e e e e e e et e e e e e e e e e e eeanaees 221
S ok 7= 00T O = (o P 225
RIS O IS o] o1 oo ST SOPPTR 225
.19, TADIE CIEANUD -...ceeeeeite ettt oo ettt e oo oo e et e et bbb oo e e e e e et e bbb b e e e e e e e e eebbbbn e e e eeeeeesebnnn s 225
R o 0 T= 01 F= 1 B (] o PP PPN 225
4.21. SCEMAREFIECIIONeei et e ettt e e e e e e e e e e e e e e e 225
4.22. BBSIC SCHEIMIA ...ciieiiiiiii ettt ettt oottt e ettt e et r e 227
T U o 0 0 P 227
5.1. USiNg the OPenIPA ENNGINCET ...ttt ettt e e et e e e et e e e ern e eeenans 229
5.2. Using the OpenJPA Agent for Runtime EnhanCementcoou i 230
5.3. Passing Options t0 the OPENIPA AGENLiiiiii et et e et e e e et e e et e e et e e e e e e e eannas 231
5.4. JPA Datastore [dentity MELAAIAoevuuiiiii e e e e e e e e e e e e e r e 233
5.5. Finding an Entity with an Entity ldentity FIEldooouiiiiii e e e 233
5.6. 1d Class for Entity [dentity FIEIASiiiiiiii et 233
5.7. Using the Application 1dentity TOOIccoouuiiiiiii et e e e e eaans 234
5.8. SPeCIfyiNg LOGICEl INVEISESottt e et e et e et e e et e e et e e e b e e an e eannns 236
5.9. ENabling Managed INVEISESuiiiiie ettt e e et e e e e e et e et e et eea e e e e e e e e et e enaeanaeannas 236
5.10. LOQ INCONSISIENCIESvu ittt e et e ettt e e et e e e e e e e e et e et e e et e e e e e et e e et e e e e e e e e e e ean e e et e eean e eaneeannns 237
5.12. USING INitial FIEIAd VAIUBS ... ceei e e e e e e e e e e e et e e e e e e e e anas 237
5.12. USING AL arge RESUIT SEE TTEIEEOTceeuueeeiii ettt ettt e et e e et e e e eaa e eeeanns 238
5.13. Marking aLarge RESUIT SEt FIEITuuniiiii ettt et e e e e eaans 239
5.14. Configuring the ProXY IMANEGEYcuuuiiii ittt e e et e et e e et e e e tt e e et e e et e e etn e eanaaennns 240
o L LS T g To = = 72 (o] o P 242
5.16. Querying EXternalization FIEIASiiiiiiiiiiiii e e e 242
I AU LS T g o g U= 7= I = 01 243
5.18. CuStOM FELCh GrOUD MELBHEIAeevteeeiti ettt ettt e et e e e et e e e et e e eeaans 244
5.19. Load FetCh GrouUP MELBHEIAceeereieiiiiie ettt ettt et et et e et et e e e et e e e ena e eeeeans 244
5.20. USING the FEIChPIBN ..ottt e e et et et e e e e e e e e as bbb e e e e aaaaeenes 245
B5.21 Adding @n Eager FIEIooniiiii e 246
5.22. Setting the Default Eager FEICh MOGEciieii e e e e e e 248
5.23. Setting the Eager FEtCh Mode at RUNIIMEc.vuiii e e e e e e e e e e e e e e e anas 248
6.1. Setting a Standard Metadata FaCIONYcoouuiiiiiii ettt e e e e eaans 250
6.2. Setting a CuStom MEtadata FACOMYcoeutiiiiii ettt ettt e et e e et e eenens 250
LS T TSP PTTTTTRR T SUUPPPPRTIN 251
6.4. OPeNIPA Metadata EXIENSIONSuiiieeiiieiit ettt ettt et e et e et e et e e et e e et e e et e e e aa e eanaeeannns 256
45 I U= T o I (L= Y =T o o oo 257
7.2. Creating the Relational Schema from MapPingSuvieniiiiiei e e e e e e e e e anas 258
7.3. Refreshing entire schemaand cleaning QUL taDIESuiiiiiiii i 259
7.4. Dropping Mappings and ASSOCIaliON SCREMAuuiiiiiii et eeeas 259
7.5. Create DDL fOr CUrteNt MaPPINGS ceeueeeteeit e et e et e et e e et e e et et e e e e e et e e et e e et e ettt e e et e e et e aetn e eanaannnns 259
7.6. Create DDL to Update Database for Current MapPingS eeuueeun ettt e et ettt e e e e e e e eanaeeeenas 259
7.7. Configuring Runtime FOrward MapPingcouuieeuieeieee e e e e e e e e e e et e e e e e et e e s e e et e e et aeean e eanans 260
7.8. Reflection With the SCheMa TOOIuiii e 260
7.9. Using the ReVErSE Maping TOOccuuuuiiiiiii ettt ettt e et e et e e ettt e e e eaa e eeeanns 261
7.10. Customizing Reverse Mapping With PrOPEITIESiieiei e 263
7.10. Validating M PPINGS ... eeeeeie ettt ettt e et e e et e et e e et et e et et et ta e e e et e et e e e e aanas 264
7.12. Configuring Mapping DEFAUILScoue e e e e e e e 266
7.13. Standard JPA CONfIgQUIGLIONuuiiiieieiis et e e e e e e e e e e e e e e et e e et e e et e e et eeaan e e et e e ean e eaneeannns 267
7.14. Datastore [dentity MaDPINGoeeeuieei e e e e e e e e et e e e e e e et e e e e e e e e e e e a 269
7.15. Overriding ComMPIEX MEDPINGS ... eevruneteeti ettt ettt et et e e et et et e et e et e et etba e et e et e e ettt e e eetbn e eeennns 271
7.16. ONne-Sided ONE-Many MEDPINGcceuruueeetti ettt et ettt et et ee et e st e et eea e et esb e e eeeba e e e eaba e e e eaan e eeennns 273
A 11177 o 01155 o PSP 276

XVi

Apache OpenJPA User's Guide

708, AUUIESS.JAVAceeieeeeiti ettt ettt ettt e et e e e e et e ae e e e e eeenn 277
8 T O 1S T AN o [0 (= ST Y 277
7.20. CANAGUIESSJAVA ... ettt e et ettt e ettt e ettt e et tb e e et tb e e e et e e e eaans 277
7.21. Showing annotated Order entity with XML mapping SIrat@gYccuuuiiieiuiiieiiiie et 278
7.22. Showing creation of Order Entity having shipAddress mapped to XML Columncoooviiiiiiiiiiniiiineeieeenn, 278
7.23. Sample EJB Queriesfor XML Column MEPPINGeeuuieeeeiiaeeiee et e et e et e e e eei e e e e e et aean e eenaeeennns 278
7.24. Showing annotated INPUESITEAMcueiiiii i e e e e e e e e e e e et e e et e e et e e e e e et e e et e ean e eannns 279
7.25. String Key, Entity Value Map MaPPIiNGuoiieieeieei e e e e e e e e e e e e e e e e e s e e e e et e e e e e anneeenans 280
7.26. Custom Logging Orphanet KEYSuuiiiiii ettt et e et e et e e e et e e eaaans 284
8.1. Configuring Transaction Manager INEEGIaIIONiiieure ettt ettt ettt e e e et e e e e e eenans 286
0.1, BVICE frOM Dal@ CBCNE ... ettt ettt et et e e e et a et e e e e aaas 289
S U 1o I TN N 4= | P 290
0.3. Setting DEfaUlt LOCK LEVEIS .. cvvi it e e e e e e e e e et e et e et e e et e e e e e eanans 291
9.4. Setting RUNLIME LOCK LEVEISu it e e e e e e e e e e e e e e et e e et e e e eeennas 292
ST oo (] 0o I o PP 292
9.6. DiISADIING LOCKING ...ttt ettt ettt ettt e ettt ettt e et et s e et et e e et et e e e e bb e e e e na e e enans 293
O.7. USING SAVEPOINES ...t eeiieeit ettt e et e ettt e et et e et e ettt oo e et e e et e et ta e e e ea et et e e e et e e e aa e et th e e ea e e et e e ebn e een e annaas 295
0.8. NAIMEA SEO SEOUENCE ... eeteeet ettt ettt et et e ettt e e et et e e e et e e et e et et ettt e e e et e e et e e etnneeenaeennnas 298
9.9. System SeqUENCE CONFIGUIALIONiiieeii e e e e e e e e e e e e e e e e e et e e e e e et e e et eeanaeeannns 299
O S T gl L= A Y T - o o= 301
O BT = Y O o 1= = 302
10.3. DAta CaChE TIMEOUL ... eeieeii et e et e et e e e et et e et e e et e e et e e et e e e ta e e e ea e e et s e e et e e et e aetn e eeneeennes 302
L0 (o W o [g To = 0L = PP 302
0 T | Vo 1 T [T 1 = 303
10.6. ACCESSING thE SEOrECACKE ... ivii i e e e e e e et e et e e e e e e eanaas 304
O S (1= =t 3L U1 1= 304
10.8. Automatic Data Cathe EVICHIONiieiiiei et e e e e e e et s e e et e e e e e et neeaneeennas 305
10.9. Accessing the QUENYRESUITCACKEuui e et e e eees 305
10.10. QUENY CBCNE SIZE ... ettt ettt et e e e et e e e e et et e e e aaas 305
10.11. Disabling the QUENY CaChEiieiii e e e et e e e e e e et e e e e e e enns 306
002 VT 1] T I 1 === 307
10.13. Pinning, and Unpinning QUENY RESUILSc.uuiiiiiiiii e e e e e e e e e e e e et e e et n e e e e e e eanas 307
10.14. Disabling and Enabling QUENY CaChiNGiiiiiiiieiiii ettt e et e e e et eeeeaa e aees 308
10.15. QUENY REPIACES EXTENTveeieeii ettt e ettt e et e e et et e e e e et e e e ee b e e e eera e aaees 309
11.1. Configuring DELACNEM SEALEceen ittt et e e et et e e e et e e ea e e et e e e tn e eenaeennns 313
11.2. IMS Remote Commit Provider CONfiQUIELIONcouiiiiiiie e e e e e e e e eans 315
11.3. TCP Remote Commit Provider CONfiQUIaLioNccuuiriiiiiiieiir e e e e e e e e e e e et e e et e e et e e et e e e eeannns 315
11.4. IMS Remote Commit Provider transmitting Persisted ObJECt 1ASvvivniiiiiiii e 316
13.1. USING the KCONFIG™ ANE TG ... eiiiiiieiiiii ettt ettt e ettt e e et e e e e et e e e eete e e e e e bt e eeeetaaeaees 323
13.2. Using the Properties Attribute of the <CONfIg™> TaGcccvveiiiiiiiie e 324
13.3. Using the PropertiesFile Attribute of the <CONfig> Tag ...ccuniieniii e 324
13.4. USING the <ClaSSPath™ ANE TAY ... ceuniitnie ittt e et et e et e et e e et e e aneeennas 324
13.5. USiNg the <COAEfOrMEE> ANE TAQ ...uuiitiiiei e e e e e e e e e e e e et e e e et e e et e e et e e et eeaneeanaas 324
13.6. Invoking the ENNanCer frOM ANE oo e e e e e e e e et e et e e e e e e e eannas 325
13.7. Invoking the Application Identity TOOI frOM ANE ... et 325
13.8. Invoking the Mapping TOOI FrOM ANiiiiie ettt e et e e e et e e e e et e e e eeraaeeees 326
13.9. Invoking the Reverse Mapping TOOl frOM ANEo.un it e e e aaas 326
13.10. Invoking the ScChema Tool frOM ALoouii e et e e e e e et e e e e e e e enns 327
2.1, EXample propertieS fOr DEIDYc.uuiiii i 333
2.2. Example propertieS fOr INTErDASEccue i e e e e e e 334
2.3. EXample propertieS fOr ID@IASIONEu ittt ettt e e e et e eaaans 334
2.4. Example propertieSfor IBIM DB2iiiiiiiii e 334
2.5. Example propertieS fOr EMPIESSttt et et e et e e et e ettt e e et e e et e e etn e ean e aannns 335
2.6. Example properties for H2 DatabaSe ENQINGocuuiiiiiii e e 335
2.7. EXample propertieS fOr HYPEISONICvvuu.iiie i ee e e e e e e e e e e e e e e e e e e et e e e e e et e e et e eaneeanans 336
2.8. Example propertieS for FIFEDINTiiii e e e e e e e e e 336
2.9. Example properties for INformix DYNAMIC SEIVEScieuui ittt e e e eeaans 336
2.10. Example properties for INterSyStEMS CaCNEcouuuiiiiiii et eaens 337
2.11. Example propertieS fOr MICTOSOfT ACCESSttt ettt e et et ettt e e et e e et e e et e ean e eannns 337

XVii

Apache OpenJPA User's Guide

2.12.
2.13.
214,
2.15.
2.16.
2.17.
2.18.
2.19.

Example properties for MiCroSOft SQLSEIVEYccuuiiii e e e e e e e et e et e e e e eanaas 337
Example properties for MiCroSOft FOXPIOc.u i e e e e eaas 338
ExXample PropertieS fOr MYSQLu. ittt ettt ettt e 338
EXample propertieS for OFaClE et 339
USING OFBCIE HINES ...ttt ettt et e ettt e et e et e e e e e et e e et e e et e e e tn e eaneeennns 339
Example properties for POINTDESE oo e 340
Example propertieS for POSIGrESQL.iiueiiiii et et e e e e e e e e e e e e e e e e et et e e e e aaas 340
Example propertieSfor SYDESEovieiii 341

XViii

Part 1. Introduction

001 N PP PP TUPPTPIN
I AN o o 10 | A I 4 TE3 o ot U 1< |

Chapter 1. OpenJPA

OpenJPA is Apache's implementation of Sun's Java Persistence APl (JPA) specification for the transparent persistence of Java
objects. This document provides an overview of the JPA standard and technical details on the use of OpenJPA.

1.1. About This Document

This document is intended for OpenJPA users. It is divided into several parts:

» The JPA Overview describes the fundamentals of the JPA specification.

» The OpenJPA Refer ence Guide contains detailed documentation on all aspects of OpenJPA. Browse through this guideto fa-

miliarize yourself with the many advanced features and customization opportunities OpenJPA provides. Later, you can use the
guide when you need details on a specific aspect of OpenJPA.

Part 2. Java Persistence API

O 1 1o o [o T P 9

R T =g To =0 [N o 1= o YRS 9

1.2, LightWeIght PEISISIENCE ceeeiiteeet ettt e e et e e et e e et e ettt e e et e e et e aebn e eanaees 9

B2V £ NPT 10
3. JAva Persistence APL ATChITECIUIEo.uui ittt e e e e e et e e e et e e e e ab e e e e aan s 12
TR0 o o o 1 13

1Y TSP 15
4.1. ReStIiCtioNS ON PErSIStENt CIaSSESivuiii it e e e e e e e e e e ees 16

4.1.1. Default OF NO-ATG CONSITUCTOTceuiieti ettt e et e e et e et e e e e e et e e et e eeanaaeees 16

Nt 1 S 16

RS A o (=0 1] VA = o PP 16
Y= £ o] T T Lo U 16

ST 1 0= 1 = 14 (o PRSPPI 17

T = S B = | = o P 17

A 0 5 o 11 =T 3 L PP 18

= o Y T 1= o ST 18

Nt T o =] Y =S 19

0 I R o = 1 YA T = - 20

4.3, LifeCYCle CallDBCKScoeiiieiei e 21

e R B @ | o= ot =1 oo PP 21

4.3.2. UsiNg Callback MELNOUSuuuiiiiiiiieii e e e e et e e e e aeeeae s 22

4.3.3. USING ENLItY LIStENEIS ..ovniitii it e e e e e e e e e e e e e e e e e e aaees 22

4.3.4. Entity LiStenerS HIEIarChYccuuiiiiiiiii e e e e e e e e e e e e e e eees 23

O o g o 11 = o S PP 24

Y = = o - - R PSPPI 25
I B O - Y 1Y = o - - U 26

LTS 00 O 1 26

LT 2 o 1 O - 27

5.1.3. MaPPEU SUPEICIASS ...vuiiiiieiiii e et e e e e e e e e e e e e e et e e et e e et e e e e e e e aaaae 27

5.1 4 EMBEAAANIE ... 27

I ST = 111 I (1 £ TSP 28

B LB, EXAIMPIE .t e et et e e 28

5.2. Field and Property MEAOAEAuiiii et ettt e e e e e e 29

N T == T = | PP TOPTPPTRN 30

LS00 I o PP 31

B.2.3. GENEIAEA VAIUEeiieiiii ettt e e e et 31

LI 1 1 o7=o [0 1= o N o 32

A ST = = o) o I PP 32

LI T T o 32

I T I oo T N o= TSP 33

I 1 11070 o 1= o S 33

L3028 T 1V =0V o T 34

R B O = o= o = Y o = PSP 34

5.2.9. ONE TOMEINY ..ottt et ettt e ettt et et 35

5.2.9.1. Bidirectional REIGHONSoiuuiiiiiiiii et 36

5.2.00. ONETO ONE ...ttt e ettt e e ettt e e et et e e aeas 37

I Y = 10V I 11V - 1 37

L300 720 © (o (= = S 38

5.2 03, M K Y ittt et et 38

5.2.14. Persistent FIEld DEfAUITSuuiiiiiiiiiiii e e e e e e et e e e e e e e eaa s 38

LR S v = 1 1= L 39

Y @] o 11 o o RO PP TOPT PPN 55

LT = 5 1 = ot PP 60
6.1, PEISISEENCEXIMI L..ieei it ee e e e et e e e e e e e e e e e e et e e e e e et e e et e e e e e e e et e e e e e e aanae 60

L2 N [U P 62

7. ENEYMBNAGEIFACIONY ... ceeieiieeeii ettt ettt e e e b e e ettt e et e e e et e b e e et ab e et n e e e s 63
7.1. Obtaining an EntityManagerFatlory oot e e e e e e eaa s 63

7.2. ObtaiNiNg ENtIYMaNGOEIS ...oouieiiiieiie e ettt e e e et e e e et e e e e e e aas 63

Java Persistence API

7.3, PErSISEENCE COMEEXE ...uuiiiiiiiieeeii ettt e et e et e e et e e e e et e e e e et e e e e et e e e e abn e e e e st e e e eaanes 64
7.3.1. Transaction PersiStenCe CONLEXEuiiiiiiieiiiii ettt e et e et eeeaan s 64
7.3.2. Extended PersiStenCe CONEXEuiiie e e e e ettt e e e e e e e e e e e e et e e e s e e e e eaneeennees 65
7.4. Closing the EntityManagerFactorycceuuuiiiiieeeiei ettt e e 66
o 011\ = = = PP 67
8.1, TranSaCtioN ASSOCIBLIONc.uuiieeeet ettt ettt et e e et et e et et e e et e e et e e eat e e eaeaean e 67
8.2. Entity LifeCyCle ManagemMeNtiiiiiiiiii e e e e e e e e e e e e e e 68
8.3, LIfECYCIE EXAMPIES ...iveiiiii it e e et e e e e e e e e e e e e e e e e 71
8.4. Entity Identity ManaQEmMENToiieieiieiiii ettt ettt e e e e 73
8.5. CaCNE MBNAOEIMENT ...ttt ettt e et e et e e et e b e e et e e e aaa s 73
O U< oV == ol (0] VPP UPRPIN 74
S A 1 o = o S 75
LS I = 0= o o o PP 76
S N =S o o I I3/ - P 76
9.2. The Entity TransaCtion INtEITACEc.uuuiiiiii e 77
O N @ = oY SR 79
05 O | PR 79
O I @1 = Y 2 - L= Lo PP 79
10.1.2. REIGHON TTAVEISAl ..euiiiiiiiiee ittt e ettt e e ettt e e e et r e e e eab e e e eten e eeenens 82
00 T = o o PP 83
0 0 | | g T o P 83
10.1.5. POlYMOIPhiC QUETTES .. .eeuiiieiiitii ettt ettt ettt ettt e et e et et e e e en e et ena e e eenens 85
10.1.6. QUENY PaIBIMELENS ... ceuitiit ittt ettt e et e et et e et e e et ettt e et e et e ea e e e e e e e ea e et e et eenaaennas 85
O @1 = Y o PR 86
0 50 ¢ I o o (1 o 1 £ 86
10.1.7.2. RESUIE SEE SIZE HIML ..oeiieieeiiii ettt e e e e e eeaens 87
O T Ko = o T == I T 87
10.1.7.4. Other FELChPlan HINEScooeiiiiiii et eeens 87
10.1.7.5. Oracle QUENY HINESeun ittt et e et e e e et e e e e eea e eees 87
10.1.7.6. Named QUENY HINLSiieiiii e e e e e e e e e e e e e e e e ans 87

0 500 @ o[T 0o [P 88
O I T o o = = - 88
10.1.20. NAMEA QUEKTES ...ieeeeeiie et ettt e e e et e e e e e e et e e e e e et e e e e e e et e e ea e e ean s eean s eeanaeeaneeenneeennaee 88
10.1.11. DEEE BY QUENY ..eneieetieee ettt ettt ettt e ettt e ettt e ettt e et e e e e e e e et e aa e e enans 89
10.1.12. UPAEE BY QUENY ..ttt ettt et et e ettt et e et e e et e e et e e e ta e e e e e e an e e eaaaean s 89
10.2. JPQL Language REFEIENCEiveii et e e e e e e e eans 90
O T N | S =14 o 1Y - 90
10.2.1.1. JPQL SElCt SLALEMENEcieeeeieeeitii et e et e et e e et e e et e e et e e e eab e e e eaen e eeennns 90
10.2.1.2. JPQL Update and Delete SLALEMENSuuiiiiiiiieiiiiire ettt e e eeaens 91
10.2.2. JPQL Abstract Schema Types and QUENY DOMEINSviieuuuieiiiiieeeiiia et 1
10.2.2.1. JPQL ENtity NAMING ..evvuuieiiiiiieeiiiie e et e e e e e et e e e et e e e et s e e eaaan e eeeaen e eeasnnaeaeennns 91
10.2.2.2. JPQL SChEMa EXAMPIE ... ceuiiiie et eaa e e 91
10.2.3. JPQL FROM Clause and Navigational DeClarationsveeuuieiuiieiiiieeii e e e e e e e 92
10.2.3.1. JPQL FROM BNEIEIS .. eeeetiieeeeii ettt e e e e e e e eeeens 93
10.2.3.2. JPQL Identification VariableSoceuuiiiiiiieii e 95
10.2.3.3. JPQL RANGE DECIAIAIIONSvuieeeiiiie ettt ettt ettt e e e e e eenens 95
10.2.3.4. JPQL Path EXPIrESSIONSevvviiieiiiiiieeeiii e e et e e e et e e eett e eeeat e eeaaan e eeeaan e eeasnnaeeesnns 95
02 ST | N o 11 11 96
10.2.3.5.1. JPQL Inner Joins (RElationship JOINS)oevvueiiiiiiiieeci e e e e e e e 96

10.2.3.5.2. JPQL OULEN JOINS ...eviiiteitieiieei ettt et et e e e e et e et e et e et et e et e et e et e e tesaeenns 97

10.2.3.5.3. JPQL FEC JOINSieeieiiiee e e e e e e e e aeas 97

10.2.3.6. JPQL Collection Member DECIarationsveeuuieeineiiie e eees 98
10.2.3.7. JPQL POIYMOIPRISITI ..eeuiiiiiiiiiie ettt e e et e et e e et e e e e e e et s e e e et e e e eaa e e e eaannneeeennns 98
10.2.4. JPQL WHERE ClAUSEvuuieiiitiieeiiii e ettt e e e et e e ettt e e et e e et e e e et naeeaaan e e e eeaan e e e easnn e eeennns 99
10.2.5. JPQL Conditional EXPrESSIONScvuuieiiiieiieeeie e e e e e e e e e e e et e e et e e et e e et s e ean e eeaea e e e e eeenaaes 99
10.2.5.0. JPQL LItEIalS . eeeeiieeeiii ettt ettt ettt a e aaaan 99
10.2.5.2. JPQL Identification VariableSccouuiiiiiiieie e 99
10.2.5.3. JPQL Path EXPIrESSIONScevtuieiiitieeteitii ettt e et e et e e e e et et e e et e e e ena e eenens 99
10.2.5.4. JPQL INPUL PAr@MELE'Scccvveieiiiiiiee et e et e e e e e e et eeeeaa e e e eaaenaeeee 100

Java Persistence API

10.2.5.4.1. JPQL PosSitional ParameLersccvvuiiiiiieiiiieiie e e e e e 100

10.2.5.4.2. JIPQL NamMEd ParamMELErSucvvniireiiiiiieiiiee e iee e e e e et e et e et e e e e eaeees 100

10.2.5.5. JPQL Conditional EXpression COMPOSITIONviiieiiieiiiiiiieeiiii et 100
10.2.5.6. JPQL Operators and Operator PreCEIONCEieiiiiiieiiiiii e 100
10.2.5.7. JPQL BEIWEEN EXPIESSIONS ...vvueiierinieeiiiieeeettisaeeeetisaeeeattaeeesttaeeesssaesessnaeeessnnaaaees 101
10.2.5.8. JPQL 1N EXPIrESSIONSuiitiiiti et ettt e et e et e ettt e et e e et e et e et e e et e e eaneeeanas 102
10.2.5.9. JPQL LiKE EXPIESSIONSevvuiiiiiieiieeei e et e et e et e e e e et e e e e e et e e et s e e tnnesat e eenneeaanaes 102
10.2.5.10. JPQL Null CompariSOn EXPreESSIONSccuueveuieeiiieeeiieeitieeateeetneesinseeansesenaaeannaannnaees 103
10.2.5.11. JPQL Empty Collection Comparison EXPreSSiONScc.uuveeeirinieeiiiinieeeeiineeeeniiaeeens 103
10.2.5.12. JPQL Collection Member EXPreSSIONScccuuuuierrrtieeeiiiieeeeiiaeeeetin e eeenin e eeeniaeeens 103
10.2.5.13. JPQL EXiSIS EXPrESSIONS ...evvvuieiiiiiieeeitiieeeeiiineeeeetiseeeesttsaeeeettaeeesteaesesnnaeeennnnaaaees 104
10.2.5.14. JPQL All Or ANY EXPIrESSIONS ... ccvuiiiieeii e e ettt ettt e e e e ea e 104
10.2.5.15. JPQL SUDGQUETTESeveieiitieeii e et e e e et e e e e e e e e e et e e et e e et e e e et e e eaneeaanaaes 104
10.2.5.16. JPQL FUNCLiONal EXPrESSIONScvvuiiiiteeeieeiieeeetee et s e et e e e e e et e eea s e eanaeean e eenneeennaees 105
10.2.5.16.1. JPQL String FUNCLIONSieiiiiiieiiitiie et e e 105
10.2.5.16.2. JPQL Arithmetic FUNCHIONSiveeiiiiee e e 106
10.2.5.16.3. JPQL Datetime FUNCLIONSuivuiiiiiiiii e 106

10.2.6. JIPQL GROUPBY , HAVINGuuiiiiiiiieiiiis ettt e et e e et s e e et e e e eataaaeeees 106
10.2.7. JPQL SELECT ClBLSE ..evvtueiiettieeiitiiae ettt e e e ettt e e ettt e e e ettt aeeeate e e e eett e e e eettaeeeeteaeeeeteaaaees 107
10.2.7.1. JPQL Result Type of the SELECT ClalSEcvevuiviriieiiieiiieeei e ee e e e e eeeea e eeanaees 107
10.2.7.2. JPQL CONSIIUCLON EXPIESSIONSeevtieeiitiieteetii e ettt e ettt e e et et e e et e e e et e e e eabiaeeees 108
10.2.7.3. JPQL Null Valuesinthe QUErY RESUILcoeuiiiiiiiie e 108
10.2.7.4. JPQL AQgregate FUNCLIONSieuniiii it e e e e ea e 108
10.2.7.4.1. JPQL Aggregate EXamMPIEScoouiiiiiiiiie e 109

10.2.8. JPQL ORDER BY ClBLSE ... ceettiieeiiiiiee ettt e ettt e ettt e e ettt e e e et s e e e et e e e eett s e e eete e eeeeteaaeeee 109
10.2.9. JPQL Bulk Update and DEIELEcccviiiiiiieii e e e 109
10.2.20. JPQL NUIT VBIUBS ... ettt e e e e e et e e e e e e e e et e e e e eeennes 110
10.2.11. JPQL Equality and CompariSOon SEMENLICSuueierruneeiiiieeeeiii e eeeiis e eeeti e e eeti e eenneaaeeees 111
O N | 2] PPN 111
S @ 0 11T =SSP 115
R O = o S @ I 1 == 115
11.2. Retrieving Persistent ObjeCtSWith SQLiivniiiiiii e e e e 115
12. M@PPING MELBHBEAeevtneeiiei ettt ettt e et e et b e e et e e e e e e e e aae 117
25 I o= PPN 118
12.2.UNIQUE CONSIFBINESeeeeeei ettt ettt e et et et e et e et e e et e e et e e et e e e aa e e ea e e et e e et e e ean e aean e eaneeennns 120
T O] ¥ 1o PP PTPPP 121
2 o =] V1Y =" o1 o 122
RN €< 11 - (o] PSPPI UPPP 124
12.5.1. SEOUENCE GENEIBLOL ... eeueeeieeet ettt et et ettt e et et e e et e e e e e e e e nn e e e e eenaes 124
N A = o = €1 o - (o] PP 125
T T o 111] o = PPN 126
O N 0=)= o PP PP 128
200 S g | = =o)L= P 128
00t I N 0 V7| = =P 129
12.6.1.2. DISBOVANAGES ...cevuueeeiti ettt e ettt et e ettt e et et e e ettt e e e e et e e et eba e e e eaba e eee 129
ST o121 o PPN 129
T I N0 |V 4 1 = o (=P 131
A D I E o (V= g = o L= ST 131
R R = o L= o= g =t O SPPIN 132
S Tt I AN 0 V7| = =< 133
12.6.3.2. DISBOVANAGESevuueeeiti ettt e ettt ettt e e et e e et et e e e e et e e e eaa e e eaba e aee 133
12.6.4. PUtting it All TOGEINEr ..ot et e e e e e e e e 133
12.7. DISCHIMUNGLOL ... et et ee ettt et e et et e e et e et e e et e et tar e e et e e et e e et e e et e e etn e eeaneeennns 136
R T o Y=o o oo PP PTPPP 141
2 0 I 2 TS T o 1 = o1 oo P 141
R R I 2 1 PPN 141
Tt B o1 3= = o PP 141
12.8.1.3. TEMPOTA TYPES . oveeeeiti ettt e ettt e et e ettt e ettt e et et e et ettt e et et e e e eete e eeeenaaeeees 142
12.8.1.4. The Updated MappRiNgScceuueuieeeetieeeeitieeeeeeie e eeeettsaeeeatesaeeeettaeeesteaeeessnaeeensnnaaaees 142

Java Persistence API

12.8.2. SECONAAIY TADIES .. ovieiii e e e e 146
12.8.3. EMbedded Mapping ... cceueeieeeeieeiie e e s e e e e e e e e e e e e e e e e e r e 148
R B 11 = o = = 1o 150
ST o1 = o = PPN 153
12.8.6. BidireCtional Mapingcceuuoeeuueiiieei et e e e e et e e e e e e eaaas 156
I A = Y=o o] oo PP PPP 156
12.9. The COMPIELE MADPINGS ...vuuerereeiieeeiie ettt e e e e e e e e et e e e e e et e e e e e e e e et e eetn e e et e eean e eaneeannns 157
S o 0 11 o o PSPPSR 166

Chapter 1. Introduction

1.1.

The Java Persistence API (JPA) is a specification from Sun Microsystems for the persistence of Java objects to any relational
datastore. JPA requires J2SE 1.5 (also referred to as"Java 5") or higher, as it makes heavy use of new Javalanguage features
such as annotations and generics. This document provides an overview of JPA. Unless otherwise noted, the information presented
appliesto al JPA implementations.

For coverage of OpenJPA's many extensions to the JPA specification, see the Reference Guide.

Intended Audience

1.2.

This document is intended for developers who want to |earn about JPA in order to useit in their applications. It assumes that you
have a strong knowledge of object-oriented concepts and Java, including Java 5 annotations and generics. It also assumes some
experience with relational databases and the Structured Query Language (SQL).

Lightweight Persistence

Persistent data is information that can outlive the program that creates it. The majority of complex programs use persistent data:
GUI applications need to store user preferences across program invocations, web applications track user movements and orders
over long periods of time, etc.

Lightweight persistence is the storage and retrieval of persistent data with little or no work from you, the devel oper. For example,
Java seridization is aform of lightweight persistence because it can be used to persist Java objects directly to afile with very
little effort. Serialization's capabilities as a lightweight persistence mechanism pale in comparison to those provided by JPA,
however. The next chapter compares JPA to serialization and other available persistence mechanisms.

Chapter 2. Why JPA?

Java devel opers who need to store and retrieve persistent data already have several options available to them: seriaization, JDBC,
JDO, proprietary object-relational mapping tools, object databases, and EJB 2 entity beans. Why introduce yet another persist-
ence framework? The answer to this question is that with the exception of JDO, each of the aforementioned persistence solutions
has severe limitations. JPA attempts to overcome these limitations, asillustrated by the table below.

Table 2.1. Persistence Mechanisms

Supports: Serialization |[JDBC ORM ODB EJB 2 JDO JPA
JavaObjects |Yes No Yes Yes Yes Yes Yes
Advanced OO |Yes No Yes Yes No Yes Yes
Concepts

Transactional |[No Yes Yes Yes Yes Yes Yes
Integrity

Concurrency |No Yes Yes Yes Yes Yes Yes
Large Data No Yes Yes Yes Yes Yes Yes
Sets

Existing No Yes Yes No Yes Yes Yes
Schema

Relational and [No No No No Yes Yes No
Non-Re-

lational Stores

Queries No Yes Yes Yes Yes Yes Yes
Strict Stand- | Yes No No No Yes Yes Yes
ards/ Portabil-

ity

Simplicity Yes Yes Yes Yes No Yes Yes

e Serialization is Java's built-in mechanism for transforming an object graph into a series of bytes, which can then be sent over
the network or stored in afile. Serialization is very easy to use, but it is also very limited. It must store and retrieve the entire
object graph at once, making it unsuitable for dealing with large amounts of data. It cannot undo changes that are made to ob-
jectsif an error occurs while updating information, making it unsuitable for applications that require strict data integrity. Mul-
tiple threads or programs cannot read and write the same serialized data concurrently without conflicting with each other. It
provides no query capabilities. All these factors make serialization useless for all but the most trivial persistence needs.

» Many developers use the Java Database Connectivity (JDBC) APIsto manipulate persistent datain relational databases. JDBC
overcomes most of the shortcomings of serialization: it can handle large amounts of data, has mechanisms to ensure data integ-
rity, supports concurrent access to information, and has a sophisticated query language in SQL. Unfortunately, JDBC does not
duplicate serialization's ease of use. The relational paradigm used by JDBC was not designed for storing objects, and therefore
forces you to either abandon object-oriented programming for the portions of your code that deal with persistent data, or to find
away of mapping object-oriented concepts like inheritance to relational databases yourself.

» There are many proprietary software products that can perform the mapping between objects and relational database tables for
you. These abject-relational mapping (ORM) frameworks allow you to focus on the object model and not concern yoursel f
with the mismatch between the object-oriented and relational paradigms. Unfortunately, each of these product has its own set
of APIs. Your code becomes tied to the proprietary interfaces of asingle vendor. If the vendor raises prices, failsto fix show-
stopping bugs, or falls behind in features, you cannot switch to another product without rewriting all of your persistence code.
Thisisreferred to as vendor lock-in.

10

Why JPA?

» Rather than map objectsto relational databases, some software companies have developed aform of database designed spe-
cifically to store objects. These object databases (ODBS) are often much easier to use than object-relational mapping software.
The Object Database Management Group (ODMG) was formed to create a standard API for accessing object databases; few
object database vendors, however, comply with the ODMG's recommendations. Thus, vendor lock-in plagues object databases
aswell. Many companies are also hesitant to switch from tried-and-true relational systems to the relatively unknown object
database technology. Fewer data-analysis tools are available for object database systems, and there are vast quantities of data
aready stored in older relational databases. For al of these reasons and more, object databases have not caught on as well as
their creators hoped.

» The Enterprise Edition of the Java platform introduced entity Enterprise Java Beans (EJBs). EJB 2.x entities are components
that represent persistent information in a datastore. Like object-relational mapping solutions, EJB 2.x entities provide an ob-
ject-oriented view of persistent data. Unlike object-relational software, however, EJB 2.x entities are not limited to relational
databases; the persistent information they represent may come from an Enterprise Information System (EIS) or other storage
device. Also, EJB 2.x entities use a strict standard, making them portable across vendors. Unfortunately, the EJB 2.x standard
is somewhat limited in the object-oriented concepts it can represent. Advanced features like inheritance, polymorphism, and
complex relations are absent. Additionally, EBJ 2.x entities are difficult to code, and they require heavyweight and often ex-
pensive application serversto run.

» The JDO specification uses an API that is strikingly similar to JPA. JDO, however, supports non-relational databases, a feature
that some argue dilutes the specification.

JPA combines the best features from each of the persistence mechanisms listed above. Creating entities under JPA isas simple as
creating serializable classes. JPA supports the large data sets, data consistency, concurrent use, and query capabilities of JDBC.
Like object-relational software and object databases, JPA allows the use of advanced object-oriented concepts such as inherit-
ance. JPA avoids vendor lock-in by relying on a strict specification like JDO and EJB 2.x entities. JPA focuses on relational data
bases. And like JDO, JPA is extremely easy to use.

OpenJPA typically stores datain relational databases, but can be customized for use with non-relational datastores as
well.

JPA isnot ideal for every application. For many applications, though, it provides an exciting alternative to other persistence
mechanisms.

11

Chapter 3. Java Persistence API Architecture

The diagram below illustrates the relationshi ps between the primary components of the JPA architecture.

javax.persistence
EntityManagerFactory Entity Transaction
Enﬂ:yl;'.lanager : Query
Persistence
E.-I'.lnfty

A number of the depicted interfaces are only required outside of an EJB3-compliant application server. In an application
server, Ent i t yManager instances are typically injected, rendering the Ent i t yManager Fact or y unnecessary.
Also, transactions within an application server are handled using standard application server transaction controls. Thus,
theEnt it yTransact i on aso goes unused.

e Persistence: Thej avax. persi st ence. Per si st ence class contains static helper methods to obtain Ent i t yMan-
ager Fact or y instancesin avendor-neutral fashion.

* EntityManager Fact ory: Thej avax. persi st ence. Enti t yManager Fact ory classisafactory for Enti ty-
Manager s.

* EntityManager :Thejavax. persistence. EntityManager istheprimary JPA interface used by applications.
Each Ent i t yManager manages a set of persistent objects, and has APIs to insert new objects and delete existing ones.
When used outside the container, there is a one-to-one relationship between an Ent i t yManager andanEnti t yTr ans-
action.EntityManager saso act asfactoriesfor Quer y instances.

* Entity :Entitesare persistent objects that represent datastore records.

e« EntityTransacti on: EachEntityManager hasaone-to-onerelationwith asingle
j avax. persi stence. EntityTransacti on.EntityTransacti onsallow operations on persistent data to be
grouped into units of work that either completely succeed or completely fail, leaving the datastore in its original state. These
al-or-nothing operations are important for maintaining data integrity.

e Query :Thejavax. persistence. Query interfaceisimplemented by each JPA vendor to find persistent objects that
meet certain criteria. JPA standardizes support for queries using both the Java Persistence Query Language (JPQL) and the
Structured Query Language (SQL). You obtain Quer y instancesfrom an Ent i t yManager .

The example below illustrates how the JPA interfaces interact to execute a JPQL query and update persistent objects. The ex-
ample assumes execution outside a container.

Example 3.1. Interaction of | nterfaces Outside Container

12

3.1.

Java Persistence APl Architecture

/1 get an EntityManager Factory using the Persistence class; typically
/] the factory 1s cached for easy repeated use
EntityManager Factory factory = Persistence. createEntityManagerFactory(null);

/1 get an EntityManager fromthe factory
EntityManager em = factory. createEntityManager (Persi stenceCont ext Type. EXTENDED) ;

/'l updates take place within transactions
EntityTransaction tx = em get Transaction();
tx. begin();

/'l query for all enployees who work in our research division

/1 and put in over 40 hours a week average

Query query = emcreateQuery("select e from Enpl oyee e where "
+ "e.division. nane = 'Research’ AND e.avgHours > 40");

List results = query.getResultList ();

/1 give all those hard-working enpl oyees a raise
for (Object res : results) {

Enpl oyee enp = (Enpl oyee) res;

enp. set Sal ary(enp. getSalary() * 1.1);

/1 commit the updates and free resources
tx.commt();

em cl ose();

factory. close();

Within acontainer, the Ent i t yManager will be injected and transactions will be handled declaratively. Thus, the in-container
version of the example consists entirely of business logic:

Example 3.2. Interaction of Interfaces | nside Container

/Il query for all enployees who work in our research division
/1 and put in over 40 hours a week average - note that the EntityManager em
/1 is injected using a @Resource annotation
Query query = emcreateQuery("select e from Enpl oyee e where "
+ "e.division.name = ' Research' and e.avgHours > 40");
List results = query.getResultList();

/1 give all those hard-working enpl oyees a raise
for (Cbject res : results) {

emp = (Enpl oyee) res;

enp. set Sal ary(enp. getSalary() * 1.1);

The remainder of this document explores the JPA interfaces in detail. We present them in roughly the order that you will use
them as you develop your application.

JPA Exceptions

13

Java Persistence APl Architecture

lllegalStateException

RuntimeException
B

lllegal ArgumentException

PersistenceException |< EntityNotFoundException

—— TransactionRequiredException

F— OptimisticLockException

— NonUnigueResultException

| NoResultException

1 EntityExistsException

— RollbackException

javax.persistence

The diagram above depicts the JPA exception architecture. All exceptions are unchecked. JPA uses standard exceptions where
appropriate, most notably | | | egal Argunent Excepti onsand| || egal St at eExcept i ons. The specification also
provides afew JPA-specific exceptionsinthej avax. per si st ence package. These exceptions should be self-explanatory.
See the Javadoc for additional details on JPA exceptions.

All exceptions thrown by OpenJPA implement or g. apache. openj pa. uti | . Except i onl nf o to provide you
with additional error information.

14

http://java.sun.com/javaee/5/docs/api
../javadoc/org/apache/openjpa/util/ExceptionInfo.html

Chapter 4. Entity

JPA recognizes two types of persistent classes: entity classes and embeddable classes. Each persistent instance of an entity class -
each entity - represents a unique datastore record. You can usethe Ent i t yManager to find an entity by its persistent identity
(covered later in this chapter), or useaQuer y to find entities matching certain criteria.

An instance of an embeddable class, on the other hand, is only stored as part of a separate entity. Embeddable instances have no

persistent identity, and are never returned directly fromthe Ent i t yManager or fromaQuer y unless the query uses a projec-
tion on owning class to the embedded instance. For example, if Addr ess isembedded in Conpany, then aquery " SELECT a
FROM Addr ess a" will never return the embedded Addr ess of Conpany; but a projection query such as" SELECT

c. address FROM Conpany c" will.

Despite these differences, there are few distinctions between entity classes and embeddable classes. In fact, writing either type of

persistent classis alot like writing any other class. There are no special parent classes to extend from, field typesto use, or meth-
ods to write. Thisis one important way in which JPA makes persistence transparent to you, the developer.

JPA supports both fields and JavaBean properties as persistent state. For simplicity, however, we will refer to all persist-
ent state as persistent fields, unless we want to note a unique aspect of persistent properties.

Example4.1. Persistent Class

package org. nag;
/**

* Exanpl e persistent class. Notice that it |ooks exactly |ike any other
* class. JPA makes writing persistent classes conpletely transparent.
*/

public class Magazine {

private String isbn;

private String title;

private Set articles = new HashSet ();
private Article coverArticle;
private int copiesSold;

private double price;

private Conpany publisher;

private int version;

i)rot ected Magazine() {

public Magazine(String title, String isbn) {
this.title = title;
this.isbn = isbn;

}

public void publish(Conpany publisher, double price) {
thi s. publi sher = publi sher;
publ i sher. addMagazi ne(thi s);
this.price = price;

public void sell () {
copi esSol d++;
publ i sher. addRevenue(price);

public void addArticle(Article article) {
articles.add(article);

/1 rest of nethods onitted

15

4.1.

Entity

Restrictions on Persistent Classes

4.1.1.

There are very few restrictions placed on persistent classes. Still, it never hurts to familiarize yourself with exactly what JPA does
and does not support.

Default or No-Arg Constructor

4.1.2.

The JPA specification requires that all persistent classes have a no-arg constructor. This constructor may be public or protected.
Because the compiler automatically creates a default no-arg constructor when no other constructor is defined, only classes that
define constructors must also include a no-arg constructor.

Note

OpenJPA's enhancer will automatically add a protected no-arg constructor to your class when required. Therefore, this
restriction does not apply when using the enhancer. See Section 5.2, “ Enhancement ” [228)f the Reference Guide for
details.

Final

4.1.3.

Entity classes may not be final. No method of an entity class can befinal.

Note

OpenJPA supportsfinal classes and final methods.

ldentity Fields

4.1.4.

All entity classes must declare one or more fields which together form the persistent identity of an instance. These are called
identity or primary key fields. In our Magazi ne class, i sbnandtit| e areidentity fields, because no two magazine records in
the datastore can have the samei sbhnandti t | e values. Section 5.2.2,“ 1d " [31]will show you how to denote your identity
fieldsin JPA metadata. Section 4.2, “ Entity Identity ” [18]below examines persistent identity.

Note

OpenJPA fully supports identity fields, but does not require them. See Section 5.4, “ Object | dentity " [232)f the Refer-
ence Guide for details.

Version Field

Thever si on fieldin our Magazi ne class may seem out of place. JPA usesaversion field in your entities to detect concurrent
modifications to the same datastore record. When the JPA runtime detects an attempt to concurrently modify the same record, it
throws an exception to the transaction attempting to commit last. This prevents overwriting the previous commit with stale data.

A version field is not required, but without one concurrent threads or processes might succeed in making conflicting changesto
the same record at the sametime. Thisis unacceptable to most applications. Section 5.2.5,“ Version ” [32]shows you how to
designate aversion field in JPA metadata.

The version field must be an integral type (i nt, Long, etc) or aj ava. sql . Ti mest anp. You should consider version fields
immutable. Changing the field value has undefined results.

Note

16

4.1.5.

Entity

OpenJPA fully supports version fields, but does not require them for concurrency detection. OpenJPA can maintain sur-
rogate version values or use state comparisons to detect concurrent modifications. See Section 7.7, “ Additional JPA
Mappings” [269h the Reference Guide.

Inheritance

4.1.6.

JPA fully supports inheritance in persistent classes. It allows persistent classes to inherit from non-persistent classes, persistent
classes to inherit from other persistent classes, and non-persistent classes to inherit from persistent classes. It is even possible to
form inheritance hierarchies in which persistence skips generations. There are, however, afew important limitations:

* Persistent classes cannot inherit from certain natively-implemented system classes such asj ava. net . Socket and
j ava. |l ang. Thr ead.
« If apersistent classinherits from a non-persistent class, the fields of the non-persistent superclass cannot be persisted.

 All classesin an inheritance tree must use the same identity type. We cover entity identity in Section 4.2, “ Entity | dentity ”

[7] .

Persistent Fields

JPA manages the state of all persistent fields. Before you access persistent state, the JPA runtime makes sure that it has been
loaded from the datastore. When you set afield, the runtime records that it has changed so that the new value will be persisted.
Thisallows you to treat the field in exactly the same way you treat any other field - another aspect of JPA's transparency.

JPA does not support static or final fields. It does, however, include built-in support for most common field types. These types
can be roughly divided into three categories: immutable types, mutable types, and relations.

Immutable types, once created, cannot be changed. The only way to ater a persistent field of an immutable typeisto assign a
new value to the field. JPA supports the following immutable types:

All primitives(i nt, fl oat, byte,etc)

All primitive wrappers (j ava. | ang. I nt eger, java.l ang. Fl oat, java.l ang. Byt e, etc)

e java.lang. String

* java. mat h. Bi gl nt eger

e java. mat h. Bi gDeci nal

JPA aso supportsbyt e[],Byte[],char[],and Charact er[] asimmutabletypes. That is, you can persist fields of these
types, but you should not manipulate individual array indexes without resetting the array into the persistent field.

Persistent fields of mutable types can be altered without assigning the field a new value. Mutabl e types can be modified directly
through their own methods. The JPA specification requires that implementations support the following mutable field types:

e java. util . Date

e java. util. Cal endar

* java.sql . Date

e java. sql . Ti mest anp

17

4.1.7.

Entity

e java.sqgl . Tine

e Enums

Entity types (relations between entities)

Embeddabl e types

e java. util. Col | ecti onsof entities
e java. util. Set sof entities

e java. util. Listsof entities

e java. util. Mapsinwhich each entry maps the value of one of arelated entity's fields to that entity.

Collection and map types may be parameterized.

Most JPA implementations also have support for persisting serializable values as binary data in the datastore. Chapter 5,
Metadata [25] has more information on persisting serializable types.

OpenJPA also supportsarrays, j ava. | ang. Nunber ,j ava. util . Local e, al JDK 1.2 Set, Li st , and Map
types, and many other mutable and immutable field types. OpenJPA aso allows you to plug in support for custom types.

Conclusions

4.2.

This section detailed all of the restrictions JPA places on persistent classes. While it may seem like we presented alot of informa-
tion, you will seldom find yourself hindered by these restrictionsin practice. Additionally, there are often ways of using JPA's
other features to circumvent any limitations you run into.

Entity Identity

Java recognizes two forms of object identity: numeric identity and qualitative identity. If two references are numerically identical,
then they refer to the same JVM instance in memory. Y ou can test for this using the == operator. Qualitative identity, on the oth-
er hand, relies on some user-defined criteria to determine whether two objects are "equal”. Y ou test for qualitative identity using
theequal s method. By default, this method simply relies on numeric identity.

JPA introduces another form of object identity, called entity identity or persistent identity. Entity identity tests whether two per-
sistent objects represent the same state in the datastore.

The entity identity of each persistent instance is encapsulated in its identity field(s). If two entities of the same type have the same
identity field values, then the two entities represent the same state in the datastore. Each entity's identity field values must be
unique among all other entites of the same type.

Identity fields must be primitives, primitive wrappers, St r i ngs, Dat es, Ti nest anps, or embeddable types.

OpenJPA supports entities as identity fields, as the Reference Guide discussesin Section 5.4.2, “ Entities as | dentity
Fields” [233For legacy schemas with binary primary key columns, OpenJPA also supports using identity fields of type
byt e[] . When you useabyt e[] identity field, you must create an identity class. Identity classes are covered below.

18

4.2.1.

Entity

Changing the fields of an embeddable instance while it is assigned to an identity field has undefined results. Always
treat embeddable identity instances as immutable objectsin your applications.

If you are dealing with a single persistence context (see Section 7.3, “ Persistence Context ” [64), then you do not have to com-
pare identity fields to test whether two entity references represent the same state in the datastore. There is amuch easier way: the
== operator. JPA requires that each persistence context maintain only one JVM object to represent each unique datastore record.
Thus, entity identity is equivalent to numeric identity within a persistence context. Thisis referred to as the uniqueness require-
ment.

The unigueness requirement is extremely important - without it, it would be impossible to maintain data integrity. Think of what
could happen if two different objects in the same transaction were allowed to represent the same persistent data. If you made dif-
ferent modifications to each of these objects, which set of changes should be written to the datastore? How would your applica-
tion logic handle seeing two different "versions' of the same data? Thanks to the uniqueness requirement, these questions do not
have to be answered.

Identity Class

If your entity has only one identity field, you can use the value of that field as the entity'sidentity object inall Ent i t yManager
APIs. Otherwise, you must supply an identity class to use for identity objects. Y our identity class must meet the following criter-
ia

» Theclass must be public.

» Theclass must be seriaizable.

» The class must have a public no-args constructor.

» The names of the non-static fields or properties of the class must be the same as the names of the identity fields or properties of
the corresponding entity class, and the types must be identical.

» Theequal s and hashCode methods of the class must use the values of all fields or properties corresponding to identity
fields or propertiesin the entity class.

* Iftheclassisaninner class, it mustbest ati c.
» All entity classes related by inheritance must use the same identity class, or else each entity class must have its own identity

class whose inheritance hierarchy mirrors the inheritance hierarchy of the owning entity classes (see Section 4.2.1.1, “ I dentity
Hierarchies” [20).

Though you may still create identity classes by hand, OpenJPA providesthe appi dt ool to automatically generate
proper identity classes based on your identity fields. See Section 5.4.3, “ Application Identity Tool " [234)f the Refer-
ence Guide.

Example 4.2. |dentity Class

This exampleillustrates a proper identity class for an entity with multiple identity fields.

[**

19

Entity

* Persistent class using application identity.
*/
public class Magazine {

private String isbn; I/ identity field
private String title; I/ identity field
/'l rest of fields and nethods omtted

* %

* Application identity class for Mgazine.
*/
public static class Magazineld {

/] each identity fi
/'l corresponding fi
public String isbn;
public String title;

the Magazi ne cl ass nust have a

eldin
eld in the identity class

/**

* Equal ity nust be inplenmented in ternms of identity field

* equality, and nust use instanceof rather than conparing

* classes directly (sone JPA inplenentations nay subcl ass the
*/i dentity class).

*

publ i ¢ bool ean equal s(Obj ect other) {
if (other == this)
return true;
if (!(other instanceof Magazineld))
return fal se;

Magazi neld mi = (Magazi neld) other;

return (isbn == m.iIsbn
|| (isbn !'= null && isbn.equals(m.isbn)))
&% (title == mi.title
|] (title !'= null & title.equals(m.title)));
}
/**

* Hashcode nust al so depend on identity val ues.
*/

public int hashCode() {
return ((isbn == nul

0 : isbn. hashCode())
N ((title == nul 0

1) ?
1) ? title.hashCode());
public String toString() {

return isbn + ":" + title;

4.2.1.1. ldentity Hierarchies

Person Personld
- §5Nn: String - §5N: String
Employee Employeeld
- userMame: String - userName: String
FullTimeEmployee FullTimeEmployeeld
- empld: long - empld: long
Manager Managerld

An dternative to having a single identity class for an entire inheritance hierarchy is to have one identity class per level inthein-
heritance hierarchy. The requirements for using a hierarchy of identity classes are as follows:

20

4.3.

Entity

» Theinheritance hierarchy of identity classes must exactly mirror the hierarchy of the persistent classes that they identify. In the
example pictured above, abstract class Per son is extended by abstract class Enpl oyee, which is extended by non-abstract
classFul | Ti meEnpl oyee, which is extended by non-abstract class Manager . The corresponding identity classes, then, are
an abstract Per sonl d class, extended by an abstract Enpl oyeel d class, extended by a non-abstract Ful | Ti meEnpl oy-
eel d class, extended by a non-abstract Manager | d class.

» Subclassesin the identity hierarchy may define additional identity fields until the hierarchy becomes non-abstract. In the afore-
mentioned example, Per son defines an identity field ssn, Enpl oyee defines additional identity field user Nane , and
Ful | Ti meEnpl oyee addsafinal identity field, enpl d. However, Manager may not define any additional identity fields,
sinceit is a subclass of a non-abstract class. The hierarchy of identity classes, of course, must match the identity field defini-
tions of the persistent class hierarchy.

* Itisnot necessary for each abstract class to declare identity fields. In the previous example, the abstract Per son and Em
pl oyee classes could declare no identity fields, and the first concrete subclass Ful | Ti meEnpl oyee could define one or
more identity fields.

 All subclasses of aconcreteidentity class must be equal s and hashCode-compatible with the concrete superclass. This
means that in our example, aManager | d instance and aFul | Ti meEnpl oyeel d instance with the same identity field val-
ues should have the same hash code, and should compare equal to each other using the equal s method of either one. In prac-
tice, this requirement reduces to the following coding practices:
1. Usei nst anceof instead of comparing Cl ass objectsinthe equal s methods of your identity classes.

2. Anidentity class that extends another non-abstract identity class should not override equal s or hashCode.

Lifecycle Callbacks

4.3.1.

It is often necessary to perform various actions at different stages of a persistent object's lifecycle. JPA includes a variety of call-
backs methods for monitoring changes in the lifecycle of your persistent objects. These callbacks can be defined on the persistent
classes themselves and on non-persistent listener classes.

Callback Methods

Every persistence event has a corresponding callback method marker. These markers are shared between persistent classes and
their listeners. Y ou can use these markers to designate a method for callback either by annotating that method or by listing the
method in the XML mapping file for a given class. The lifecycle events and their corresponding method markers are:

e PrePer si st : Methods marked with this annotation will be invoked before an object is persisted. This could be used for as-
signing primary key values to persistent objects. Thisis equivalent to the XML element tag pr e- per si st .

» Post Per si st : Methods marked with this annotation will be invoked after an object has transitioned to the persistent state.
Y ou might want to use such methods to update a screen after a new row is added. Thisis equivalent to the XML element tag
post - persi st.

» Post Load: Methods marked with this annotation will be invoked after all eagerly fetched fields of your class have been
loaded from the datastore. No other persistent fields can be accessed in this method. Thisis equivaent to the XML element tag
post - | oad.

Post Load is often used to initialize non-persistent fields whose values depend on the values of persistent fields, such asa
complex datastructure.

e Pr eUpdat e: Methods marked with this annotation will be invoked just the persistent values in your objects are flushed to the
datastore. Thisis equivalent to the XML element tag pr e- updat e.

Pr eUpdat e isthe complement to Post Load . While methods marked with Post Load are most often used to initialize
non-persistent values from persistent data, methods annotated with Pr eUpdat e is normally used to set persistent fields with

21

http://java.sun.com/javaee/5/docs/api/javax/persistence/PrePersist.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/PostPersist.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/PostLoad.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/PreUpdate.html

Entity

information cached in non-persistent data.

» Post Updat e: Methods marked with this annotation will be invoked after changes to a given instance have been stored to the
datastore. Thisis useful for clearing stale data cached at the application layer. Thisis equivalent to the XML element tag
post - updat e.

* Pr eRenove: Methods marked with this annotation will be invoked before an object transactions to the deleted state. Access
to persistent fields is valid within this method. Y ou might use this method to cascade the deletion to related objects based on
complex criteria, or to perform other cleanup. Thisis equivalent to the XML element tag pr e- r enove.

» Post Renmpve: Methods marked with this annotation will be invoked after an object has been marked asto be deleted. Thisis
equivalent to the XML element tag post - r enove.

4.3.2. Using Callback Methods

When declaring callback methods on a persistent class, any method may be used which takes no arguments and is not shared with
any property access fields. Multiple events can be assigned to a single method as well.

Below is an example of how to declare callback methods on persistent classes:

[**

* Exanpl e persistent class declaring our entity |istener.
*/

@ntity
public class Magazine {

@r ansi ent
private byte[][] data;
@many ToMany
private List<Photo> photos;
@ost Load
public void convertPhotos() {
data = new byt e[photos.size()][];
for (int i =0; | < photos.size(); i++)
data[i] = photos.get(i).toByteArray();
@rebel ete

public void | ogVagazi neDel etion() {
get Log() . debug("del eti ng magazi ne contai ni ng" + photos. si ze()
+ " photos.");
}
}

In an XML mapping file, we can define the same methods without annotations:

<entity class="Magazi ne">
<pre-renove>l ogvagazi neDel eti on</ pre-renove>
<post - | oad>conver t Phot os</ post - | oad>
</entity>

We fully explore persistence metadata annotations and XML in Chapter 5, Metadata [25]

4.3.3. Using Entity Listeners

22

http://java.sun.com/javaee/5/docs/api/javax/persistence/PostUpdate.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/PreRemove.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/PostRemove.html

Entity

Mixing lifecycle event code into your persistent classesis not alwaysideal. It is often more elegant to handle cross-cutting life-
cycle eventsin a non-persistent listener class. JPA allows for this, requiring only that listener classes have a public no-arg con-
structor. Like persistent classes, your listener classes can consume any number of callbacks. The callback methods must takein a
singlej ava. | ang. Cbj ect argument which represents the persistent object that triggered the event.

Entities can enumerate listenersusingthe Ent i t yLi st ener s annotation. This annotation takes an array of listener classes as
itsvalue.

Below is an example of how to declare an entity and its corresponding listener classes.

| **

* Exanpl e persistent class declaring our entity listener.
*/

@Entity
@ntityLi steners({ Magazi neLogger.class, ... })
public class Magazi ne {

IV
}

/**
* Exanple entity listener.
*/

public class Magazi neLogger {

@ost Per si st
public void | ogAddition(Object pc) {
getLog ().debug ("Added new magazi ne:" + ((Magazine) pc).getTitle ());

@r eRenove
public void | ogDel etion(Object pc) {
get Log() . debug("Renmoving fromcirculation:" +
((Magazine) pc).getTitle());

In XML, we define both the listeners and their callback methods as so:

<entity class="Magazi ne">
<entity-listeners>
<entity-listener class="Magazi neLogger">
<post - per si st > ogAddi ti on</ post - per si st >
<pre-renpve>| ogDel eti on</ pre-renpve>
</entity-listener>
</entity-listeners>
</entity>

4.3.4.

Entity Listeners Hierarchy

Entity listener methods are invoked in a specific order when a given event isfired. So-called default listeners are invoked first:
these are listeners which have been defined in a package annotation or in the root element of XML mapping files. Next, entity

listeners are invoked in the order of the inheritance hierarchy, with superclass listeners being invoked before subclass listeners.
Finally, if an entity has multiple listeners for the same event, the listeners are invoked in declaration order.

Y ou can exclude default listeners and listeners defined in superclasses from the invocation chain through the use of two class-
level annotations:

» Excl udeDef aul t Li st ener s: Thisannotation indicates that no default listeners will be invoked for this class, or any of its
subclasses. The XML equivalent isthe empty excl ude- def aul t -1 i st ener s element.

23

Entity

» Excl udeSuper cl assLi st ener s: Thisannotation will cause OpenJPA to skip invoking any listeners declared in super-
classes. The XML equivaent isthe empty excl ude- super cl ass- | i st ener s element.

4.4. Conclusions

This chapter covered everything you need to know to write persistent class definitionsin JPA. JPA cannot use your persistent
classes, however, until you complete one additional step: you must define the persistence metadata. The next chapter explores
metadata in detail .

24

Chapter 5. Metadata

JPA requires that you accompany each persistent class with persistence metadata. This metadata serves three primary purposes:

1. Toidentify persistent classes.
2. To override default JPA behavior.

3. To provide the JPA implementation with information that it cannot glean from simply reflecting on the persistent class.

Persistence metadata is specified using either the Java 5 annotations defined in thej avax. per si st ence package, XML map-
ping files, or amixture of both. In the latter case, XML declarations override conflicting annotations. If you choose to use XML
metadata, the XML files must be available at development and runtime, and must be discoverable via either of two strategies:

1. Inaresource named or m xm placed in aMETA- | NF directory within a directory in your classpath or within ajar archive
containing your persistent classes.

2. Declared inyour per si st ence. xm configuration file. In this case, each XML metadata file must be listed in amap-
pi ng-fi | e element whose content is either a path to the given file or aresource location available to the class' class |oader.

We describe the standard metadata annotations and XML equivalents throughout this chapter. The full schemafor XML mapping
filesisavailablein Section 5.3, XML Schema” [39] JPA also standardizes relational mapping metadata and named query
metadata, which we discussin Chapter 12, Mapping Metadata [117nd Section 10.1.10, “ Named Queries” [88]respectively.

OpenJPA defines many useful annotations beyond the standard set. See Section 6.3, “ Additional JPA Metadata” [251]
and Section 6.4, “ Metadata Extensions” [253) the Reference Guide for details. There are currently no XML equival-
ents for these extension annotations.

Persistence metadata may be used to validate the contents of your entities prior to communicating with the database.
This differs from mapping meta data which is primarily used for schema generation. For example if you indicate that a
relationship is not optional (e.g. @Basic(optional=false)) OpenJPA will validate that the variable in your entity is not
null before inserting a row in the database.

25

Metadata

org.mag org.mag.pub
Author
autharg™ * [-id: long
- firstName: String
R Article - lastMame: String
=Ny - arts® — - version: int
- title: String
- content: byte(] T
- version: int address
Address
- street: String
coverArticle articles” - city: String
| | - state: String
Magazine - Zip: String
- isbn: String |
- title: String :
- price: double pubhlsher ardress
- copiesSold: int = Company
- version: int - mags® — -id: long
- name: String
- revenue: double
- version: int
I
magazine subscriptions™
Lineltern_ __Subscription LifetimeSubscription
- comments: String -id: long —elleClub: boolean
- price: double 4 ilems® 4 - startDate: Date
- num: long - payment: double
- version: int
l’ TrialSubscription
Doc - endDate: Date
Contract ~7d: Tong s
- Torms - version: int
org.mag.subscribe

Through the course of this chapter, we will create the persistent object model above.

5.1. Class Metadata

The following metadata annotations and XML elements apply to persistent class declarations.

5.1.1. Entity

The Ent i t y annotation denotes an entity class. All entity classes must have this annotation. The Ent i t y annotation takes one
optional property:

» String name: Name used to refer to the entity in queries. Must not be areserved literal in JPQL. Defaults to the unqualified
name of the entity class.

The equivalent XML elementisent i t y. It has the following attributes:

» cl ass: Theentity class. This attribute is required.

26

5.1.2.

Metadata

» nane: Named used to refer to the class in queries. See the name property above.

» access: Theaccesstypeto usefor the class. Must either be FI ELD or PROPERTY. For details on access types, see Sec-
tion 5.2, “ Field and Property Metadata” [29]

OpenJPA uses a process called enhancement to modify the bytecode of entities for transparent lazy loading and immedi-
ate dirty tracking. See Section 5.2, “ Enhancement ” [228h the Reference Guide for details on enhancement.

Id Class

5.1.3.

Aswe discussed in Section 4.2.1, “ Identity Class” [19], entities with multiple identity fields must use an identity classto en-
capsulate their persistent identity. Thel dCl ass annotation specifiesthisclass. It acceptsasinglej ava. | ang. Cl ass value.
The equivalent XML elementisi d- cl ass, which has asingle attribute:

» cl ass: Set thisrequired attribute to the name of the identity class.

Mapped Superclass

5.1.4.

A mapped superclassis anon-entity classthat can define persistent state and mapping information for entity subclasses. Mapped
superclasses are usually abstract. Unlike true entities, you cannot query a mapped superclass, pass a mapped superclass instance
toany Ent i t yManager or Quer y methods, or declare a persistent relation with a mapped superclass target. Y ou denote a
mapped superclass with the MappedSuper cl ass marker annotation.

The equivalent XML element ismapped- super cl ass. It expects the following attributes:

» cl ass: Theentity class. This attribute is required.

e access: Theaccesstypeto use for the class. Must either be FI ELD or PROPERTY. For details on access types, see Sec-
tion 5.2, “ Field and Property Metadata” [29]

OpenJPA allows you to query on mapped superclasses. A query on a mapped superclass will return all matching sub-
classinstances. OpenJPA also allows you to declare relations to mapped superclass types; however, you cannot query
across these relations.

Embeddable

The Enmbeddabl e annotation designates an embeddable persistent class. Embeddable instances are stored as part of the record
of their owning instance. All embeddable classes must have this annotation.

A persistent class can either be an entity or an embeddable class, but not both.

The equivalent XML element isenrbeddabl e. It understands the following attributes:

» cl ass: Theentity class. This attribute is required.

27

Metadata

» access: Theaccesstypeto usefor the class. Must either be FI ELD or PROPERTY. For details on access types, see Sec-
tion 5.2, “ Field and Property Metadata” [29]

OpenJPA allows a persistent class to be both an entity and an embeddabl e class. I nstances of the class will act as entites
when persisted explicitly or assigned to non-embedded fields of entities. | nstances will act as embedded values when as-
signed to embedded fields of entities.

To signal that a classis both an entity and an embeddable classin OpenJPA, simply add both the @nt i t y and the
@nbeddabl e annotations to the class.

5.1.5. EntityListeners

An entity may list itslifecycle event listenersinthe Ent i t yLi st ener s annotation. This value of this annotation is an array of
thelistener Cl ass esfor the entity. The equivalent XML elementisenti ty-1i st ener s. For more details on entity listeners,
see Section 4.3, “ Lifecycle Callbacks” [21].

5.1.6. Example

Here are the class declarations for our persistent object model, annotated with the appropriate persistence metadata. Note that
Magazi ne declares an identity class, and that Docurent and Addr ess are a mapped superclass and an embeddable class, re-
spectively. Li f et i meSubscri ptionandTri al Subscri pti on override the default entity name to supply a shorter alias
for usein queries.

Example5.1. Class Metadata

package org. mag;
@Entity

@ dCl ass(Magazi ne. Magazi nel d. cl ass)
public class Magazine {

public static class Magazineld {

}
}

@ntity
public class Article {

}

package org. mag. pub;

@ntity
public class Conpany {

}

@ntity
public class Author {

}

@nbeddabl e
public class Address {

}

package org. mag. subscri be;

@MmppedSuper cl ass
public abstract class Docunent {

28

Metadata

}

@ntity
public class Contract
extends Docunent {

}

@ntity
public class Subscription {

@ntity
public static class Lineltem
extends Contract {

}

@ntity(name="Lifetime")
public class LifetimeSubscription
extends Subscription {

}

@ntity(name="Trial")
public class Trial Subscription
ext ends Subscription {

The equivalent declarationsin XML:

<entity-mappi ngs xm ns="http://java.sun. conl xn / ns/ persi stence/ or n
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schera- i nst ance"
xsi : schemaLocati on="http://] ava. sun. com xm / ns/ per si stence/orm orm 1_0. xsd"
version="1.0">
<mapped- super cl ass cl ass="org. mag. subscri be. Docunent " >

</ rmbbéd— super cl ass>
<entity cl ass="org.mg. Magazi ne">
<id-cl ass cl ass="org. nag. Magazi ne$Magazi nel d"/ >

</ ent iiy>

<entity class="org.mg. Article">

</ ent ify>

<entity class="org. mg. pub. Conpany" >

</ ent iiy>

<entity class="org. mg. pub. Aut hor">

</ ent iiy>

<entity class="org. mg. subscribe. Contract">

</entit y>

<entity class="org. mg. subscri be. Li nel teni>

</ ent iiy>

<entity class="org.mg. subscribe.LifetimeSubscription" name="Lifetinme">
</ ent iiy>

<entity class="org. mag. subscribe. Tri al Subscri ption" name="Trial ">
</ ent iiy>

<enbeddabl e cl ass="org. mag. pub. Addr ess" >

</ enbeddabl e>
</entity-mappi ngs>

Field and Property Metadata

The persistence implementation must be able to retrieve and set the persistent state of your entities, mapped superclasses, and em-
beddabl e types. JPA offers two modes of persistent state access: field access, and property access. Under field access, the imple-

29

Metadata

mentation injects state directly into your persistent fields, and retrieves changed state from your fields aswell. To declare field
access on an entity with XML metadata, set theaccess attribute of your entity XML element to FI ELD. To usefield access
for an entity using annotation metadata, simply place your metadata and mapping annotations on your field declarations:

@manyToOne
private Conpany publisher;

Property access, on the other hand, retrieves and loads state through JavaBean "getter” and "setter" methods. For a property p of
type T, you must define the following getter method:

T getP();

For boolean properties, thisis also acceptable:

bool ean i sP();

Y ou must aso define the following setter method:

void setP(T val ue);

To use property access, set your ent i t y element'saccess attribute to PROPERTY, or place your metadata and mapping an-
notations on the getter method:

@manyToOne
private Conpany getPublisher() { ... }
private void setPublisher(Conpany publisher) { ... }

When using property access, only the getter and setter method for a property should ever access the underlying persistent
field directly. Other methods, including internal business methods in the persistent class, should go through the getter
and setter methods when manipulating persistent state.

Also, take care when adding business logic to your getter and setter methods. Consider that they are invoked by the per-
sistence implementation to load and retrieve all persistent state; other side effects might not be desirable.

Each class must use either field access or property access for al state; you cannot use both access types within the same class.
Additionally, a subclass must use the same access type as its superclass.

The remainder of this document uses the term "persistent field" to refer to either a persistent field or a persistent property.

5.2.1. Transient

30

5.2.2.

Metadata

The Tr ansi ent annotation specifies that afield is non-persistent. Use it to exclude fields from management that would other-
wise be persistent. Tr ansi ent isamarker annotation only; it has no properties.
The equivalent XML element ist r ansi ent . It hasasingle attribute;

» nane: Thetransient field or property name. This attribute is required.

Id

5.2.3.

Annotate your simpleidentity fieldswith | d. This annotation has no properties. We explore entity identity and identity fieldsin
Section 4.1.3, “ Identity Fields” [16].
The equivalent XML element isi d. It has one required attribute:

» nane: The name of the identity field or property.

Generated Value

The previous section showed you how to declare your identity fields with the | d annotation. It is often convenient to allow the
persistence implementation to assign a unique value to your identity fields automatically. JPA includes the Gener at edVal ue
annotation for this purpose. It has the following properties:

* CenerationType strategy: Enum value specifying how to auto-generate the field value. The Gener at i onType
enum has the following values:
e Gener at or Type. AUTO. The default. Assign the field a generated value, leaving the details to the JPA vendor.
e GenerationType. | DENTI TY: The database will assign an identity value on insert.
e Generati onType. SEQUENCE: Use adatastore sequence to generate afield value.
e GenerationType. TABLE: Use a sequence table to generate afield value.
e String generat or: The name of agenerator defined in mapping metadata. We show you how to define named generators

in Section 12.5, “ Generators” [124]f the Gener at i onType is set but this property is unset, the JPA implementation uses
appropriate defaults for the selected generation type.

The equivalent XML element isgener at ed- val ue, which includes the following attributes:

e strategy: Oneof TABLE, SEQUENCE, | DENTI TY, or AUTQO, defaulting to AUTQO.

* gener at or : Equivalent to the generator property listed above.

OpenJPA allows you to use the Gener at edVal ue annotation on any field, not just identity fields. Before using the
| DENTI TY generation strategy, however, read Section 5.4.4, “ Autoassign / | dentity Strategy Caveats” [235h the
Reference Guide.

31

5.2.4.

Metadata

Embedded Id

5.2.5.

If your entity has multiple identity values, you may declare multiple @ d fields, or you may declare asingle @nbeddedl| d
field. The type of afield annotated with EnbeddedI| d must be an embeddable entity class. The fields of this embeddable class
are considered the identity values of the owning entity. We explore entity identity and identity fieldsin Section 4.1.3, “ I dentity
Fields” [16].

The EnbeddedI d annotation has no properties.

The equivalent XML element isenbedded- i d. It has one required attribute:

* nane: The name of theidentity field or property.

Version

5.2.6.

Usethe Ver si on annotation to designate aversion field. Section 4.1.4, “ Version Field " [16] explained the importance of ver-
sion fieldsto JPA. Thisis amarker annotation; it has no properties.
The equivalent XML element isver si on, which has asingle attribute:

¢ nane: The name of the version field or property. This attribute is required.

Basic

Basi c¢ signifies a standard value persisted as-is to the datastore. Y ou can use the Basi ¢ annotation on persistent fields of the

32

http://www1.ics.uci.edu/~ejw/authoring/uuid-guid/
http://www1.ics.uci.edu/~ejw/authoring/uuid-guid/
http://www1.ics.uci.edu/~ejw/authoring/uuid-guid/
http://www1.ics.uci.edu/~ejw/authoring/uuid-guid/
../javadoc/org/apache/openjpa/persistence/Generator.html

Metadata

following types. primitives, primitive wrappers, j ava. | ang. Stri ng,byte[],Byte[],char[],Character[],

j ava. nat h. Bi gDeci mal ,j ava. nat h. Bi gl nteger,java. util.Date,java.util.Cal endar,

java. sql . Dat e,j ava. sql . Ti mest anp, Enuns, and Seri al i zabl e types.

Basi c declaresthese properties:

» FetchType f et ch: Whether to load the field eagerly (Fet chType. EAGER) or lazily (Fet chType. LAZY). Defaultsto
Fet chType. EAGER

* bool ean opti onal : Whether the datastore allows null values. Defaults to true.
The equivalent XML element isbasi c. It hasthe following attributes:

« nane: The name of the field or property. This attribute is required.
» fetch: Oneof EAGERor LAZY .

e opti onal : Boolean indicating whether the field value may be null.

5.2.6.1. Fetch Type

5.2.7.

Many metadata annotations in JPA have af et ch property. This property can take on one of two values: Fet chType. EAGER
or Fet chType. LAZY. Fet chType. EAGER meansthat the field isloaded by the JPA implementation before it returns the per-
sistent object to you. Whenever you retrieve an entity from a query or from the Ent i t yManager , you are guaranteed that all of
its eager fields are populated with datastore data.

Fet chType. LAZY isahint to the JPA runtime that you want to defer loading of the field until you accessit. Thisis called lazy
loading. Lazy loading is completely transparent; when you attempt to read the field for the first time, the JPA runtime will load
the value from the datastore and populate the field automatically. Lazy loading is only a hint and not a directive because some
JPA implementations cannot lazy-load certain field types.

With amix of eager and lazily-loaded fields, you can ensure that commonly-used fields load efficiently, and that other state loads

transparently when accessed. Asyou will seein Section 7.3, Persistence Context ” [64] you can also use eager fetching to en-
sure that entites have al needed data loaded before they become detached at the end of a persistence context.

OpenJPA can lazy-load any field type. OpenJPA also allows you to dynamically change which fields are eagerly or
lazily loaded at runtime. See Section 5.7, “ Fetch Groups” [243h the Reference Guide for details.

The Reference Guide details OpenJPA's eager fetching behavior in Section 5.8, “ Eager Fetching ” [247]

Embedded

Use the Embedded marker annotation on embeddable field types. Embedded fields are mapped as part of the datastore record of
the declaring entity. In our sample model, Aut hor and Conpany each embed their Addr ess, rather than forming arelation to
an Addr ess as a separate entity.

The equivalent XML element isenbedded, which expects a single attribute:

e nane: The name of the field or property. This attributeis required.

33

Metadata

5.2.8. Many To One

When an entity A references asingle entity B, and other As might also reference the same B, we say thereis amany to onerela-
tion from A to B. In our sample model, for example, each magazine has a reference to its publisher. Multiple magazines might
have the same publisher. We say, then, that the Magazi ne. publ i sher field isamany to one relation from magazines to pub-
lishers.

JPA indicates many to one relations between entities with the Many ToOne annotation. This annotation has the following proper-
ties:

« Class target Entity: Theclassof therelated entity type.

» CascadeType[] cascade: Array of enum values defining cascade behavior for thisfield. We explore cascades below.
Defaults to an empty array.

» FetchType f et ch: Whether to load the field eagerly (Fet chType. EACGER) or lazily (Fet chType. LAZY). Defaultsto
Fet chType. EAGER. See Section 5.2.6.1, “ Fetch Type” [33] above for details on fetch types.

* bool ean opti onal : Whether the related object must exist. If f al se, thisfield cannot be null. Defaultstot r ue.
The equivaent XML element ismany- t 0- one. It accepts the following attributes:

» nane: The name of the field or property. This attributeis required.
e target-entity: Theclassof therelated type.
» fetch: Oneof EAGERor LAZY.

» opti onal : Boolean indicating whether the field value may be null.

5.2.8.1. Cascade Type

We introduce the JPA Ent i t yManager in Chapter 8, EntityManager [67] TheEnt i t yManager hasAPIsto persist new
entities, remove (delete) existing entities, refresh entity state from the datastore, and merge detached entity state back into the
persistence context. We explore all of these APIsin detail later in the overview.

When the Ent i t yManager isperforming the above operations, you can instruct it to automatically cascade the operation to the

entities held in a persistent field with the cascade property of your metadata annotation. This processisrecursive. The cas-
cade property acceptsan array of CascadeType enum values.

» CascadeType. PERSI ST: When persisting an entity, also persist the entities held in thisfield. We suggest liberal applica
tion of this cascade rule, because if the Ent i t yManager finds afield that references a new entity during flush, and the field
does not use CascadeType. PERSI ST, itisan error.

» CascadeType. REMOVE: When deleting an entity, also delete the entities held in thisfield.

e CascadeType. REFRESH: When refreshing an entity, also refresh the entities held in this field.

» CascadeType. MERGE: When merging entity state, also merge the entities held in this field.

Metadata

OpenJPA offers enhancements to JPA's CascadeType. REM OV E functionality, including additional annotations to con-
trol how and when dependent fields will be removed. See Section 6.4.2.1, “ Dependent " [254for more details.

CascadeType defines one additional value, CascadeType. ALL, that acts as a shortcut for al of the values above. The fol-
lowing annotations are equivalent:

@manyToOne(cascade={ CascadeType. PERSI ST, CascadeType. REMOVE,
CascadeType. REFRESH, CascadeType. MERGE})
private Conpany publisher

@manyToOne(cascade=CascadeType. ALL)
private Conpany publisher

In XML, these enumeration constants are available as child elements of the cascade element. The cascade element isitself a
child of many- t 0- one. The following examples are equivalent:

<many-t o- one nane="publisher">
<cascade>
<cascade- persi st/ >
<cascade- nerge/ >
<cascade-renove/ >
<cascade-refresh/>
</ cascade>
</ many-t o- one>

<many-t o- one nane="publisher">
<cascade>
<cascade-al | / >
</ cascade>
</ many-t o- one>

5.2.9.

One To Many

When an entity A references multiple B entities, and no two As reference the same B, we say there isaone to many relation from
AtoB.

One to many relations are the exact inverse of the many to one relations we detailed in the preceding section. In that section, we
said that the Magazi ne. publ i sher field isamany to one relation from magazines to publishers. Now, we see that the Com
pany. mags field isthe inverse - aoneto many relation from publishers to magazines. Each company may publish multiple
magazines, but each magazine can have only one publisher.

JPA indicates one to many relations between entities with the OneToMany annotation. This annotation has the following proper-
ties:
« Class targetEntity: Theclassof therelated entity type. Thisinformation is usually taken from the parameterized col-

lection or map element type. Y ou must supply it explicitly, however, if your field isn't a parameterized type.

* String mappedBy: Namesthe many to onefield in the related entity that maps this bidirectional relation. We explain bid-

35

Metadata

irectional relations below. Leaving this property unset signals that thisis a standard unidirectional relation.

» CascadeType[] cascade: Array of enum values defining cascade behavior for the collection elements. We explore cas-
cades abovein Section 5.2.8.1, “ Cascade Type” [34]. Defaultsto an empty array.

* FetchType fetch: Whether to load the field eagerly (Fet chType. EAGER) or lazily (Fet chType. LAZY). Defaultsto
Fet chType. LAZY. See Section 5.2.6.1, “ Fetch Type” [33] above for details on fetch types.

The equivalent XML element isone-t o- nany, which includes the following attributes:

» nane: The name of the field or property. This attributeis required.

* target-entity: Theclassof therelated type.

» fetch: Oneof EAGEROr LAZY.

. Fg;)ped— by: The name of the field or property that owns the relation. See Section 5.2, “ Field and Property Metadata”

Y ou may aso nest the cascade element withinaone-t o- nany element.

5.2.9.1. Bidirectional Relations

When two fields are logical inverses of each other, they form abidirectional relation. Our model contains two bidirectional rela-
tions: Magazi ne. publ i sher and Conpany. mags form one bidirectiona relation, and Art i cl e. aut hor s and Au-
thor. arti cl es form the other. In both cases, thereisaclear link between the two fields that form the relationship. A
magazine refers to its publisher while the publisher refersto all its published magazines. An article refersto its authors while each
author refersto her written articles.

When the two fields of a bidirectional relation share the same datastore mapping, JPA formalizes the connection with the
mappedBy property. Marking Conpany. mags asnmappedBy Magazi ne. publ i sher meanstwo things:

1. Conpany. nags usesthe datastore mapping for Magazi ne. publ i sher, but inversesit. Infact, it isillegal to specify any
additional mapping information when you use the mappedBy property. All mapping information is read from the referenced
field. We explore mapping in depth in Chapter 12, Mapping Metadata [117]

2. Magazi ne. publ i sher isthe"owner" of therelation. The field that specifies the mapping datais always the owner. This
means that changes to the Magazi ne. publ i sher field are reflected in the datastore, while changes to the Com
pany. nags field alone are not. Changesto Conpany. nags may still affect the JPA implementation's cache, however.
Thus, it is very important that you keep your object model consistent by properly maintaining both sides of your bidirectional
relations at all times.

Y ou should always take advantage of the nappedBy property rather than mapping each field of a bidirectional relation inde-
pendently. Failing to do so may result in the JPA implementation trying to update the database with conflicting data. Be careful to
only mark one side of the relation as mappedBy, however. One side has to actually do the mapping!

Y ou can configure OpenJPA to automatically synchronize both sides of a bidirectiona relation, or to perform various
actions when it detects inconsistent relations. See Section 5.5, “ Managed Inverses” [235h the Reference Guide for
details.

36

Metadata

5.2.10. One To One

When an entity A references asingle entity B, and no other As can reference the same B, we say there is a one to one relation
between A and B. In our sample model, Magazi ne hasaoneto onerelationto Art i cl e through the
Magazi ne. cover Arti cl e field. No two magazines can have the same cover article.

JPA indicates one to one relations between entities with the OneToOne annotation. This annotation has the following properties:

e Cass target Entity: Theclassof the related entity type. Thisinformation is usually taken from the field type.

» String mappedBy: Namesthefield in the related entity that maps this bidirectional relation. We explain bidirectional rela-
tionsin Section 5.2.9.1, “ Bidirectional Relations” [36] above. Leaving this property unset signalsthat thisis a standard uni-
directional relation.

» CascadeType[] cascade: Array of enum values defining cascade behavior for thisfield. We explore cascades in Sec-
tion 5.2.8.1, “ Cascade Type” [34] above. Defaultsto an empty array.

* FetchType f et ch: Whether to load the field eagerly (Fet chType. EAGER) or lazily (Fet chType. LAZY). Defaultsto
Fet chType. EACER. See Section 5.2.6.1, “ Fetch Type” [33] above for details on fetch types.

* bool ean opti onal : Whether the related object must exist. If f al se, thisfield cannot be null. Defaultstot r ue.
The equivalent XML element isone-t 0- one which understands the following attributes:

» nane: The name of the field or property. This attributeis required.
» target-entity: Theclassof therelated type.
» fetch: Oneof EAGER or LAZY.

* mapped- by: Thefield that ownsthe relation. See Section 5.2, “ Field and Property Metadata” [29].

Y ou may also nest the cascade element within aone- t 0- one element.

5.2.11. Many To Many

When an entity A references multiple B entities, and other As might reference some of the same Bs, we say thereis amany to
many relation between A and B. In our sample model, for example, each article has areference to all the authors that contributed
to the article. Other articles might have some of the same authors. We say, then, that Art i cl e and Aut hor have amany to
many relation through the Ar t i cl e. aut hor s field.

JPA indicates many to many relations between entities with the Many ToMany annotation. This annotation has the following
properties:
« Class targetEntity: Theclassof therelated entity type. Thisinformation is usually taken from the parameterized col-

lection or map element type. Y ou must supply it explicitly, however, if your field isn't a parameterized type.

e String nmappedBy: Namesthe many to many field in the related entity that maps this bidirectional relation. We explain bi-
directional relationsin Section 5.2.9.1, “ Bidirectional Relations” [36] above. Leaving this property unset signalsthat thisis
astandard unidirectional relation.

» CascadeType[] cascade: Array of enum values defining cascade behavior for the collection elements. We explore cas-
cades abovein Section 5.2.8.1, “ Cascade Type” [34]. Defaultsto an empty array.

» FetchType f et ch: Whether to load the field eagerly (Fet chType. EACGER) or lazily (Fet chType. LAZY). Defaultsto

37

Metadata

Fet chType. LAZY. See Section 5.2.6.1, “ Fetch Type” [33] above for details on fetch types.
The equivalent XML element ismany- t o- many. It accepts the following attributes:

« nane: The name of the field or property. This attributeis required.
* target-entity: Theclassof therelated type.
» fetch: Oneof EAGER or LAZY.

* mapped- by: Thefield that ownstherelation. See Section 5.2, “ Field and Property Metadata” [29].

You may aso nest the cascade element within amany- t o- many element.

5.2.12. Order By

Datastores such as relational databases do not preserve the order of records. Your persistent Li st fields might be ordered one
way the first time you retrieve an object from the datastore, and a completely different way the next. To ensure consistent order-
ing of collection fields, you must use the Or der By annotation. The Or der By annotation's value is a string defining the order
of the collection elements. An empty value means to sort on the identity value(s) of the elements in ascending order. Any other
value must be of the form:

<field name>[ASC| DESC][, ...]

Each<fi el d nanme> isthe name of apersistent field in the collection's element type. Y ou can optionally follow each field by
the keyword ASC for ascending order, or DESC for descending order. If the direction is omitted, it defaults to ascending.

The equivalent XML element isor der - by which can be listed as a sub-element of the one- t o- nany or many-t o- many
elements. The text within this element is parsed as the order by string.

5.2.13. Map Key

JPA supports persistent Map fields through either aOneToMany or Many ToMany association. The related entities form the
map values. JPA derives the map keys by extracting afield from each entity value. The MapKey annotation designates the field
that is used as the key. It has the following properties:

* String nane: Thename of afield in therelated entity class to use as the map key. If no nameis given, defaults to the iden-
tity field of the related entity class.

The equivalent XML element is map- key which can be listed as a sub-element of theone- t o- many or many- t o- many
elements. The map- key element has the following attributes:

* name: The name of thefield in the related entity class to use as the map key.

5.2.14. Persistent Field Defaults

In the absence of any of the annotations above, JPA defines the following default behavior for declared fields:

38

5.3.

Metadata

1. Fieldsdeclared st ati c, transi ent,orfinal defaulttonon-persistent.
2. Fields of any primitive type, primitive wrapper type, j ava. | ang. Stri ng,byte[],Byte[],char[],Character[],
j ava. nat h. Bi gDeci mal ,j ava. nat h. Bi gl nteger,java. util.Date,java.util.Cal endar,

java.sql . Date,java. sql . Ti mest anp, orany Seri al i zabl e type default to persistent, asif annotated with
@3asi c.

3. Fields of an embeddable type default to persistent, asif annotated with @nbedded.
4. All other fields default to non-persistent.

Note that according to these defaullts, all relations between entities must be annotated explicitly. Without an annotation, arelation
field will default to serialized storage if the related entity typeis serializable, or will default to being non-persistent if not.

XML Schema

We present the complete XML schema below. Many of the elements relate to object/relational mapping rather than metadata;
these elements are discussed in Chapter 12, Mapping Metadata [117]

<?xm version="1.0" encodi ng="UTF-8"?>
<xsd: schema t arget Namespace="http://j ava. sun. com xm / ns/ per si st ence/ or n{
xm ns: orme"http://java. sun. com xm / ns/ per si st ence/ or ni
xm ns: xsd="ht t p://ww. w3. or g/ 2001/ XM_Scherma"
el ement For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed"
version="1.0">

<xsd: annot ati on>
<xsd: docunent ati on>
@#)orm1_0.xsd 1.0 Feb 14 2006
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: annot ati on>
<xsd: docunent ati on>

This is the XM. Schema for the persistence object-relationa
mapping file

The file nay be naned "META-INF/orm xml " in the persistence
archive or it may be named sone ot her name which woul d be
used to locate the file as resource on the classpath

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: conpl exType name="enptyType"/>

<xsd: si npl eType name="versi onType" >
<xsd:restriction base="xsd:token">
<xsd: pattern value="[0-9]+(\.[0-9]+)*"/>
</xsd:restriction>
</ xsd: si npl eType>

QI oe Kkkkkkkk kX kk kA kK ARk Kk Rk Kk kX k ok kA hh ok khh kX khkkkkkkxk ok _ |5

<xsd: el ement name="entity-mappi ngs">
<xsd: conpl exType>
<xsd: annot ati on>
<xsd: docunent at i on>

The entity-mappings el ement is the root el ement of an mappi ng
file. It contains the followi ng four types of elenents

1. The persistence-unit-nmetadata el ement contains netadata
for the entire persistence unit. It is undefined if this el enent
occurs in nultiple mapping files within the sane persistence unit

2. The package, schema, catal og and access el ements apply to all of
the entity, nmapped-superclass and enbeddabl e el enents defined in
the same file in which they occur.

3. The sequence-generator, table-generator, naned-query
nanmed- nati ve-query and sql-resul t-set-nmapping el enents are gl obal
to the persistence unit. It is undefined to have nore than one
sequence-generator or table-generator of the same nanme in the sane
or different mapping files in a persistence unit. It is also
undefined to have nore than one named-query or naned-native-query
of the sane nane in the sane or different mapping files in a
persistence unit.

39

Metadata

4. The entity, mapped-superclass and embeddabl e el ements each define
the mapping information for a managed persistent class. The mappi ng
information contained in these el ements may be conplete or it nay

be parti al .

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string"
m nCccurs="0"/>
<xsd: el ement name="persi stence-unit-netadata"
t ype="or m per si st ence- uni t - net adat a"
m nCccurs="0"/>
<xsd: el enent nane="package" type="xsd:string"
m nCccurs="0"/>
<xsd: el ement name="schem" type="xsd:string"
m nCccurs="0"/>
<xsd: el enent nane="catal og" type="xsd:string"
m nCccurs="0"/>
<xsd: el ement name="access" type="orm access-type"
m nCccurs="0"/>
<xsd: el enent nane="sequence-generator" type="orm sequence-generator"
m nCccurs="0" maxQccur s="unbounded"/ >
<xsd: el ement nanme="t abl e-generator" type="ormtabl e-generator”
m nCccur s="0" maxQOccur s="unbounded"/ >
<xsd: el enent nane="naned- query" type="orm naned- query"
m nCccurs="0" maxQccur s="unbounded"/ >
<xsd: el ement name="naned- nati ve-query" type="orm nanmed-native-query"
m nCccur s="0" maxQOccur s="unbounded"/ >
<xsd: el enent nanme="sql -resul t-set-nmappi ng"
type="ormsql -resul t - set - mappi ng"
m nCccurs="0" maxQccur s="unbounded"/ >
<xsd: el ement name="mapped- supercl ass" type="orm mapped- supercl ass"
m nCccurs="0" maxQccur s="unbounded"/>
<xsd: el enent nane="entity" type="ormentity"
m nCccurs="0" maxQccur s="unbounded"/>
<xsd: el ement name="enbeddabl e" type="orm enbeddabl e"
m nCccur s="0" maxQOccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="version" type="orm versionType"
fixed="1.0" use="required"/>
</ xsd: conpl exType>
</ xsd: el ement >

Q| o Kk kkkkkkkkkkkkkkkk ok ok ok ok ok ok ok ok ok ok kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kkhk _ 5

<xsd: conpl exType name="persi st ence-unit-netadata">
<xsd: annot ati on>
<xsd: docurent ati on>

Met adata that applies to the persistence unit and not just to
the mapping file in which it is contained.

I f the xnl-nmappi ng- net adat a- conpl ete el enent is specified then
the conplete set of mapping netadata for the persistence unit
is contained in the XML mapping files for the persistence unit.

</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement name="xnl - mappi ng- met adat a- conpl ete" type="orm enptyType"
m nOccurs—"O"/ >
<xsd: el enent nanme="persistence-unit-defaul ts"
type="orm persi stence-unit-defaul ts"
m nCccurs="0"/>
</ xsd: sequence>
</ xsd: conpl exType>

QI on Kkkkkkkkkkkkkkkkhkkhhkkkhkkhkkkkkhhkkhhkkkhkkkkkkxkk __ 5

<xsd: conpl exType nanme="per si stence-unit-defaul ts">
<xsd: annot ati on>
<xsd: docunent at i on>

These defaults are applied to the persistence unit as a whole
unl ess they are overridden by |ocal annotation or XM
el enent settings.

schema - Used as the schema for all tables or secondary tables
that apply to the persistence unit

catalog - Used as the catalog for all tables or secondary tables
that apply to the persistence unit

access - Used as the access type for all managed cl asses in
the persistence unit

cascade-persi st - Adds cascade-persist to the set of cascade options
in entity relationships of the persistence unit

entity-listeners - List of default entity listeners to be invoked
on each entity in the persistence unit.

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent nane="schem" type="xsd: string"

40

Metadata

m nCccurs="0"/>
<xsd: el enent nane="catal og" type="xsd:string"
m nCccurs="0"/>
<xsd: el ement nanme="access" type="orm access-type"
m nCccurs="0"/>
<xsd: el enent nane="cascade-persist" type="orm enptyType"
m nCccurs="0"/>
<xsd: el ement name="entity-listeners" type="ormentity-listeners
m nCccurs="0"/>

</ xsd: sequence>
</ xsd: conpl exType>

<l o Kkkkkkkkkkkkkkkhhkkkkkkkkkkkkkkkkkkk ok ok kkkokkokkokkkkk ok ok _ 5

<xsd: conpl exType name="entity">
<xsd: annot at | on>
<xsd: docurent ati on>

Defines the settings and mappings for an entity. |s allowed to be
sparsely popul ated and used I n conjunction with the annotations.
Alternatively, the netadata-conplete attribute can be used to
indicate that no annotations on the entity class (and its fields
or properties) are to be processed. If this is the case then

the defaulting rules for the entity and its subelenents will

be recursively appli ed.

@rarget (TYPE) @Ret enti on(RUNTI ME)
public @nterface Entity {
String name() default "";

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent nane="descri ption" type="xsd:string" m nQccurs="0"/>
<xsd: el ement name="tabl e" type="ormtable"
m nCccurs="0"/>
<xsd: el ement name="secondary-tabl e" type="orm secondary-table"
m nCccurs="0" maxQccur s="unbounded"/ >
<xsd: el ement name="pri mary-key-j oi n-col um"
type="orm pri mary-key-j oi n-col um"
m nCccur s="0" maxQccur s="unbounded"/ >
<xsd: el enent nane="id-cl ass" type="ormid-class" mnCccurs="0"/>
<xsd: el ement name="i nheritance" type="orminheritance" m nQccurs="0"/>
<xsd: el ement name="di scri m nator-val ue" type="orm di scri m nator-val ue"
m nCccurs="0"/>
<xsd: el enent nanme="di scri m nat or - col um"
type="orm di scri m nat or- col um"
m nCccurs="0"/>
<xsd: el ement name="sequence-generator" type="orm sequence-generator"
m nCccurs="0"/>
<xsd: el ement name="t abl e-generator" type="ormtabl e-generator"
m nCccurs="0"/>
<xsd: el ement name="named- query" type="orm nanmed- query"
m nCccurs="0" maxQccur s="unbounded"/ >
<xsd: el ement name="naned- nati ve-query" type="orm named-native-query"
m nCccurs="0" maxQccur s="unbounded"/ >
<xsd: el ement name="sql -resul t-set-mappi ng"
type="orm sql -resul t - set- mappi ng"
m nCccurs="0" nmaxQccur s="unbounded"/ >
<xsd: el ement name="excl ude-defaul t-1isteners" type="orm enptyType"
m nCccurs="0"/>
<xsd: el enent nanme="excl ude- supercl ass-1isteners" type="orm enptyType"
m nCccurs="0"/>
<xsd: el enent nane="entity-listeners" type="ormentity-Iisteners"
m nCccurs="0"/>
<xsd: el ement name="pre-persist" type="orm pre-persist" mnQOccurs="0"/>
<xsd: el enent nane="post-persist" type="orm post-persist"
m nCccurs="0"/>
<xsd: el ement name="pre-renove" type="orm pre-renove" m nQccurs="0"/>
<xsd: el ement name="post-renove" type="orm post-renmove" m nOccurs="0"/>
<xsd: el enent nane="pre-update" type="orm pre-update" m nCccurs="0"/>
<xsd: el ement name="post-update" type="orm post-update" m nQccurs="0"/>
<xsd: el ement name="post-|oad" type="orm post-load" m nOccurs="0"/>
<xsd: el ement name="attribute-override" type="ormattribute-override"
m nCccurs="0" maxQccur s="unbounded"/ >
<xsd: el enent nane="associ ati on-override"
type="orm associ ati on-overri de"
m nCccur s="0" maxQccur s="unbounded"/ >
<xsd: el enent nanme="attributes" type="ormattributes" m nCccurs="0"/>
</ xsd: sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="cl ass" type="xsd:string" use="required"/>
<xsd:attribute name="access" type="orm access-type"/>
<xsd: attri bute name="net adat a- conpl ete" type="xsd: bool ean"/ >
</ xsd: conpl exType>

<l o Kkkkkkkkkkkkkkkkkkkk ok ok ok ok ok ok ok ok ok ok ok ok ok ok kok ok ok kokkokkokkokkokkok ok ok _ 5

<xsd: conpl exType name="attri butes">
<xsd: annot at | on>
<xsd: docunent ati on>

41

Metadata

This el enent contains the entity field or property mappings.

It may be sparsely populated to include only a subset of the
fields or properties. |If netadata-conplete for the entity is true
then the renai nder of the attributes will be defaulted according
to the default rules.

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: choi ce>
<xsd: el ement name="id" type="ormid"
m nCccurs="0" maxQccur s="unbounded"/ >
<xsd: el ement name="enbedded-i d" type="orm enbedded-i d"
m nCccurs="0"/>
</ xsd: choi ce>
<xsd: el ement name="basi c" type="orm basic"
m nCccur s="0" maxQccur s="unbounded"/ >
<xsd: el enent nane="version" type="orm version"
m nCccurs="0" maxQccur s="unbounded"/ >
<xsd: el ement name="many-to-one" type="orm many-to-one"
m nCccurs="0" maxQccur s="unbounded"/ >
<xsd: el enent nane="one-to- nany" type="orm one-to- many"
m nCccurs="0" maxQccur s="unbounded"/ >
<xsd: el ement name="one-to-one" type="orm one-to-one"
m nCccur s="0" maxQccur s="unbounded"/ >
<xsd: el enent nanme="many-to-many" type="orm many-t o- many"
m nCccurs="0" maxQccur s="unbounded"/ >
<xsd: el ement name="enbedded" type="orm enbedded"
m nCccurs="0" maxQccur s="unbounded"/ >
<xsd: el enent nanme="transient" type="ormtransient"
m nCccurs="0" maxQccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>

P L L

<xsd: si npl eType nanme="access-type">
<xsd: annot ati on>
<xsd: docunent ati on>

Thi s el ement determ nes how the persistence provider accesses the
state of an entity or enbedded object.

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuneration val ue=" PROPERTY"/ >
<xsd: enuner ati on val ue="FI ELD'/ >
</xsd:restriction>
</ xsd: si npl eType>

P T

<xsd: conpl exType name="entity-listeners">
<xsd: annot ati on>
<xsd: docunent ati on>

@arget ({ TYPE}) @Ret enti on(RUNTI ME)
public @nterface EntityListeners {
Cl ass[] val ue();

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="entity-listener" type="ormentity-listener”
m nCccurs="0" maxQccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>

<l o Kkkkkkkkkkkkkhkhkkkkkkkkkkkk ok ok ok ok kkkok ok ok kkkokkokkokkokkok ok ok _ 5

<xsd: conpl exType name="entity-listener">
<xsd: annot at | on>
<xsd: docurent ati on>

Defines an entity listener to be invoked at |ifecycle events
for the entities that list this |istener.

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: sequence>
<xsd: el ement name="pre-persist" type="orm pre-persist" mnQOccurs="0"/>
<xsd: el enent nanme="post-persist" type="orm post-persist"

m nCccurs="0"/>

<xsd: el ement name="pre-renove" type="orm pre-renove" m nQccurs="0"/>
<xsd: el ement name="post-renove" type="orm post-renmove" m nOccurs="0"/>
<xsd: el enent nanme="pre-update" type="orm pre-update" mi nCccurs="0"/>
<xsd: el ement name="post-update" type="orm post-update" mi nQccurs="0"/>
<xsd: el enent nane="post-|oad" type="orm post-|load" m nQccurs="0"/>

</ xsd: sequence>

<xsd:attribute name="cl ass" type="xsd:string" use="required"/>

</ xsd: conpl exType>

42

Metadata

P L

<xsd: conpl exType name="pre-persist">
<xsd: annot ati on>
<xsd: docunent at i on>

@arget ({ METHOD}) @Ret enti on(RUNTI ME)
public @nterface PrePersist {}

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: attribute name="met hod- name" type="xsd:string" use="required"/>
</ xsd: conpl exType>

Q| o Kk kkkkkkkkkkkkkk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok kkkk _ 5

<xsd: conpl exType nanme="post-persist">
<xsd: annot ati on>
<xsd: docunent ati on>

@rar get ({ METHOD}) @Ret enti on(RUNTI MVE)
public @nterface PostPersist {}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: attri bute name="net hod- name" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<l o Kkkkkkkkkkkkkkkkkkkkkkkkkk ok ok ok ok ok ok ok ok ok ok kk ok ok kk ok ok kokkokkok ok ok _ 5

<xsd: conpl exType nanme="pre-renove">
<xsd: annot ation>
<xsd: docunent ati on>

@arget ({ METHOD}) @Rret ent i on(RUNTI VE)
public @nterface PreRenmove {}

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: attribute name="met hod- name" type="xsd:string" use="required"/>
</ xsd: conpl exType>

QI oe Kkkkkkkkk Xk k kA hk kX kh kA kkkkkk kX hk ok khhkkkhkkkkkkxkk __ 5

<xsd: conpl exType nanme="post-renove">
<xsd: annotation>
<xsd: docunent at i on>

@arget ({ METHOD}) @Ret enti on(RUNTI ME)
public @nterface Post Renpve {}

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: attribute name="nethod-name" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<l o Kkkkkkkkkkkkkkkkkkkkkk ok ok ok ok ok ok kk ok ok kkkk ok ok kkkokkokkokkokkkkk _ 5

<xsd: conpl exType nanme="pre-update">
<xsd: annot at | on>
<xsd: docurent ati on>

@rar get ({ METHOD}) @Ret enti on(RUNTI VE)
public @nterface PreUpdate {}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: attri bute name="net hod- name" type="xsd:string" use="required"/>
</ xsd: conpl exType>

P R L

<xsd: conpl exType name="post - update">
<xsd: annot at | on>
<xsd: docunent ati on>

@arget ({ METHOD}) @Ret enti on(RUNTI ME)
public @nterface PostUpdate {}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:attribute name="nmet hod- name" type="xsd:string" use="required"/>
</ xsd: conpl exType>

Qoo Kkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkhhhkkhhhkhkhkkkkkkxkk __ 5

<xsd: conpl exType nanme="post-|oad">
<xsd: annot ati on>
<xsd: docunent ati on>

@rar get ({ METHOD}) @Ret enti on(RUNTI VE)
public @nterface PostLoad {}

43

Metadata

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: attribute name="nmet hod- name" type="xsd:string" use="required"/>
</ xsd: conpl exType>

QI oe KkkkkkkkkXkkkkkkhkkkhkkhhkkhkkkkkhhkkkhhkkkhkkkkkkxkk __ 5

<xsd: conpl exType name="query-hint">
<xsd: annot ati on>
<xsd: docunent at i on>

@arget ({}) @Retention(RUNTI ME)
public @nterface QueryHi nt {
String name();
String val ue();

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:attribute name="nanme" type="xsd:string" use="required"/>
<xsd:attribute name="val ue" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<l o Kkkkkkkkkkkkkhkkkkkkkkkkk ok ok ok ok ok ok ok ok ok ok kkkkkkkokkokkokkokkokkk 5

<xsd: conpl exType nanme="naned- query" >
<xsd: annot at | on>
<xsd: docurent ati on>

@rarget ({TYPE}) @Ret enti on(RUNTI ME)
public @nterface NamedQuery {
String name();
String query (),
QueryH nt[] hints() default {};

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>

<xsd: el ement name="query" type="xsd:string"/>

<xsd: el ement name="hint" type="orm query-hint"

m nCccurs="0" maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd: attribute name="nanme" type="xsd:string" use="required"/>
</ xsd: conpl exType>

QI oe Kkkkkkkk kX k ok kA kK ARk kA hkkkkk kA h ok kkhh kX ke ok ok kkkxkk _ |5

<xsd: conpl exType name="naned- nati ve-query">
<xsd: annot ati on>
<xsd: docunent at i on>

@'ar get ({TYPE}) @Retention(RUNTI ME)
public @nterface NanedNativeQuery {
String name();
String query(),
QueryH nt[] hints() default {};
Class resultC ass() default void.clas
) String resultSet Mapping() default ""; //naned Sql Resul t Set Mappi ng

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>

<xsd: el ement name="query" type="xsd:string"/>

<xsd: el ement name="hint" type="orm query-hint"

m nCccurs="0" maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd: attri bute name="nanme" type="xsd:string" use="required"/>
<xsd:attribute name="result-cl ass" type="xsd:string"/>
<xsd:attribute name="result-set-nmappi ng" type="xsd:string"/>
</ xsd: conpl exType>

<l o Kkkkkkkkkkkhkhkhkhkkkkkkkkkkkkkkkkkkkkkkkkkokkkkkkkkk _ 5

<xsd: conpl exType name="sql -resul t - set - mappi ng" >
<xsd: annot at | on>
<xsd: docurent ati on>

@rarget ({ TYPE}) @Ret enti on(RUNTI ME)
public @nt erface Sql Resul t Set Mappi ng {
String name(
EntltyResuIt[] entities() default {};
Col umResul t[] colums() default {};

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="entity-result" type="ormentity-result”
m nCccurs="0" maxQccur s="unbounded"/>
<xsd: el enent nane="col um-resul t" type="orm colum-result"

Metadata

m nCccurs="0" maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</ xsd: conpl exType>

P L R

<xsd: conpl exType name="entity-result">
<xsd: annot at | on>
<xsd: docunent ati on>

@arget ({}) @Retention(RUNTI ME)
public @nterface EntityResult {
Class entityC ass();
FieldResult[] fields() default {};
String discrimnatorColum() default

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>

<xsd: el enent nane="field-result" type="ormfield-result"

m nCccurs="0" maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="entity-class" type="xsd:string" use="required"/>
<xsd:attribute name="di scrimnator-colum" type="xsd:string"/>
</ xsd: conpl exType>

<l o Kkkkkkkkkkkkkhkkkkkkkk ok ok ok ok ok ok kk ok ok kkkkkk ok ok kk ok ok kkkkkk ok ok _ 5

<xsd: conpl exType name="field-result">
<xsd: annot at | on>
<xsd: docunent ati on>

@rarget ({}) @Retention(RUNTI ME)
public @nterface Fiel dResult {
String name();
String colum();

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attri bute name="col um" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<l o Kkkkkkkkkkkkkk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kok ok ok ok ok ok ok ok ok kok ok ok ok ok kok ok ok _

<xsd: conpl exType nanme="col um-resul t">
<xsd: annot ation>
<xsd: docunent ati on>

@arget ({}) @Retention(RUNTI ME)
public @nterface Col umResult {
String nane();

</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<l o Kkkkkkkkkkkkkkkkkkkkkkkkkkkk ok ok ok ok ok ok ok ok kokkkkokkokkokkkkk ok ok _ 5

<xsd: conpl exType name="t abl e" >
<xsd: annot at| on>
<xsd: document ati on>

@arget ({ TYPE}) @Ret enti on(RUNTI ME)
public @nterface Table {
String name() default "";
String catal og() default
String schema() default ;
Uni queConstraint[] uniqueConstraints() default {};

,
nou .

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent name="uni que-constraint" type="orm uni que-constraint"
m nCccurs="0" maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="nanme" type="xsd:string"/>
<xsd: attribute name="catal og" type="xsd:string"/>
<xsd: attribute name="schemn" type="xsd:string"/>
</ xsd: conpl exType>

<!__ IR R R R R EEEEEEEEEEEEEEEEEEEEERREEEEEEEREREEEEEEREEEEEEEES] caS
<xsd: conpl exType name="secondary-tabl e">

<xsd: annot ati on>
<xsd: docunent ati on>

45

Metadata

@rarget ({TYPE}) @Retenti on(RUNTI ME)
public @nterface SecondaryTable {
String name();
String catal og() def aul t
String schema() default
Pri maryKeyJoi nCol umm[] ka0| nCol ums() default {};
Uni queConstraint[] uniqueConstraints() default {};

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement name="pri mary-key-j oi n-col um"
type="orm pri mary-key-j 0| n-col um"
m nQccur s="0" maxCccur s="unbounded"/ >
<xsd: el ement nanme="uni que-constrai nt" type="orm uni que-constraint"
m nQccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd: attri bute name="nanme" type="xsd:string" use="required"/>
<xsd:attribute name="catal og" type="xsd:string"/>
<xsd:attribute name="schem" type="xsd:string"/>
</ xsd: conpl exType>

Qoo Kkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkkhhkkkkhkhkhkkkkkkxkk __ 5

<xsd: conpl exType name="uni que-constraint">
<xsd: annotation>
<xsd: docunent at i on>

@arget ({}) @Retention(RUNTI VE)
public @nterface UniqueConstraint {
String[] columNanes();

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="col um- nanme" type="xsd:string"
maxCQccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>

oo Kok ok ok ok ok ok ok ok ok ok ok ko ko ok

<xsd: conpl exType name="col uim">
<xsd: annot ati on>
<xsd: docunent ati on>

@arget ({ METHOD, FIELD}) @Retenti on(RUNTI ME)
public @nterface Colum {
String name() default "";
bool ean uni que() default "fal se;
bool ean nul I abl e() default true;
bool ean insertabl e() default true;
bool ean updat abl e() default true;
String col umbDefinition() default
String table() default "";
int length() default 255;
int precision() default 0; // decimal precision
int scale() default 0; // decimal scale

}

</ xsd: docunent at i on>

</ xsd: annot ati on>
<xsd:attribute name="nanme" type="xsd:string"/>
<xsd: attribute name="uni que" type="xsd: bool ean"/>
<xsd:attribute name="nul | abl e" type="xsd: bool ean"/>
<xsd:attribute name="insertabl e" type="xsd: bool ean"/>
<xsd: attribute name="updat abl e" type="xsd: bool ean"/>
<xsd: attribute name="col uim-definition" type="xsd:string"/>
<xsd:attribute name="tabl e" type="xsd:string"/>
<xsd:attribute name="length" type="xsd:int"/>
<xsd: attribute name="precision" type="xsd:int"/>
<xsd:attribute name="scal e" type="xsd:int"/>

</ xsd: conpl exType>

no
,

QI oe Kkkkkkkk kX k ok kA kK AR h kAR Ik kkk ok kX hk ok khh kX ke ok ok hkkxk ok _ |5

<xsd: conpl exType nanme="j oi n-col um">
<xsd: annotation>
<xsd: docunent at i on>

@arget ({ METHOD, FIELD}) @Retenti on(RUNTI MVE)
public @nterface JoinCol um {
String name() default "";
String referencedCol umNane() defaul t
bool ean uni que() default false;
bool ean nul | abl e() default true;
bool ean insertabl e() default true;
bool ean updat abl e() default true;
String columbDefinition() default
String table() default "";

’

46

Metadata

</ xsd: docunent at i on>

</ xsd: annot ati on>
<xsd:attribute name="nanme" type="xsd:string"/>
<xsd:attribute name="ref erenced- col um-nanme" type="xsd:string"/>
<xsd: attribute name="uni que" type="xsd: bool ean"/>
<xsd: attri bute name="nul | abl e" type="xsd: bool ean"/>
<xsd:attri bute name="insertabl e" type="xsd: bool ean"/>
<xsd:attribute name="updat abl e" type="xsd: bool ean"/>
<xsd: attribute name="col um-definition" type="xsd:string"/>
<xsd:attribute name="tabl e" type="xsd:string"/>

</ xsd: conpl exType>

oo ok

<xsd: si npl eType nanme="generati on-type">
<xsd: annot ati on>
<xsd: docunent ati on>

public enum GenerationType { TABLE, SEQUENCE, |DENTITY, AUTO };

</ xsd: docunent at i on>

</ xsd: annot ati on>

<xsd:restriction base="xsd:token">
<xsd: enurer ati on val ue="TABLE"/ >
<xsd: enuner ati on val ue="SEQUENCE"/ >
<xsd: enuner ati on val ue="1DENTI TY"/>
<xsd: enuner ati on val ue="AUTQO'/ >

</xsd:restriction>

</ xsd: si npl eType>

QI oo Kkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkkhhkkhhhkkkhkkkkkkxkk __ 5

<xsd: conpl exType nanme="attri bute-override">
<xsd: annot ati on>
<xsd: docunent at i on>

@arget ({ TYPE, METHOD, FIELD}) @Retenti on(RUNTI MVE)
public @nterface AttributeOverride {

String name();

Col um col um() ;

}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent nanme="col utm" type="orm col utm"/>
</ xsd: sequence>
<xsd: attri bute name="nanme" type="xsd:string" use="required"/>
</ xsd: conpl exType>

P T

<xsd: conpl exType nanme="associ ation-override">
<xsd: annotation>
<xsd: docunent ati on>

@arget ({ TYPE, METHOD, FIELD}) @Retenti on(RUNTI MVE)
public @nterface AssociationOverride {

String name();

Joi nCol um[] j oi nCol ums();

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="j oi n-col um" type="ormj oi n-col um"
maxQccur s="unbounded”/ >
</ xsd: sequence>
<xsd:attribute name="nanme" type="xsd:string" use="required"/>
</ xsd: conpl exType>

QI oe KkkkkkkkkXkkkkkhh kX hkkkkkhkkkkk kX kkkkhhkkkhkkkkkkxkk __ 5

<xsd: conpl exType nanme="id-cl ass">
<xsd: annot ation>
<xsd: docunent at i on>

@arget ({ TYPE}) @Ret enti on(RUNTI ME)
public @nterface 1dd ass {
C ass val ue();

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:attribute name="cl ass" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<| - R R R RS R R R R R R R R R R R R RS R R R R RS EEE S)
<xsd: conpl exType name="id">

<xsd: annotation>
<xsd: docunent at i on>

47

Metadata

@ar get ({ METHOD, FIELD}) @Retenti on(RUNTI ME)
public @nterface Id {}

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement name="col uim" type="orm col um"
m nCccurs="0"/>
<xsd: el enent nane="gener at ed- val ue" type="orm gener at ed- val ue"
m nCccurs="0"/>
<xsd: el ement name="tenporal" type="ormtenporal"
m nCccurs="0"/>
<xsd: el enent nane="t abl e-generator" type="ormtabl e-generator"
m nCccurs="0"/>
<xsd: el ement name="sequence-generator" type="orm sequence-generator"
m nCccurs="0"/>
</ xsd: sequence>
<xsd: attri bute name="name" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<l o Kkkkkkkkkkkkkkkkkk ok ok ok ok ok ok ok ok ok ok ok ok ok ok kok ok ok ok ok ok ok kokkokkok ok ok kok ok ok _

<xsd: conpl exType nanme="enbedded-i d">
<xsd: annot at | on>
<xsd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retenti on(RUNTI ME)
public @nterface Enbeddedld {}

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent nanme="attribute-override" type="ormattribute-override"
m nCccurs="0" maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="nanme" type="xsd:string" use="required"/>
</ xsd: conpl exType>

QI on KkkkkkkkkXkkkkkhhkkkhkkkhkkkkkkkkhkkkhhkkkhkkkkkkxkk __ 5

<xsd: conpl exType name="transient">
<xsd: annot ati on>
<xsd: docunent at i on>

@arget ({ METHOD, FIELD}) @Retenti on(RUNTI MVE)
public @nterface Transient {}

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<l o Kkkkkkkkkkkkkkkkkkkkkkkkkk ok ok ok ok ok ok kkkkkkkkkokkkkokkokkk ok ok _ 5

<xsd: conpl exType name="ver si on">
<xsd: annot ati on>
<xsd: docurent ati on>

@rarget ({ METHOD, FI ELD}) @Retenti on(RUNTI VE)
public @nterface Version {}

</ xsd: docunent at i on>

</ xsd: annot ati on>

<xsd: sequence>
<xsd: el ement name="col utm" type="orm col um" m nQccurs="0"/>
<xsd: el ement name="tenporal " type="ormtenporal” m nQOccurs="0"/>

</ xsd: sequence>

<xsd:attribute name="nanme" type="xsd:string" use="required"/>

</ xsd: conpl exType>

P R L

<xsd: conpl exType name="basi c">
<xsd: annot at | on>
<xsd: docunent ati on>

@arget ({ METHOD, FIELD}) @Retenti on(RUNTI MVE)
public @nterface Basic {

FetchType fetch() default EAGER

bool ean optional () default true;

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="col um" type="orm col um" m nQccurs="0"/>
<xsd: choi ce>
<xsd: el ement name="| ob" type="ormlob" m nOccurs="0"/>
<xsd: el ement name="tenporal" type="ormtenporal” m nQccurs="0"/>
<xsd: el ement name="enuner at ed" type="orm enunerated" m nOccurs="0"/>
</ xsd: choi ce>
</ xsd: sequence>

48

Metadata

<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="fetch" type="ormfetch-type"/>
<xsd:attribute name="optional" type="xsd: bool ean"/>

</ xsd: conpl exType>

P L R

<xsd: si npl eType nanme="fetch-type">
<xsd: annot ati on>
<xsd: docunent ati on>

public enum FetchType { LAZY, EAGER };

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuner ati on val ue="LAZY"/>
<xsd: enuneration val ue="EAGER'/ >
</xsd:restriction>
</ xsd: si npl eType>

<l o Kkkkkkkkkkkkkkkkkk ok ok ok ok ok ok ok ok ok ok ok ok ok ok kok ok ok ok ok ok ok kokkokkok ok ok kok ok ok _

<xsd: conpl exType nanme="| ob">
<xsd: annot at | on>
<xsd: docunent ati on>

@rar get ({ METHOD, FIELD}) @Retenti on(RUNTI ME)
public @nterface Lob {}

</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: conpl exType>

P L L

<xsd: si npl eType nanme="t enporal ">
<xsd: annot ati on>
<xsd: docunent ati on>

@arget ({ METHOD, FIELD}) @Retenti on(RUNTI MVE)
public @nterface Tenporal {
Tenpor al Type val ue();

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:restriction base="ormtenporal -type"/>
</ xsd: si npl eType>

<l o Kkkkkkkkkkkkkkkk ok kok ok ok kokkokkokkokkok ok ok _

<xsd: si npl eType name="t enporal -type">
<xsd: annot ati on>
<xsd: docunent ati on>

publ i ¢ enum Tenpor al Type {
DATE, // java.sql.Date
TIME, // java.sql.Tine
) TI MESTAMP // java.sql . Ti mestanp

</ xsd: docunent at i on>
</ xsd: annot ati on>

<xsd:restriction base="xsd:token">
<xsd: enuner ati on val ue="DATE"/>
<xsd: enunmer ati on val ue="TI ME"/>
<xsd: enuneration val ue="TI MESTAMP"/ >

</xsd:restriction>
</ xsd: si npl eType>

P R L

<xsd: si npl eType nanme="enuner at ed" >
<xsd: annot ati on>
<xsd: docunent ati on>

@arget ({ METHOD, FIELD}) @Retenti on(RUNTI MVE)
public @nterface Enunerated
Enunifype val ue() default ORDI NAL;

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:restriction base="orm enumtype"/>
</ xsd: si npl eType>

<!__ IR R R R R EEEEEEEEEEEEEEEEEEEEERREEEEEEEREREEEEEEREEEEEEEES] caS
<xsd: si npl eType name="enumtype">

<xsd: annot ati on>
<xsd: docunent ati on>

49

Metadata

publ i ¢ enum Enunilype {
ORDI

STRING |

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuner ati on val ue="ORDI NAL"/ >
<xsd: enuneration val ue="STRING'/ >
</ xsd:restriction>
</ xsd: si npl eType>

oo ok

<xsd: conpl exType name="many-t o-one">
<xsd: annot at | on>
<xsd: docunent ati on>

@arget ({ METHOD, FIELD}) @Retenti on(RUNTI MVE)
public @nterface ManyToOne {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default EAGER
bool ean optional () default true;

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: choi ce>
<xsd: el ement name="j oi n-col um" type="ormj oi n-col um"
m nCccur s="0" maxQOccur s="unbounded"/ >
<xsd: el enent nanme="joi n-tabl e" type="ormjoin-table"
m nCccurs="0"/>
</ xsd: choi ce>
<xsd: el ement name="cascade" type="orm cascade-type"
m nCccurs="0"/>
</ xsd: sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="target-entity" type="xsd:string"/>
<xsd:attribute name="fetch" type="ormfetch-type"/>
<xsd: attribute name="optional" type="xsd: bool ean"/>
</ xsd: conpl exType>

<l o Kkkkkkkkkkkhkhkhhhkkkkkkkkkkkkkkkkkkkkkkkkkokkokkokkk ok ok _ 5

<xsd: conpl exType name="cascade-type">
<xsd: annot at | on>
<xsd: docurent ati on>

public enum CascadeType { ALL, PERSI ST, MERGE, REMOVE, REFRESH};

</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement name="cascade-al|" type="orm enptyType"
m nCccurs="0"/>
<xsd: el enent nanme="cascade-persist" type="orm enptyType"
m nCccurs="0"/>
<xsd: el ement name="cascade-nmerge" type="orm enptyType"
m nCccurs="0"/>
<xsd: el enent nane="cascade-renove" type="orm enptyType"
m nCccurs="0"/>
<xsd: el ement name="cascade-refresh" type="orm enptyType"
m nCccurs="0"/>
</ xsd: sequence>
</ xsd: conpl exType>

<l o Kk kkkkkkkkkkkkkkkkkkkkkk ok ok ok ok kk ok ok ok ok ok ok ok ok ok ok kk ok ok kkkkkkkk _ 5

<xsd: conpl exType name="one-to-one">
<xsd: annot ati on>
<xsd: docurent ati on>

@rar get ({ METHOD, FI ELD}) @Rretenti on(RUNTI ME)
public @nterface OneToOne {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default EAGER
bool ean optional () default true;
String mappedBy() default "";
}

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: choi ce>
<xsd: el ement name="pri mary-key-j oi n-col um"
type="orm pri mary-key-j oi n- col um"
m nCccurs="0" maxQccur s="unbounded"/ >
<xsd: el enent nanme="j oi n- col um" type="ormj oi n-col um"
m nCccur s="0" maxQccur s="unbounded"/ >

50

Metadata

<xsd: el enent nanme="joi n-tabl e" type="ormjoin-table"
m nCccurs="0"/>
</ xsd: choi ce>
<xsd: el ement name="cascade" type="orm cascade-type"
m nCccurs="0"/>
</ xsd: sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="target-entity" type="xsd:string"/>
<xsd:attribute name="fetch" type="ormfetch-type"/>
<xsd:attribute name="optional" type="xsd: bool ean"/>
<xsd: attri bute name="mapped- by" type="xsd:string"/>
</ xsd: conpl exType>

oo ok

<xsd: conpl exType name="one-t o- many">
<xsd: annot at | on>
<xsd: docunent ati on>

@arget ({ METHOD, FIELD}) @Retenti on(RUNTI MVE)
public @nterface OneToMany {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default LAZY;
String mappedBy() default "";

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent nane="order-by" type="orm order-by"
m nCccurs="0"/>
<xsd: el ement name="map- key" type="orm map- key"
m nCccurs="0"/>
<xsd: choi ce>
<xsd: el ement name="j oi n-tabl e" type="ormj oi n-table"
m nCccurs="0"/>
<xsd: el ement name="j oi n-col um" type="ormj oi n-col um"
m nCccurs="0" maxQccur s="unbounded"/ >
</ xsd: choi ce>
<xsd: el ement name="cascade" type="orm cascade-type"
m nCccurs="0"/>
</ xsd: sequence>
<xsd: attri bute name="nanme" type="xsd:string" use="required"/>
<xsd:attribute name="target-entity" type="xsd:string"/>
<xsd:attribute name="fetch" type="ormfetch-type"/>
<xsd: attribute name="napped-by" type="xsd:string"/>
</ xsd: conpl exType>

<l o Kkkkkkkkkkkhkhhhhkhhkkkkkkkkkkkkkkkk ok ok kkkokkokkokkokkokkkkk 5

<xsd: conpl exType name="j oi n-tabl e">
<xsd: annot at on>
<xsd: docunent ati on>

@rarget ({ METHOD, FI ELD}) @Retenti on(RUNTI MVE)
public @nterface Joi nTabl e {
String name() default "";
String catal og() default "";
String schema() default "";
Joi nCol um[] joinColums() default {};
Joi nCol um[] 1nverseJoi nCol ums() default {};
Uni queConstraint[] uniqueConstraints() default {};

}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement nanme="j oi n-col um" type="ormj oi n-col um"
m nCccurs="0" maxQccur s="unbounded"/ >
<xsd: el ement name="inverse-j oi n-col um" type="ormj oi n-col um"
m nCccurs="0" maxQccur s="unbounded"/ >
<xsd: el ement name="uni que-constrai nt" type="orm uni que-constraint"
m nCccurs="0" maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd: attri bute name="catal og" type="xsd:string"/>
<xsd: attribute name="schemn" type="xsd:string"/>
</ xsd: conpl exType>

P R R L

<xsd: conpl exType name="many-t o- many" >
<xsd: annot ati on>
<xsd: docunent ati on>

@arget ({ METHOD, FIELD}) @Retenti on(RUNTI MVE)
public @nterface ManyToMany {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default LAZY;
String mappedBy() default "";

51

Metadata

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent nanme="order-by" type="orm order-by"
m nCccurs="0"/>
<xsd: el ement name="map- key" type="orm map-key"
m nCccurs="0"/>
<xsd: el ement name="j oi n-tabl e" type="ormj oi n-table"
m nCccurs="0"/>
<xsd: el ement name="cascade" type="orm cascade-type"
m nCccurs="0"/>
</ xsd: sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="target-entity" type="xsd:string"/>
<xsd:attribute name="fetch" type="ormfetch-type"/>
<xsd: attribute name="mapped- by" type="xsd:string"/>
</ xsd: conpl exType>

Qoo Kkkkkkkkkkkkkkkkkkkkkkhhkkkhkkkhkhhhhhhhhkhkkkkkkxkk __ 5

<xsd: conpl exType name="gener at ed-val ue" >
<xsd: annot ati on>
<xsd: docunent at i on>

@rar get ({ METHOD, FI ELD}) @Rretenti on(RUNTI ME)

public @nterface GeneratedVal ue {
CenerationType strategy() default AUTO
String generator() default "";

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:attribute name="strategy" type="orm generation-type"/>
<xsd: attribute name="generator" type="xsd:string"/>
</ xsd: conpl exType>

<l o Kkkkkkkkkkkkkkkkhkkkkkkhkkkkkkkkkkkk ok ok kkkokkokkok ok ok kk ok ok _ 5

<xsd: conpl exType name="map- key" >
<xsd: annot at | on>
<xsd: docurent ati on>

@rarget ({ METHOD, FI ELD}) @Retenti on(RUNTI MVE)
public @nterface MapKey {
String name() default "";

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:attribute name="name" type="xsd:string"/>
</ xsd: conpl exType>

<l o Kkkkkkkkkkkkkkkkkkkkkkkkkk ok ok ok ok ok ok kkkkkkkkkokkkkokkokkk ok ok _ 5

<xsd: si npl eType name="or der-by">
<xsd: annot ati on>
<xsd: docurent ati on>

@rarget ({ METHOD, FI ELD}) @Retenti on(RUNTI VE)
public @nterface O derB
String value() default "";

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:string"/>
</ xsd: si npl eType>

<l o Kk kkkkkkkkkkkkkkkkkkkkkk ok ok ok ok kk ok ok ok ok ok ok ok ok ok ok kk ok ok kkkkkkkk _ 5

<xsd: conpl exType name="i nheritance">
<xsd: annot ati on>
<xsd: docurent ati on>

@rarget ({TYPE}) @Retenti on(RUNTI ME)
public @nterface |nheritance {
I nheritanceType strategy() default SINGLE_TABLE;

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:attribute name="strategy" type="orminheritance-type"/>
</ xsd: conpl exType>

Qoo Kkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkhhhkkhhhkhkhkkkkkkxkk __ 5

<xsd: si npl eType nanme="inheritance-type">
<xsd: annot ati on>
<xsd: docunent ati on>

public enum I nheritanceType
{ SINGLE_TABLE, JO NED, TABLE_PER CLASS};

52

Metadata

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuneration val ue="SI NGLE_TABLE"/ >
<xsd: enuneration val ue="JO NED'/ >
<xsd: enuner ati on val ue="TABLE_PER _CLASS"/ >
</xsd:restriction>
</ xsd: si npl eType>

Clow KkkkkkkkkXkkkkkhhkkkkkkhkkkkkk kX hkkkhhkkkhkkkkkkxkk __ 5

<xsd: si npl eType nane="di scri ni nator-val ue">
<xsd: annotati on>
<xsd: docunent at i on>

@arget ({ TYPE}) @Ret enti on(RUNTI ME)
public @nterface DiscrimnatorVal ue {
String val ue();

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:string"/>
</ xsd: si npl eType>

P L L

<xsd: si npl eType name="di scri m nator-type">
<xsd: annot ati on>
<xsd: docunent at i on>

public enum Di scrimnator Type { STRING CHAR, |NTEGER };

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd:restriction base="xsd:token">
<xsd: enuner ati on val ue="STRI NG'/ >
<xsd: enuneration val ue="CHAR'/ >
<xsd: enuneration val ue="| NTEGER'/ >

</xsd:restriction>

</ xsd: si npl eType>

QI oe Kkkkkkkkk Xk k kA hk kX kh kA kkkkkk kX hk ok khhkkkhkkkkkkxkk __ 5

<xsd: conpl exType name="pri mary-key-j oi n-col um">
<xsd: annot ati on>
<xsd: docunent at i on>

@arget ({ TYPE, METHOD, FIELD}) @Retenti on(RUNTI MVE)
public @nterface PrimaryKeyJoi nCol um {
String name() default "";
String referencedCol umNane() defaul t
String columbDefinition() default "";

’

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:attribute name="name" type="xsd:string"/>
<xsd: attribute name="ref erenced- col um-nanme" type="xsd:string"/>
<xsd:attribute name="col um-definition" type="xsd:string"/>
</ xsd: conpl exType>

P L

<xsd: conpl exType nanme="di scri nmi nat or - col um" >
<xsd: annot ation>
<xsd: docunent ati on>

@arget ({ TYPE}) @Ret enti on(RUNTI ME)
public @nterface DiscrimnatorColum {
String name() default "DTYPE";
Di scrim nator Type di scrimnatorType() default STRING
String columbDefinition() default "";
int length() default 31;

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:attribute name="name" type="xsd:string"/>
<xsd: attri bute name="di scri mnator-type" type="ormdiscrim nator-type"/>
<xsd: attri bute name="col um-definition" type="xsd:string"/>
<xsd:attribute name="I|ength" type="xsd:int"/>
</ xsd: conpl exType>

Qoo Kkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkhhhkkhhhkhkhkkkkkkxkk __ 5

<xsd: conpl exType nanme="enbeddabl e">
<xsd: annot ati on>
<xsd: docunent ati on>

Defines the settings and mappi ngs for enbeddabl e objects. Is
al lowed to be sparsely popul ated and used in conjunction with

53

Metadata

the annotations. Alternatively, the netadata-conplete attribute
can be used to indicate that no annotations are to be processed
inthe class. If this is the case then the defaulting rules will
be recursively appli ed.

@rarget ({TYPE}) @Ret enti on(RUNTI ME)
public @nterface Enbeddable {}

</ xsd: docunent at i on>

</ xsd: annot at i on>

<xsd: sequence>
<xsd: el ement name="description" type="xsd:string" m nCccurs="0"/>
<xsd: el ement name="attributes" type="orm enbeddabl e-attributes"

m nCccurs="0"/>

</ xsd: sequence>

<xsd:attribute name="cl ass" type="xsd:string" use="required"/>

<xsd:attribute name="access" type="orm access-type"/>

<xsd: attribute name="netadat a- conpl ete" type="xsd: bool ean"/>

</ xsd: conpl exType>

<l o Kkkkkkkkkkkkhhhhkhhhkkkkkk ok ok ok ok ok ok ok ok ok ok ok ok ok kkkkkkkokkkkokkk _ 5

<xsd: conpl exType nanme="enbeddabl e-attributes">
<xsd: sequence>
<xsd: el ement name="basi c" type="orm basic"
m nCccurs="0" maxQccur s="unbounded"/ >
<xsd: el ement name="transi ent" type="ormtransient"
m nCccurs="0" maxQccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>

QI oo Kkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkkhhkkhhhkkkhkkkkkkxkk __ 5

<xsd: conpl exType nanme="enbedded" >
<xsd: annot ati on>
<xsd: docunent at i on>

@arget ({ METHOD, FIELD}) @Retenti on(RUNTI MVE)
public @nterface Enbedded {}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="attribute-override" type="ormattribute-override"
m nCccurs="0" maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="nanme" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<l o Kkkkkkkkkkkhkhhhhkhhkkkkkkkkkkkkkkkk ok ok kkkokkokkokkokkokkkkk 5

<xsd: conpl exType nanme="nmapped- supercl ass" >
<xsd: annot at on>
<xsd: docunent ati on>

Defines the settings and mappi ngs for a mapped superclass. |s

all owed to be sparsely popul ated and used i n conjunction with

the annotations. Alternatively, the netadata-conplete attribute
can be used to indicate that no annotations are to be processed
If this is the case then the defaulting rules will be recursively
appl i ed.

@rar get (TYPE) @Ret enti on(RUNTI ME)
public @nterface MappedSupercl ass{}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string" m nCccurs="0"/>
<xsd: el ement name="id-cl ass" type="ormid-class" m nQOccurs="0"/>
<xsd: el ement name="excl ude-defaul t-1isteners" type="orm enptyType"
m nCccurs="0"/>
<xsd: el ement name="excl ude-supercl ass-1isteners" type="orm enptyType"
m nCccurs="0"/>
<xsd: el ement name="entity-listeners" type="ormentity-Iisteners”
m nCccurs="0"/>
<xsd: el ement name="pre-persist" type="orm pre-persist" mnQccurs="0"/>
<xsd: el ement name="post-persist" type="orm post-persist"
m nCccurs="0"/>
<xsd: el enent nanme="pre-renpve" type="orm pre-renove" m nCccurs="0"/>
<xsd: el ement name="post-renove" type="orm post-renmove" mi nQccurs="0"/>
<xsd: el ement name="pre-update" type="orm pre-update" m nOccurs="0"/>
<xsd: el ement name="post-update" type="orm post-update" m nOccurs="0"/>
<xsd: el enent nane="post-| oad" type="orm post-|oad" m nCccurs="0"/>
<xsd: el ement name="attributes" type="ormattributes" m nQccurs="0"/>
</ xsd: sequence>
<xsd:attribute name="cl ass" type="xsd:string" use="required"/>
<xsd:attribute name="access" type="orm access-type"/>
<xsd: attribute name="net adat a- conpl ete" type="xsd: bool ean"/ >
</ xsd: conpl exType>

<l o Kkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkk ok ok kk ok ok kkkok ok ok kk ok ok _ 5

Metadata

<xsd: conpl exType name="sequence-generator">
<xsd: annotation>
<xsd: docunent ati on>

@rarget ({ TYPE, METHOD, FIELD}) @Rretention(RUNTI ME)
public @nterface SequenceCenerator {

String name();

String sequenceNane() default "";

int initialValue() default 1;

int allocationSize() default 50;

}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: attri bute name="nanme" type="xsd:string" use="required"/>
<xsd: attribute name="sequence- nane" type="xsd:string"/>
<xsd:attribute name="initial-value" type="xsd:int"/>
<xsd:attribute name="al | ocation-size" type="xsd:int"/>
</ xsd: conpl exType>

<l o Kkkkkkkkkkkkhhhhkhhhkkkkkk ok ok ok ok ok ok ok ok ok ok ok ok ok kkkkkkkokkkkokkk _ 5

<xsd: conpl exType name="t abl e- generat or">
<xsd: annot at on>
<xsd: docunent ati on>

@arget ({TYPE, METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface Tabl eGenerator {

String name();

String table() default "";

String catal og() default "";

String schema() default "";

String pkCol umNane() default "";

String val ueCol umNane() default "

String pkCol umvVval ue() default "";

int initialValue() default O;

int allocationSize() default 50;

Uni queConstraint[] uniqueConstraints() default {};

}

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>

<xsd: el ement name="uni que-constrai nt" type="orm uni que-constraint"

m nCccurs="0" maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd: attribute name="tabl e" type="xsd:string"/>
<xsd:attri bute name="catal og" type="xsd:string"/>
<xsd:attribute name="schemn" type="xsd:string"/>
<xsd: attribute name="pk-col um-nane" type="xsd:string"/>
<xsd: attri bute name="val ue-col um- nane" type="xsd:string"/>
<xsd:attribute name="pk-col um-val ue" type="xsd:string"/>
<xsd:attribute name="1nitial-val ue" type="xsd:int"/>
<xsd:attribute name="al | ocation-size" type="xsd:int"/>
</ xsd: conpl exType>

</ xsd: schema>

5.4.

Conclusion

That exhausts persistence metadata annotations. We present the class definitions for our sample model below:

Example 5.2. Complete Metadata

package org. nag;

@ntity
@ dCl ass(Magazi ne. Magazi nel d. cl ass)
public class Magazine {

@d private String isbn;
@d private String title;
@/ersion private int version;

private double price; /|l defaults to @Basic
private int copiesSold; // defaults to @Basic

@neToOne(f et ch=Fet chType. LAZY,

55

Metadata

}

cascade={ CascadeType. PERS| ST, CascadeType. REMOVE})
private Article coverArticle;

@neToMany(cascade={ CascadeType. PERSI ST, CascadeType. REMOVE})
@ der By
private Collection<Article> articles;

@manyToOne(f et ch=Fet chType. LAZY, cascade=CascadeType. PERSI ST)
private Conpany publisher;

@ransient private byte[] data;

public static class Magazineld {

}

@ntity
public class Article {

@d private long id;
@/ersion private int version;

private String title; // defaults to @asic
private byte[] content; // defaults to @Basic

@mnyToMany(cascade=CascadeType. PERS| ST)
@ derBy("l ast Name, firstNane")
private Col | ection<Aut hor> aut hors;

package org. mag. pub;

@ntity
public class Conpany {

}

@d private long id;
@/ersion private int version;

private String nane; // defaults to @Basic
private double revenue; // defaults to @asic
private Address address; // defaults to @nbedded

@neToMany(mappedBy="publ i sher", cascade=CascadeType. PERSI ST)
private Col | ecti on<Magazi ne> mags;

@neToMany(cascade={ CascadeType. PERS| ST, CascadeType. REMOVE})
private Collection<Subscription> subscriptions;

@ntity
public class Author {

}

@d private long id;
@/ersion private int version;

private String firstNane; // defaults to @Basic
private double lastName; // defaults to @Basic
private Address address; // defaults to @nbedded

@anyToMany(mnappedBy="aut hors", cascade=CascadeType. PERSI ST)
private Collection<Article> arts;

@nbeddabl e
public class Address {

private String street;
private String city;
private String state;
private String zip;

defaults to @asic
defaults to @Basic
defaults to @Basic
defaults to @Basic

—~——
—~———

package org. mag. subscri be;

@bppedSuper cl ass
public abstract class Docunent {

@d private long id;
@/ersion private int version;

56

Metadata

}

@ntity

public class Contract
extends Docunent {

private String terms; // defaults to @Basic

}

@ntity
public class Subscription {

@d private long id;
@/ersion private int version;

private Date startDate; // defaults to @Basic
private double paynment; // defaults to @Basic

@neToMany(cascade={ CascadeType. PERSI ST, CascadeType. REMOVE})
@bpKey(name="nunt')
private Map<Long, L| nelten> |ineltens;

@ntity
public static class Lineltem
extends Contract

private String comments; // defaults to @Basic

private double price; // defaults to @Basic
private | ong num /1 defaults to @Basic
@manyToOne

private Magazi ne magazi ne;

}

@Entity(name="Lifetine")
public class LifetineSubscription
ext ends Subscription {

@Basi c(f et ch=Fet chType. LAZY)
private bool ean getEliteC ub() }
public void setElited ub(bool ean ellte) { ...}

}

@ntity(name="Trial")
public class Trial Subscription
extends Subscription {

public Date getEndDate() {
public void set EndDate(Date end) { . }

The same metadata declarationsin XML :

<entity- mappi ngs>
<l-- declares a default access type for all entities -->
<access-type>Fl ELD</ access-type>
<mapped- super cl ass cl ass="or g. mag. subscri be. Docunent " >
<attributes>
<id name="id">
<gener at ed- val ue strategy="1DENTITY"/>
</id>
<versi on name="version"/>
</attributes>
</ mapped- super cl ass>
<entity cl ass="org.mg. Magazi ne">
<i d-cl ass="or g. mag. Magazi ne$Magazi nel d"/ >
<attributes>
<id name="isbn"/>
<id name="title"/>
<basi ¢ name="nane"/ >
<basi c name="price"/>
<basi ¢ name="copi esSol d"/ >
<versi on name="version"/>
<many-t o- one name="publisher" fetch="LAZY">

57

Metadata

<cascade>
<cascade- persi st/ >
</ cascade>
</ many-t o- one>
<one-to-nmany name="articl es">
<order - by/ >
<cascade>
<cascade- persi st/ >
<cascade-renove/ >
</ cascade>
</ one-t o- many>
<one-to0-one name="coverArticle" fetch="LAZY">
<cascade>
<cascade- persi st/ >
<cascade-renove/ >
</ cascade>
</ one-t 0- one>
<transi ent nanme="data"/>
</attributes>
</entity>
<entity class="org.mg. Article">
<attributes>
<id name="id"/>
<basi ¢ name="title"/>
<basi ¢ name="content"/>
<versi on name="version"/>
<many-to-many name="articl es">
<order - by>l ast Nane, firstNane</order-by>
</ many-t o- many>
</attributes>
</entity>
<entity class="org. mag. pub. Conpany" >
<attributes>
<id name="id"/>
<basi ¢ nane="nane"/ >
<basi ¢ nane="revenue"/>
<versi on name="version"/>
<one-to-many name="mags" mapped- by="publ i sher">
<cascade>
<cascade- persi st/ >
</ cascade>
</ one-t o- many>
<one-to-many nane="subscri ptions">
<cascade>
<cascade- persi st/ >
<cascade-renove/ >
</ cascade>
</ one-t o- many>
</attributes>
</entity>
<entity class="org. mag. pub. Aut hor">
<attributes>
<id name="id"/>
<basi ¢ name="first Name"/>
<basi ¢ nanme="| ast Nane"/ >
<versi on name="version"/>
<many-to-many name="arts" mapped-by="aut hors">
<cascade>
<cascade- persi st/ >
</ cascade>
</ many-t o- many>
</attributes>
</entity>
<entity class="org. mg. subcribe. Contract">
<attributes>
<basi ¢ name="terns"/>
</attributes>
</entity>
<entity class="org. mg. subcribe. Subscription">
<attributes>
<id name="id"/>
<basi ¢ nane="paynent"/>
<basi c nane="startDate"/>
<versi on name="version"/>
<one-to-many name="itens">
<map- key name="nunt >
<cascade>
<cascade- persi st/ >
<cascade-renove/ >
</ cascade>
</ one-t o- many>
</attributes>
</entity>
<entity class="org. mag. subscribe. Subscri ption. Li nel tent >
<attributes>
<basi ¢ name="coments"/ >
<basi ¢ name="price"/>
<basi ¢ name="nunt'/>
<many-t o- one nane="nmagazi ne"/>
</attributes>
</entity>
<entity class="org. mag. subscribe. Lifeti meSubscri ption" name="Lifetime"
access="PROPERTY" >

58

Metadata

<attributes>
<basi c nane="eliteC ub" fetch="LAZY"/>
</attributes>
</entity>
<entity class="org. mag. subscribe. Tri al Subscri ption" name="Trial ">
<attributes>
<basi ¢ nane="endDate"/>
</attributes>
</entity>
<enbeddabl e cl ass="org. mag. pub. Addr ess" >
<attributes>
<basi ¢ name="street"/>
<basi ¢ name="city"/>
<basi c nane="state"/>
<basi ¢ name="zip"/>
</attributes>
</ enbeddabl e>
</ entity-nmappi ngs>

Chapter 12, Mapping Metadata [117Aill show you how to map your persistent classes to the datastore using additional annota-
tions and XML markup. First, however, we turn to the JPA runtime APIs.

59

Chapter 6. Persistence

javax.persistence

Persistence

+ createEntityManagerFactory{String): EntityManagerFactory
+ createEntityManagerFactory(String, Map): EntityManagerFactory

OpenJPA also includes the OpenJPAPer si st ence helper class to provide additional utility methods.

Within a container, you will typically use injection to accessan Ent i t yManager Fact or y. Applications operating of acon-
tainer, however, can use the Per si st ence classto obtain Ent i t yManager Fact or y objectsin avendor-neutral fashion.

public static EntityManager Factory createEntityManager Factory(String nane);
public static EntityManagerFactory createEntityManagerFactory(String name, Map props);

6.1.

Each cr eat eEnt i t yManager Fact or y method searches the system for an Ent i t yManager Fact or y definition with the
given name. Usenul | for an unnamed factory. The optional map contains vendor-specific property settings used to further con-
figure the factory.

per si st ence. xnl filesdefineEnt i t yManager Fact ori es. Thecr eat eEnti t yManager Fact ory methods search
for per si st ence. xm fileswithinthe META- | NF directory of any CLASSPATH element. For example, if your
CLASSPATH contains the conf directory, you could placean Ent i t yManager Fact or y definitioninconf/

META- | NF/ per si st ence. xm .

persistence.xml

Theper si st ence. xm fileformat obeys the following Document Type Descriptor (DTD):

<! ELEMENT persi stence (persistence-unit*)>

<! ELEMENT persi stence-unit (description?, provider?,jta-data-source?,
non-jta-dat a-source?, (class|jar-file|mapping-file)*,
excl ude-unli st ed-cl asses?, properties?)>

<! ATTLI ST persi stence-unit name CDATA #REQUI RED>

<! ATTLI ST persi stence-unit transaction-type (JTA RESOURCE_LOCAL) "JTA">

<! ELEMENT descri ption (#PCDATA) >

<! ELEMENT provi der (#PCDATA) >

<! ELEMENT |t a- dat a- sour ce (#PCDATA) >

<! ELEMENT non-jta- dat a-source (#PCDATA)>

<! ELEMENT nappi ng-file (#PCDATA)>

<! ELEMENT jar-file (#PCDATA)>

<! ELEMENT cl ass (#PCDATA) >

<! ELEMENT excl ude-unli st ed-cl asses EMPTY>

<! ELEMENT properties (property*)>

<I ELEVENT property EMPTY>

<! ATTLI ST property name CDATA #REQUI RED>

<! ATTLI ST property val ue CDATA #REQUI RED>

Theroot element of aper si st ence. xm fileisper si st ence, which then contains one or more per si st ence- uni t
definitions. Each persistence unit describes the configuration for the entity managers created by the persistence unit's entity man-
ager factory. The persistence unit can specify these elements and attribtues.

60

../javadoc/org/apache/openjpa/persistence/OpenJPAPersistence.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Persistence.html

Persistence

» nane: Thisisthe nameyou passto the Per si st ence. cr eat eEnt i t yManager Fact or y methods described above.
The name attribute is required.

e transacti on-t ype: Whether to use managed (JTA) or local (RESOURCE_L OCAL) transaction management.

» provi der: If you are using athird-party JPA vendor, this element names its implementation of the Per si st encePr o-
Vi der bootstrapping interface.

Set thepr ovi der toor g. apache. openj pa. per si st ence. Per si st encePr ovi der | npl to use OpenJPA.

* jta-data-source: TheNDI name of aJDBC Dat aSour ce that isautomaticaly enlisted in JTA transactions. This may
be an XA Dat aSour ce.

* non-jta-data- source: The INDI name of aJDBC Dat aSour ce that is not enlisted in JTA transactions.

» mappi ng- f il e*: Theresource names of XML mapping files for entities and embeddable classes. Y ou can also specify map-
ping information inan or m xm fileinyour META- | NF directory. If present, theor m xm mapping file will be read auto-
matically.

e jar-fil e*: Thenamesof jar files containing entities and embeddable classes. The implementation will scan the jar for an-
notated classes.

e cl ass*: Theclass names of entities and embeddabl e classes.

» properties: Thiselement contains nested pr operty elements used to specify vendor-specific settings. Each pr operty
has a name attribute and a value attribute.

The Reference Guide's Chapter 2, Configuration [175jescribes OpenJPA's configuration properties.

Hereisatypical per si st ence. xnl filefor anon-EE environment:

Example 6.1. persistence.xml

<?xm version="1.0"?>
<persi stence>
<persi st ence-unit nanme="openj pa">
<provi der >or g. apache. openj pa. per si st ence. Per si st encePr ovi der | npl </ pr ovi der >
<cl ass>tutorial . Ani mal </ cl ass>
<cl ass>tutorial . Dog</cl ass>
<cl ass>tutorial . Rabbit</cl ass>
<cl ass>tutorial . Snake</cl ass>
<properties>
<property name="openj pa. Connecti onURL" val ue="j dbc: hsql db: tut ori al _dat abase"/>
<property name="openj pa. Connecti onDri ver Nane" val ue="org. hsql db. j dbcDri ver"/>
<property name="openj pa. Connecti onUser Nane" val ue="sa"/>
<property name="openj pa. Connecti onPassword" val ue=""/>
<property nanme="openj pa. Log" val ue="Def aul t Level =WARN, Tool =I NFO'/ >
</ properties>
</ per si st ence- uni t >
</ persi st ence>

61

http://java.sun.com/javaee/5/docs/api/javax/persistence/spi/PersistenceProvider.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/spi/PersistenceProvider.html

Persistence

Non-EE Use

The example below demonstrates the Per si st ence classin action. Y ou will typically execute code like this on application
startup, then cache the resulting factory for future use. This bootstrapping code is only necessary in non-EE environments; in an
EE environment Ent i t yManager Fact ori es aretypically injected.

Example 6.2. Obtaining an EntityManager Factory

/1 if your persistence.xm file does not contain all settings already, you
/] can add vendor settings to a map
Properties props = new Properties();

/| create the factory defined by the "openjpa" entity-nmanager entry
EntityManager Factory enf = Persistence. createEntityManager Factory("openjpa", props);

62

Chapter 7. EntityManagerFactory

javax.persistence

EntityManagerFaciory

- createEntityManager(): EntityManager
- createEntityManager(Map) Type: EntityManager

- isOpen(): boolean
- close()

TheEnt i t yManager Fact ory createsEnt i t yManager instances for application use.

OpenJPA extends the standard Ent i t yManager Fact or y interface with the OpenJPAENt i t yManager Fact ory
to provide additional functionality.

7.1. Obtaining an EntityManagerFactory

Within a container, you will typically useinjection to accessan Ent i t yManager Fact or y. There are, however, aternative
mechanismsfor Ent i t yManager Fact or y construction.

Some vendors may supply public constructors for their Ent i t yManager Fact or y implementations, but we recommend using
the Java Connector Architecture (JCA) in a managed environment, or the Per si st ence class cr eat eEnt i t yManager -
Fact ory methodsin an unmanaged environment, as described in Chapter 6, Persistence [60]. These strategies allow vendors
to pool factories, cutting down on resource utilization.

JPA alowsyou to create and configure an Ent i t yManager Fact or y, then store it in a Java Naming and Directory Interface
(JNDI) treefor later retrieval and use.

7.2. Obtaining EntityManagers

public EntityManager createEntityManager();
public EntityManager createEntityManager(Map map);

Thetwocr eat eEnt i t yManager methods above create anew Ent i t yManager each timethey areinvoked. The optional
Map is used to to supply vendor-specific settings. If you have configured your implementation for JTA transactions and a JTA
transaction is active, thereturned Ent i t yManager will be synchronized with that transaction.

OpenJPA recognizes the following string keys in the map supplied to cr eat eEnt i t yManager :

e openj pa. Connecti onUser Nane

e openj pa. Connect i onPasswor d

63

../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManagerFactory.html

7.3.

EntityManagerFactory

e openj pa. Connect i onRet ai nMbde

e openj pa. Transact i onMbde

e openj pa. <pr opert y>, where <property> is any JavaBean property of the
or g. apache. openj pa. per si st ence. OpenJPAENt i t yManager .

The last option uses reflection to configure any property of OpenJPA's Ent i t yManager implementation with the
value supplied in your map. The first options correspond exactly to the same-named OpenJPA configuration keys de-
scribed in Chapter 2, Configuration [175)f the Reference Guide.

Persistence Context

7.3.1.

A persistence context is a set of entities such that for any persistent identity there is a unique entity instance. Within a persistence
context, entities are managed. The Ent i t yManager controlstheir lifecycle, and they can access datastore resources.

When a persistence context ends, previously-managed entities become detached. A detached entity is no longer under the control

of theEnt i t yManager , and no longer has access to datastore resources. We discuss detachment in detail in Section 8.2, “ En-
tity Lifecycle Management " [68] For now, it is sufficient to know that detachment has two obvious consequences:

1. The detached entity cannot load any additional persistent state.

2. TheEnt i t yManager will not return the detached entity from f i nd, nor will queries include the detached entity in their res-

ults. Instead, f i nd method invocations and query executions that would normally incorporate the detached entity will create a
new managed entity with the same identity.

OpenJPA offers several features related to detaching entities. See Section 11.1, “ Detach and Attach ” [311ih the Refer-
ence Guide. Section 11.1.3, “ Defining the Detached Object Graph ” [314h particular describes how to use the De-
t achSt at e setting to boost the performance of merging detached entities.

Injected Ent i t yManager s have atransaction persistence context, while Ent i t yManager s obtained throughthe Ent i t y-
Manager Fact or y have an extended persistence context. We describe these persistence context types below.

Transaction Persistence Context

Under the transaction persistence context model, an Ent i t yManager beginsanew persistence context with each transaction,
and ends the context when the transaction commits or rolls back. Within the transaction, entities you retrieve through the En-
tityManager orviaQueri es are managed entities. They can access datastore resources to lazy-load additional persistent
state as needed, and only one entity may exist for any persistent identity.

When the transaction completes, all entities|ose their association with the Ent i t yManager and become detached. Traversing a
persistent field that wasn't already |oaded now has undefined results. And using the Ent i t yManager or aQuery to retrieve
additional objects may now create new instances with the same persistent identities as detached instances.

If youusean Ent i t yManager with atransaction persistence context model outside of an active transaction, each method in-
vocation creates a new persistence context, performs the method action, and ends the persistence context. For example, consider
usingthe Ent i t yManager . f i nd method outside of atransaction. The Ent i t yManager will create atemporary persistence
context, perform the find operation, end the persistence context, and return the detached result object to you. A second call with
the sameid will return a second detached object.

../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html

EntityManagerFactory

When the next transaction begins, the Ent i t yManager will begin anew persistence context, and will again start returning
managed entities. Asyou'll seein Chapter 8, EntityManager [67] you can also merge the previously-detached entites back into
the new persistence context.

Example 7.1. Behavior of Transaction Persistence Context

The following code illustrates the behavior of entitesunder an Ent i t yManager using atransaction persistence context.

EntityManager em // injected

/] outside a transaction:

/1 each operation occurs in a separate persistence context, and returns
// a new detached instance

Magazi ne magl = em fi nd(Magazi ne. cl ass, magld);

Magazi ne mag2 = em fi nd(Magazi ne. cl ass, magld);

assert True(mag2 ! = magl);

/'l transaction begins:

/ within a transaction, a subsequent |ookup doesn't return any of the
/ detached objects. however, two | ookups within the sane transaction
/ return the sane instance, because the persistence context spans the
/ transaction

Magazi ne mag3 = em find(Mugazi ne. cl ass, magld);

assert True(mag3 ! = magl && neg3 != mag2);

Magazi ne mag4 = em find(Magazi ne. cl ass (nmagld);

assert True(mag4 == mag3);

/'l transaction commits:
// once again, each operation returns a new i nstance

Magazi ne mag5 = em find(Mgazi ne. cl ass, magld);
assert True(mag5 ! = mag3);

7.3.2. Extended Persistence Context

AnEntityManager using an extended persistence context maintains the same persistence context for its entire lifecycle.
Whether inside atransaction or not, all entitiesreturned fromthe Ent i t yManager are managed, andthe Enti t yManager
never creates two entity instances to represent the same persistent identity. Entities only become detached when you finally close
the Ent i t yManager (or when they are serialized).

Example 7.2. Behavior of Extended Persistence Context

The following code illustrates the behavior of entitesunder an Ent i t yManager using an extended persistence context.

EntityManager Factory enf = ...
EntityManager em = enf.createEntityManager();

/| persistence context active for entire life of EM so only one entity
/] for a given persistent identity

Magazi ne magl = em fi nd(Magazi ne. cl ass, magld);

Magazi ne mag2 = em find(Magazi ne. cl ass, magld);

assert True(mag2 == magl);

em get Transacti on(). begi n();

/| same persistence context active within the transaction
Magazi ne mag3 = em find(Mugazi ne. cl ass, magld);

assert True(mag3 == ;

Magazi ne mag4 = em find(Magazi ne. cl ass (magld);

assert True(mag4 == magl);

em get Transaction.commit ();

65

EntityManagerFactory

/] when the transaction commits, instance still nanaged
Magazi ne mag5 = em find(Magazi ne. cl ass, magld);
assert True(mag5 == magl);

/'l instance finally becones detached when EM cl oses
em cl ose();

1.4,

Closing the EntityManagerFactory

publ i c bool ean i sOpen ();
public void close ();

Enti t yManager Fact ory instances are heavyweight objects. Each factory might maintain a metadata cache, object state
cache, Ent i t yManager pool, connection pool, and more. If your application no longer needsan Ent i t yManager Fact ory,
you should closeit to free these resources. When an Ent i t yManager Fact ory closes, al Ent i t yManager sfrom that fact-
ory, and by extension all entities managed by those Ent i t yManager s, become invalid. Attempting to closean Ent i t yMan-
ager Fact or y while one or more of itsEnt i t yManager shas an active transaction may resultinan | | | egal St at eEx-
ception.

Closingan Ent i t yManager Fact or y should not be taken lightly. It is much better to keep afactory open for along period of
time than to repeatedly create and close new factories. Thus, most applications will never close the factory, or only close it when
the application is exiting. Only applications that require multiple factories with different configurations have an obvious reason to
create and close multiple Ent i t yManager Fact ory instances. Once afactory is closed, al methods except i sQpen throw
anl || egal StateException.

66

Chapter 8. EntityManager

8.1.

javax.persistence

EntityMa
- FlushMode: FlushModeType
- getTransaction(): Entity Transaction

- persist{Object)

- remove(Object)

- refresh{Object)

- merge(Object): Object

- lock(Object, LockModeType)

- find(Class<T=, Object): T
- getReference(Class<T>, Object): T
- contains{Object): boolean

- fiushy)
- clear()

- createQuery(String): Query
- createNamedQuery(String): Query
- createNativeQuery(...): Query

- is0pen(): boolean
- close()

The diagram above presents an overview of the Ent i t yManager interface. For a complete treatment of the Ent i t yMan-
ager API, seethe Javadoc documentation. Methods whose parameter signatures consist of an ellipsis(...) are overloaded to take
multiple parameter types.

OpenJPA extends the standard Ent i t yManager interface with the
or g. apache. openj pa. persi st ence. OpenJPAENt i t yManager interface to provide additional functional-

ity.

TheEnt i t yManager isthe primary interface used by application devel opers to interact with the JPA runtime. The methods of
the Ent i t yManager can be divided into the following functional categories:

* Transact i on association.

Entity lifecycle management.
« Entity identity management.
» Cache management.

* Query factory.

» Closing.

Transaction Association

67

http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html

EntityManager

public EntityTransacti on getTransaction ();

8.2.

Every Ent i t yManager hasaone-to-onerelation withan Ent i t yTr ansact i on instance. In fact, many vendors use asingle
classto implement both the Ent i t yManager andEnti t yTransacti on interfaces. If your application requires multiple
concurrent transactions, you will use multiple Ent i t yManager s.

You canretrievethe Ent i t yTr ansact i on associated with an Ent i t yManager throughtheget Tr ansact i on method.
Note that most JPA implementations can integrate with an application server's managed transactions. If you take advantage of
this feature, you will control transactions by declarative demarcation or through the Java Transaction APl (JTA) rather than
through the Ent i t yTr ansact i on.

Entity Lifecycle Management

Ent i t yManager s perform several actions that affect the lifecycle state of entity instances.

public void persist(Qbject entity);

Transitions new instances to managed. On the next flush or commit, the newly persisted instances will be inserted into the data-
store.

For agiven entity A, the per si st method behaves as follows:

» If Aisanew entity, it becomes managed.
 If Aisan existing managed entity, it isignored. However, the persist operation cascades as defined below.

» If Aisaremoved entity, it becomes managed.

If Aisadetached entity, an |l | | egal Ar gunent Except i on isthrown.

» The persist operation recurses on al relation fields of A whose cascadesinclude CascadeType. PERSI ST.

This action can only be used in the context of an active transaction.

public void renove(Object entity);

Transitions managed instances to removed. The instances will be deleted from the datastore on the next flush or commit. Access-
ing aremoved entity has undefined results.

For agiven entity A, ther enbve method behaves as follows:

« If Aisanew entity, it isignored. However, the remove operation cascades as defined below.
 If Aisan existing managed entity, it becomes removed.

» If Aisaremoved entity, it isignored.

68

EntityManager

» If Aisadetached entity, an| | | egal Ar gunent Except i on isthrown.

» Theremove operation recurses on all relation fields of A whose cascadesinclude CascadeType. REMOVE.

This action can only be used in the context of an active transaction.

public void refresh(Cbject entity);

Usether ef r esh action to make sure the persistent state of an instance is synchronized with the values in the datastore. r e-
f r esh isintended for long-running optimistic transactions in which there is a danger of seeing stale data.

For agiven entity A, ther ef r esh method behaves as follows:

» If Aisanew entity, it isignored. However, the refresh operation cascades as defined below.
 If Aisan existing managed entity, its state is refreshed from the datastore.

» If Aisaremoved entity, it isignored.

If Aisadetached entity, an| | | egal Ar gunent Except i on isthrown.

The refresh operation recurses on all relation fields of A whose cascadesinclude CascadeType. REFRESH.

public Cbject nerge(Cbject entity);

A common use case for an application running in a servlet or application server isto "detach” objects from all server resources,
modify them, and then "attach" them again. For example, a servliet might store persistent datain a user session between a modi-
fication based on a series of web forms. Between each form request, the web container might decide to serialize the session, re-
quiring that the stored persistent state be disassociated from any other resources. Similarly, a client/server application might trans-
fer persistent objectsto a client via seriaization, alow the client to modify their state, and then have the client return the modified
datain order to be saved. This is sometimes referred to as the data transfer object or value object pattern, and it allows fine-
grained manipulation of data objects without incurring the overhead of multiple remote method invocations.

JPA provides support for this pattern by automatically detaching entities when they are serialized or when a persistence context
ends (see Section 7.3, “ Persistence Context ” [64] for an exploration of persistence contexts). The JPA merge API re-attaches
detached entities. This allows you to detach a persistent instance, modify the detached instance offline, and merge the instance
back intoan Ent i t yManager (either the same one that detached the instance, or a new one). The changes will then be applied
to the existing instance from the datastore.

A detached entity maintains its persistent identity, but cannot load additional state from the datastore. Accessing any persistent
field or property that was not loaded at the time of detachment has undefined results. Also, be sure not to alter the version or iden-
tity fields of detached instances if you plan on merging them later.

The ner ge method returns a managed copy of the given detached entity. Changes made to the persistent state of the detached
entity are applied to this managed instance. Because merging involves changing persistent state, you can only merge within a
transaction.

If you attempt to merge an instance whose representation has changed in the datastore since detachment, the merge operation will
throw an exception, or the transaction in which you perform the merge will fail on commit, just asif anormal optimistic conflict
were detected.

69

EntityManager

OpenJPA offers enhancements to JPA detachment functionality, including additional options to control which fields are
detached. See Section 11.1, “ Detach and Attach ” [311ih the Reference Guide for details.

For agiven entity A, the mer ge method behaves as follows:

» If Aisadetached entity, its stateis copied into existing managed instance A' of the same entity identity, or a new managed
copy of Aiscreated.

« If Aisanew entity, anew managed entity A' is created and the state of Aiscopiedinto A" .

 If Aisan existing managed entity, it isignored. However, the merge operation still cascades as defined below.

« If Aisaremoved entity, an | | | egal Ar gunment Except i on isthrown.

» The merge operation recurses on all relation fields of A whose cascadesinclude CascadeType. MERGE.

public void lock (Object entity, LockMddeType node);

This method locks the given entity using the named mode. Thej avax. per si st ence. LockMbdeType enum definestwo
modes:

» READ: Other transactions may concurrently read the object, but cannot concurrently update it.

* VWRI TE: Other transactions cannot concurrently read or write the object. When a transaction is committed that holds WRITE
locks on any entites, those entites will have their version incremented even if the entities themselves did not change in the
transaction.

OpenJPA has additional APIs for controlling object locking. See Section 9.3, “ Object Locking ” [291ih the Reference
Guide for details.

The following diagram illustrates the lifecycle of an entity with respect to the APIs presented in this section.

70

http://java.sun.com/javaee/5/docs/api/javax/persistence/LockmodeType.html

8.3.

EntityManager

Mew/Transient

commit

persist rollback® new

persist/rallback™

refresh Managed
—

remone

commitrollbackiclose
rollback

Detached

* = Extended persistence context |

Lifecycle Examples

The examples below demonstrate how to use the lifecycle methods presented in the previous section. The examples are appropri-
ate for out-of-container use. Within acontainer, Ent i t yManager sare usually injected, and transactions are usually managed.
Y ou would therefore omit the cr eat eEnt i t yManager and cl ose cals, aswell asall transaction demarcation code.

Example 8.1. Persisting Objects

/] create sone objects
Magazi ne mag = new Magazi ne("1B78- YUIL", "JavaWorld");

Conpany pub = new Conpany("Weston House");
pub. set Revenue(1750000D) ;

mag. set Publ i sher (pub);

pub. addMagazi ne(mag) ;

Article art = new Article("JPA Rules!", "Transparent Object Persistence");
art.addAut hor (new Aut hor ("Fred", "Hoyle"));
mag. addArticle(art);

/| persi st

EntityManager em = enf.createEntityManager();
em get Transaction(). begi n();

em persi st (mag) ;

em persi st (pub);

em persist(art);

em get Transaction().commt();

/1 or we could continue using the EntityMnager...
em cl ose();

Example 8.2. Updating Objects

Magazi ne. Magazi neld m = new Magazi ne. Magazi nel d();
m.isbn = "1B78- YUIL";
m.title = "JavaWrld";

/'l updates should al ways be nade within transactions; note that

71

EntityManager

I/ there is no code explicitly |linking the magazi ne or conpany
/1 with the transaction; JPA automatically tracks all changes
EntityManager em = enf.createEntityManager();

em get Transacti on(). begi n();

Magazi ne mag = em find(Magazi ne.class, m);

mag. set Price(5.99);

Conpany pub = mag. get Publ i sher();

pub. set Revenue(1750000D) ;

em get Transaction().commit();

/1 or we could continue using the EntityMnager...
em cl ose();

Example 8.3. Removing Objects

/'l assune we have an object id for the conpany whose subscriptions
// we want to delete
Qoject oid = ...;

/] del etes should al ways be nade within transactions
EntityManager em = enf.createEntityManager();
em get Transaction(). begi n();
Conpany pub = (Conpany) em find(Conpany.cl ass, oid);
for (Subscription sub : pub. getSubscriptions())
em renmove(sub);
pub. get Subscriptions().clear();
em get Transaction().commit();

/1 or we could continue using the EntityMnager...
em cl ose();

Example 8.4. Detaching and Merging

This example demonstrates a common client/server scenario. The client requests objects and makes changes to them, while the
server handles the object lookups and transactions.

/1 CLIENT:
/1 requests an object with a given oid
Record detached = (Record) getFronServer (o0id);

/| SERVER:

/1 send object to client; object detaches on EM cl ose
Obj ect oid = processd ientRequest();

EntityManager em = enf. createEntityManager();

Record record = em find(Record.class, oid);

em cl ose();

sendToCl i ent (record);

[/ CLI ENT:

/1 makes sone nodifications and sends back to server
det ached. set SoneFi el d("bar");

sendToSer ver (det ached) ;

/| SERVER:

/1 merges the instance and commit the changes
Record nodified = (Record) processC ientRequest();
EntityManager em = enf.createEntityManager();

em get Transacti on(). begi n();

Record nerged = (Record) em merge(nodified);

ner ged. set Last Modi fi ed(SystemcurrentTimeM I lis());
mer ged. set Modi fier(getCientldentityCode());

em get Transaction().commit();

72

EntityManager

em cl ose();

8.4.

Entity Identity Management

Each Ent i t yManager isresponsible for managing the persistent identities of the managed objects in the persistence context.
The following methods allow you to interact with the management of persistent identities. The behavior of these methodsis
deeply affected by the persistence context type of the Ent i t yManager ; see Section 7.3, “ Persistence Context ” [64] for an
explanation of persistence contexts.

public <T> T find(d ass<T> cls, Object oid);

This method returns the persistent instance of the given type with the given persistent identity. If the instance is already present in
the current persistence context, the cached version will be returned. Otherwise, a new instance will be constructed and loaded
with state from the datastore. If no entity with the given type and identity existsin the datastore, this method returns null.

public <T> T get Reference(d ass<T> cls, Object oid);

Thismethod issimilar tof i nd, but does not necessarily go to the database when the entity is not found in cache. The imple-
mentation may construct a hollow entity and return it to you instead. Hollow entities do not have any state loaded. The state only
gets loaded when you attempt to access a persistent field. At that time, the implementation may throw an Ent i t yNot Foun-
dExcepti on if it discoversthat the entity does not exist in the datastore. The implementation may also throw an Ent i t yNot -
FoundExcept i on fromthe get Ref er ence method itself. Unlikef i nd, get Ref er ence does not return null.

publ i c bool ean contai ns(Object entity);

8.5.

Returnstrueif the given entity is part of the current persistence context, and fal se otherwise. Removed entities are not considered
part of the current persistence context.

Cache Management

public void flush();

Thef | ush method writes any changes that have been made in the current transaction to the datastore. If the Ent i t yManager
does not already have a connection to the datastore, it obtains one for the flush and retainsiit for the duration of the transaction.
Any exceptions during flush cause the transaction to be marked for rollback. See Chapter 9, Transaction [76]

Flushing requires an active transaction. If there isn't a transaction in progress, the f | ush method throwsa Tr ansact i onRe-
qui redExcepti on.

public FlushMbdeType get Fl ushMbde();

73

EntityManager

public void setFl ushvbde(Fl ushMbdeType fl ushMbde);

TheEnt i t yManager 'sFl ushMode property controls whether to flush transactional changes before executing queries. This
allows the query results to take into account changes you have made during the current transaction. Available
j avax. per si st ence. Fl ushMbdeType constants are:

e COWM T: Only flush when committing, or when told to do so through the f | ush method. Query results may not take into ac-
count changes made in the current transaction.

* AUTO The implementation is permitted to flush before queriesto ensure that the results reflect the most recent object state.

Y ou can also set the flush mode on individual Quer y instances.

OpenJPA only flushes before a query if the query might be affected by data changed in the current transaction. Addition-
ally, OpenJPA alows fine-grained control over flushing behavior. See the Reference Guide's Section 4.8, “ Configur-
ing the Use of JDBC Connections” [217]

public void clear();

38.6.

Clearingthe Ent i t yManager effectively ends the persistence context. All entities managed by the Ent i t yManager be-
come detached.

Query Factory

public Query createQuery(String query);

Quer y objects are used to find entities matching certain criteria. Thecr eat eQuer y method creates a query using the given
Java Persistence Query Language (JPQL) string. See Chapter 10, JPA Query [79]for details.

public Query createNamedQuery(String nane);

This method retrieves a query defined in metadata by name. The returned Quer y instanceisinitialized with the information de-
clared in metadata. For more information on named queries, read Section 10.1.10, “ Named Queries” [88]

public Query createNativeQuery(String sql);
public Query createNati veQuery(String sql, Class resultCs);
public Query createNativeQuery(String sql, String resultMpping);

74

http://java.sun.com/javaee/5/docs/api/javax/persistence/FlushModeType.html

EntityManager

Native queries are queries in the datastore's native language. For relational databases, this the Structured Query Language (SQL).
Chapter 11, SQL Queries[115aborates on JPA's native query support.

8.7. Closing

publ i c bool ean isCpen();
public void close();

When an Ent i t yManager isno longer needed, you should call itscl ose method. Closing an Ent i t yManager releases any
resources it isusing. The persistence context ends, and the entities managed by the Ent i t yManager become detached. Any
Query instancesthe Ent i t yManager created become invalid. Calling any method other thani sOpen onaclosed Enti ty-
Manager resultsinanl || egal St at eExcepti on. You cannot closeaEnt i t yManager that isin the middle of atransac-
tion.

If you arein amanaged environment using injected entity managers, you should not close them.

75

Chapter 9. Transaction

Transactions are critical to maintaining dataintegrity. They are used to group operations into units of work that act in an all-
or-nothing fashion. Transactions have the following qualities:

» Atomicity. Atomicity refersto the all-or-nothing property of transactions. Either every data update in the transaction completes
successfully, or they all fail, leaving the datastore in its original state. A transaction cannot be only partially successful.

» Consistency. Each transaction takes the datastore from one consistent state to another consistent state.

« Isolation. Transactions are isolated from each other. When you are reading persistent data in one transaction, you cannot "see"
the changes that are being made to that data in other transactions. Similarly, the updates you make in one transaction cannot
conflict with updates made in concurrent transactions. The form of conflict resolution employed depends on whether you are
using pessimistic or optimistic transactions. Both types are described later in this chapter.

« Durability. The effects of successful transactions are durable; the updates made to persistent data last for the lifetime of the
datastore.
Together, these qualities are called the ACID properties of transactions. To understand why these properties are so important to

maintaining data integrity, consider the following example:

Suppose you create an application to manage bank accounts. The application includes a method to transfer funds from one user to
another, and it looks something like this:

public void transferFunds(User from User to, double amt) {
from decr enent Account (ammt) ;
to. i ncrenent Account (ammt) ;

}

9.1.

Now suppose that user Alice wants to transfer 100 dollars to user Bob. No problem; you simply invoke your t r ansf er Funds
method, supplying Alicein thef r omparameter, Bob inthet o parameter, and 100. 00 astheammt . Thefirst line of the meth-
od is executed, and 100 dollarsis subtracted from Alice's account. But then, something goes wrong. An unexpected exception oc-
curs, or the hardware fails, and your method never completes.

Y ou are |eft with a situation in which the 100 dollars has simply disappeared. Thanks to the first line of your method, itisno
longer in Alice's account, and yet it was never transferred to Bob's account either. The datastore isin an inconsistent state.

The importance of transactions should now be clear. If the two lines of thet r ansf er Funds method had been placed together
in atransaction, it would be impossible for only the first line to succeed. Either the funds would be transferred properly or they
would not be transferred at all, and an exception would be thrown. Money could never vanish into thin air, and the data store
could never get into an inconsistent state.

Transaction Types

There are two major types of transactions: pessimistic transactions and optimistic transactions. Each type has both advantages and
disadvantages.

Pessimistic transactions generally lock the datastore records they act on, preventing other concurrent transactions from using the
same data. This avoids conflicts between transactions, but consumes database resources. Additionally, locking records can result
in deadlock, a situation in which two transactions are both waiting for the other to release its locks before completing. The results
of adeadlock are datastore-dependent; usually one transaction is forcefully rolled back after some specified timeout interval, and
an exception is thrown.

76

9.2.

Transaction

This document will often use the term datastore transaction in place of pessimistic transaction. Thisisto acknowledge that some
datastores do not support pessimistic semantics, and that the exact meaning of a non-optimistic JPA transaction is dependent on
the datastore. Most of the time, a datastore transaction is equivalent to a pessimistic transaction.

Optimistic transactions consume less resources than pessimistic/datastore transactions, but only at the expense of reliability. Be-
cause optimistic transactions do not lock datastore records, two transactions might change the same persistent information at the
same time, and the conflict will not be detected until the second transaction attempts to flush or commit. At thistime, the second
transaction will realize that another transaction has concurrently modified the same records (usually through a timestamp or ver-
sioning system), and will throw an appropriate exception. Note that optimistic transactions still maintain data integrity; they are
simply more likely to fail in heavily concurrent situations.

Despite their drawbacks, optimistic transactions are the best choice for most applications. They offer better performance, better
scalability, and lower risk of hanging due to deadlock.

OpenJPA uses optimistic semantics by default, but supports both optimistic and datastore transactions. OpenJPA also of-
fers advanced locking and versioning APIs for fine-grained control over database resource all ocation and object version-
ing. See Section 9.3, “ Object Locking " [2914f the Reference Guide for details on locking. Section 5.2.5, “ Version”
[32] of this document covers standard object versioning, while Section 7.7, “ Additional JPA Mappings” [269f the
Reference Guide discusses additional versioning strategies available in OpenJPA.

The EntityTransaction Interface

javax.persistence

EntityTransaction

- begin()

- commit()

- rollback()

- isActive(): boolean

JPA integrates with your container's managed transactions, allowing you to use the container's declarative transaction demarca
tion and its Java Transaction APl (JTA) implementation for transaction management. Outside of a container, though, you must
demarcate transactions manually through JPA. The Ent i t yTr ansact i on interface controls unmanaged transactionsin JPA.

public void begin();
public void commit();
public void rollback();

Thebegi n,conmmi t, andr ol | back methods demarcate transaction boundaries. The methods should be self-explanatory: be-
gi n startsatransaction, conmi t attempts to commit the transaction's changes to the datastore, and r ol | back aborts the trans-
action, in which case the datastore is "rolled back" to its previous state. JPA implementations will automatically roll back transac-
tionsif any exception is thrown during the commit process.

Unless you are using an extended persistence context, committing or rolling back also ends the persistence context. All managed
entiteswill be detached from the Ent i t yManager .

publ i c bool ean isActive();

77

Transaction

Finally, thei sAct i ve method returnst r ue if the transactionisin progress (begi n has been called more recently than com
m t orrol | back),andf al se otherwise.

Example 9.1. Grouping Operationswith Transactions

public void transferFunds(EntityManager em User from User to, double amt) {
/1 note: it would be better practice to nove the transaction demarcation
/1 code out of this nethod, but for the purposes of exanple...
Transaction trans = em get Transaction();
trans. begin();
try
from decr enent Account (ammt) ;

to.increnment Account (ammt);
trans.commit();

catch (RuntimeException re)
if (trans.isActive())

trans.rol | back(); /1l or could attenpt to fix error and retry
throw re;

78

Chapter 10. JPA Query

Javax.jdo

Query

- setHint{String, Object): Query
- setFlushiModefFiushModeType): Query

- setFirstResult{ing): Query
- setMaxResults(int): Query

- setParameter(String, ...): Query
- setParameterfint, ...): Query

- getResultList(): List
- getSingleResult(): Object
- executellpdate(): int

Thej avax. per si st ence. Query interface isthe mechanism for issuing queriesin JPA. The primary query language used is
the Java Persistence Query Language, or JPQL. JPQL is syntactically very similar to SQL, but is object-oriented rather than ta-
ble-oriented.

The API for executing JPQL queries will be discussed in Section 10.1, “ JPQL API " [79] and afull language reference will be
covered in Section 10.2, “ JPQL Language Reference” [90]

10.1. JPQL API
10.1.1. Query Basics

SELECT x FROM Magazi ne x

The preceding isa simple JPQL query for all Magazi ne entities.

public Query createQuery(String jpql);

TheEnt i t yManager . cr eat eQuer y method createsa Quer y instance from a given JPQL string.

public List getResultList();

Invoking Query. get Resul t Li st executesthe query and returnsalLi st containing the matching objects. The following ex-
ample executes our Magazi ne query above:

Enti tyManager em= .
Query g = emcreat eQJery(SELECT x FROM Magazi ne x");
Li st <l\/agaZ| ne> results = (List<Magazine>) q.getResultList();

79

http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html#getResultList()

JPA Query

A JPQL query has an internal namespace declared in the f r omclause of the query. Arbitrary identifiers are assigned to entities
so that they can be referenced el sewhere in the query. In the query example above, the identifier x is assigned to the entity
Magazi ne .

The as keyword can optionally be used when declaring identifiersin the f r omclause. SELECT x FROM Magazi ne
x and SELECT x FROM Magazi ne AS x are Synonymous.

Following thesel ect clause of the query isthe object or objects that the query returns. In the case of the query above, the
query's result list will contain instances of the Magazi ne class.

When selecting entities, you can optional use the keyword obj ect . Theclausessel ect x and SELECT OB-
JECT(x) are synonymous.

The optional wher e clause places criteria on matching results. For example:

SELECT x FROM Magazi ne x WHERE x.title = 'JDJ'

Keywords in JPQL expressions are case-insensitive, but entity, identifier, and member names are not. For example, the expres-
sion above could also be expressed as:

sel ect x from Magazine x where x.title = 'JDJ'

But it could not be expressed as:

SELECT x FROM Magazi ne x WHERE x. TI TLE = ' JDJ'

Aswiththesel ect clause, aliasnamesinthewher e clause are resolved to the entity declared inthef r om clause. The query
above could be described in English as"for all Magazi ne instances x, return alist of every x suchthat x'stitl e fiedis
equal to 'IDJ".

JPQL uses SQL -like syntax for query criteria. Theand and or logical operators chain multiple criteria together:

SELECT x FROM Magazi ne x WHERE x.title = 'JDJ' OR x.title = 'JavaPro'

The = operator tests for equality. <> testsfor inequality. JPQL also supports the following arithmetic operators for numeric com-
parisons: >, >=, <, <=.Forexample:

SELECT x FROM Magazi ne x WHERE x.price > 3.00 AND x.price <= 5.00

80

JPA Query

This query returns all magazines whose priceis greater than 3.00 and less than or equal to 5.00.

SELECT x FROM Magazi ne x WHERE x.price <> 3.00

This query returns all Magazines whose priceis not equal to 3.00.

Y ou can group expressions together using parentheses in order to specify how they are evaluated. Thisis similar to how paren-
theses are used in Java. For example:

SELECT x FROM Magazi ne x WHERE (x.price > 3.00 AND x.price <= 5.00) OR x.price < 7.00

This expression would match magazines whose priceis less than 7.00. Alternately:

SELECT x FROM Magazi ne x WHERE x.price > 3.00 AND (x.price <= 5.00 OR x.price < 7.00)

This expression would match magazines whose price is 4.00, 5.00 or 6.00, but not 1.00, 2.00 or 3.00.

JPQL also includes the following conditionals:

e [NOT] BETWEEN: Shorthand for expressing that a value falls between two other values. The following two statements are
Synonymous:

SELECT x FROM Magazi ne x WHERE x.price >= 3.00 AND x.price <= 5.00

SELECT x FROM Magazi ne x WHERE x. price BETWEEN 3. 00 AND 5. 00

e [NOT] LI KE: Performsa string comparison with wildcard support. The special character ' ' in the parameter means to match
any single character, and the special character '%' means to match any sequence of characters. The following statement
matchestitle fields "JDJ' and "JavaPro", but not "IT Insider":

SELECT x FROM Magazi ne x WHERE x.title LIKE 'J%

The following statement matches the title field "JDJ" but not " JavaPro":

SELECT x FROM Magazine x WHERE x.title LIKE "J__'

81

JPA Query

* [NOT] | N: Specifiesthat the member must be equal to one element of the provided list. The following two statements are

Synonymaous:
SELECT x FROM Magazi ne x WHERE x.title IN ('JDJ', 'JavaPro', 'IT Insider")
SELECT x FROM Magazine x WHERE x.title = 'JDJ' OR x.title = 'JavaPro' OR x.title = '"IT Insider'

IS [NOT] EMPTY: Specifiesthat the collection field holds no elements. For example:

SELECT x FROM Magazi ne x WHERE x. articles is enpty

This statement will return all magazineswhose ar ti cl es member contains no elements.

e« IS [NOT] NULL: Specifiesthat thefield is equal to null. For example:

SELECT x FROM Magazi ne x WHERE x. publisher is null

This statement will return all Magazine instances whose "publisher" field issettonul | .

» NOT: Negates the contained expression. For example, the following two statements are synonymous:

SELECT x FROM Magazi ne x WHERE NOT(x. price = 10.0)

SELECT x FROM Magazi ne x WHERE x.price <> 10.0

10.1.2. Relation Traversal

Relations between objects can be traversed using Javarlike syntax. For example, if the Magazine class has a field named "publish-
er" of type Company, that relation can be queried as follows:

SELECT x FROM Magazi ne x WHERE x. publisher.name = ' Random House'

This query returns all Magazi ne instanceswhose publ i sher fieldisset to a Conpany instance whose nameis "Random
House".

82

JPA Query

Single-valued relation traversal implies that the relation is not null. In SQL terms, thisis known as an inner join. If you want to
also include relations that are null, you can specify:

SELECT x FROM Magazi ne x WHERE x. publisher.name = ' Random House' or x.publisher is null

You can aso traverse collection fields in queries, but you must declare each traversal in the f r omclause. Consider:

SELECT x FROM Magazine x, IN(x.articles) y WHERE y. aut hor Nanme = ' John Doe’

This query saysthat for each Magazi ne x ,traversethearti cl es relation and check each Arti cl e y, and passthefilter if
y'saut hor Nane field is equal to "John Doe". In short, this query will return all magazines that have any articles written by
John Doe.

Thel N() syntax can also be expressed with the keywordsi nner j oi n. The statements SELECT x FROM
Magazi ne x, IN(x.articles) y WHERE y. aut hor Nane = ' John Doe' and SELECT x FROM
Magazi ne x inner join x.articles y WHERE y. aut hor Name = ' John Doe' are synonymous.

10.1.3. Fetch Joins

JPQL queries may specify oneor morej oi n f et ch declarations, which allow the query to specify which fields in the returned
instances will be pre-fetched.

SELECT x FROM Magazine x join fetch x.articles WHERE x.title = 'JDJ'

The query above returns Magazi ne instances and guarantees that thear t i cl es field will aready be fetched in the returned
instances.

Multiple fields may be specified in separatej oi n f et ch declarations:

SELECT x FROM Magazine x join fetch x.articles join fetch x.authors WHERE x.title = 'JDJ'

Specifying thej oi n f et ch declaration is functionally equivalent to adding the fields to the Query's Fet chConf i g-
ur at i on. See Section 5.7, “ Fetch Groups” [243]

10.1.4. JPQL Functions

83

JPA Query

Aswell as supporting direct field and relation comparisons, JPQL supports a pre-defined set of functions that you can apply.

 CONCAT(stringl, string2): Concatenatestwo string fields or literals. For example:

SELECT x FROM Magazi ne x WHERE CONCAT(x.title, 's') = 'JDJs'

» SUBSTRING(string, startlndex, |ength):Returnsthepartof thest ri ng argument starting at st art | ndex
(1-based) and ending at | engt h characterspast st art | ndex.

SELECT x FROM Magazi ne x WHERE SUBSTRI NG(x.title, 1, 1) ="'J'

 TRIM[LEADING | TRAILING | BOTH] [character FROM stri ng: Trimsthe specified character from either
the beginning (LEADI NG) end (TRAI LI NG) or both (BOTH) of the string argument. If no trim character is specified, the
space character will be trimmed.

SELECT x FROM Magazi ne x WHERE TRIMBOTH 'J' FROM x.title) ="'D

* LOVER(st ri ng) : Returnsthe lower-case of the specified string argument.

SELECT x FROM Magazi ne x WHERE LONER(x.title) = 'jdj"’

» UPPER(st ri ng) : Returns the upper-case of the specified string argument.

SELECT x FROM Magazi ne x WHERE UPPER(x.title) = 'JAVAPRO

» LENGTH(st ri ng) : Returnsthe number of charactersin the specified string argument.

SELECT x FROM Magazi ne x WHERE LENGTH(x.title) = 3

e LOCATE(searchString, candidateString [, startlndex]):Returnsthefirstindex of searchStringin
candi dat eSt ri ng. Positions are 1-based. If the string is not found, returns 0.

SELECT x FROM Magazi ne x WHERE LOCATE('D, x.title) = 2

» ABS(number) : Returns the absolute value of the argument.

JPA Query

SELECT x FROM Magazi ne x WHERE ABS(x. price) >= 5.00

» SQRT(nunmber) : Returns the square root of the argument.

SELECT x FROM Magazi ne x WHERE SQRT(x.price) >= 1.00

e MOD(number, divi sor) : Returnsthe modulo of nunber anddi vi sor.

SELECT x FROM Magazi ne x WHERE MOD(x. price, 10) = 0

* CURRENT _DATE: Returnsthe current date.
» CURRENT_TI ME: Returns the current time.

* CURRENT_TI MESTAMP: Returns the current timestamp.

10.1.5. Polymorphic Queries

All JPQL queries are polymorphic, which means the f r omclause of a query includes not only instances of the specific entity
classtowhich it refers, but all subclasses of that class as well. The instances returned by a query include instances of the sub-
classes that satisfy the query conditions. For example, the following query may return instances of Magazi ne , aswell as
Tabl oi d and Di gest instances, where Tabl oi d and Di gest are Magazi ne subclasses.

SELECT x FROM Magazi ne x WHERE x.price < 5

10.1.6. Query Parameters

JPQL provides support for parameterized queries. Either named parameters or positional parameters may be specified in the
guery string. Parameters allow you to re-use query templates where only the input parameters vary. A single query can declare
either named parameters or positional parameters, but is not alowed to declare both named and positional parameters.

public Query setParaneter (int pos, Object value);

Specify positional parameters in your JPQL string using an integer prefixed by a question mark. Y ou can then populate the
Quer y object with positional parameter values viacallstothe set Par anet er method above. The method returns the Quer y
instance for optional method chaining.

EntityManager em =

Query g = em createQJery(SELECT x FROM Naga2| ne x WHERE x.title = ?1 and x.price > ?2");
q. setParamater(l "JDU) set Paranmeter(2, 5.0

Li st <Magazi ne> results = (List<Magazi ne>) q. get Resul tLi st ();

85

JPA Query

This code will substitute JDJ for the ?1 parameter and 5. 0 for the ?2 parameter, then execute the query with those values.

public Query setParaneter(String name, Object value);

Named parameter are denoted by prefixing an arbitrary name with a colon in your JPQL string. Y ou can then populate the
Quer y object with parameter values using the method above. Like the positional parameter method, this method returns the
Quer y instance for optional method chaining.

EntityManager em= ...

Query q = emcreateQuery("SELECT x FROM Magazi ne x WHERE x.title =
g.set Paraneter ("titleParant, "JDJ").setParanmeter("priceParant, 5.0)
Li st <Magazi ne> results = (List<Magazi ne>) q.getResultList();

:titleParam and x.price > :priceParani);

This code substitutes JDJ for the: ti t | ePar am parameter and 5. O for the: pri cePar am parameter, then executes the
guery with those values.

10.1.7. Query Hints

JPQL provides support for hints which are name/value pairs used to control locking and optimization keywords in sgl. The fol-
lowing example shows how to use the JPA hint api to set the ReadLockMode and Resul t Count in the OpenJPA fetch plan.
Thiswill result in the sgl keywords OPTIMIZE FOR 2 ROWS and UPDATE to be emitted into the sql provided that a pessimist-
ic LockManager is being used.

Example 10.1. Query Hints

Query g = emcreateQuery("sel ect mfrom Magazi ne mwhere ... ");
g. set Hi nt (" openj pa. hint. Opti m zeResul t Count”, new Integer(2));
g. set H nt (" openj pa. Fet chPl an. ReadLockMode", "WRI TE") ;

List r = g.getResultList();

Invalid hints or hints which can not be processed by a particular database are ignored. Otherwise, invalid hints will result in an
ArgumentException being thrown.

10.1.7.1. Locking Hints

To avoid deadlock and optimistic update exceptions among multiple updaters, use a pessimistic LockManager, specified in the
persistence unit definition, and use a hint name of "openjpa.FetchPlan.ReadL ockMode" on queries for entities that must be
locked for serialization. The value of ReadLockMode can be either "READ" or "WRITE". Thisresultsin FOR UPDATE or
USE AND KEEP UPDATE LOCKS in sql.

Using aReadLockMbde hint with JPA optimistic locking (i.e. specifying LockManager = "version") will result in the entity
version field either being reread at end of transaction in the case of avalue of "READ" or the version field updated at end of

86

JPA Query

transaction in the case of "WRITE". Y ou must define aversion field in the entity mapping when using a version LockManager
and using ReadlL ockMode.

Table 10.1. Interaction of ReadL ockMode hint and LockManager

ReadL ockM ode L ockM anager=pessimistic L ockM anager =version
READ sgl with UPDATE sgl without update;

reread version field at the end of transac-
tion and check for no change.

WRITE sgl with UPDATE sgl without update;
force update version field at the end of
transaction

not specified sgl without update sgl without update

10.1.7.2. Result Set Size Hint

To specify aresult set size hint to those databases that support it, specify a hint name of "openjpa.hint.OptimizeResultCount”
with an integer value greater than zero. This causes the sgl keyword OPTIMIZE FOR to be generated.

10.1.7.3. Isolation Level Hint

To specify an isolation level, specify ahint name of "openjpa.FetchPlan.Isolation”. The value will be used to specify isolation
level using the sgl WITH <isolation> clause for those databases that support it. This hint only worksin conjunction with the
ReadlL ockMode hint.

10.1.7.4. Other Fetchplan Hints

Any property of an OpenJPA FetchPlan can be changed using a hint by using a name of the form "openjpa.FetchPlan." <property
name>.Valid property namesinclude : MaxFet chDept h, Fet chBat chSi ze, LockTi neQut , Eager Fet chMbde, Sub-
cl assFet chMode and | sol ati on.

10.1.7.5. Oracle Query Hints

The hint name "openjpa.hint.OracleSelectHint" can be used to specify a string value of an Oracle query hint that will inserted into
sgl for an Oracle database.See Section 2.15.1, “ Using Query Hintswith Oracle” [33%or an example.

10.1.7.6. Named Query Hints

Hints can also be included as part of a NamedQuery definition.

Example 10.2. Named Query using Hints

@armedQuer y(name=" nagsOver Price",

query="SELECT x FROM Magazi ne x WHERE x.price > 21",

hints={ @ueryH nt (nanme="openjpa.hint.Optim zeResultCount", value="2"),
@ueryH nt (name="openj pa. Fet chPl an. ReadLockMbde", val ue="WRI TE") })

87

JPA Query

10.1.8. Ordering

JPQL queries may optionally contain an or der by clause which specifies one or more fields to order by when returning query
results. You may follow theor der by fi el d clausewiththeasc or desc keywords, which indicate that ordering should
be ascending or descending, respectively. If the direction is omitted, ordering is ascending by default.

SELECT x FROM Magazine x order by x.title asc, x.price desc

The query above returns Magazi ne instances sorted by their title in ascending order. In cases where the titles of two or more
magazines are the same, those instances will be sorted by price in descending order.

10.1.9. Aggregates

JPQL queries can select aggregate data as well as objects. JPQL includesthe mi n, max, avg, and count aggregates. These
functions can be used for reporting and summary queries.

The following query will return the average of al the prices of all the magazines:

EntityManager em= ...
Query g = em createQuery("SELECT AVE x. price) FROM Magazi ne x");
Nunber result = (Nunber) q.getSingleResult();

The following query will return the highest price of al the magazinestitled "JDJ":

EntityManager em = ...
Query g = em createQuery("SELECT MAX(x.price) FROM Magazi ne x WHERE x.title = 'JDJ'");
Nunmber result = (Nunmber) q.getSingleResult();

10.1.10. Named Queries

Query templates can be statically declared using the NanedQuery and NamedQuer i es annotations. For example:

@ntity
@NanmedQueri es({
@NamedQuer y(name="magsOver Pri ce",
query="SELECT x FROM Magazi ne x WHERE x.price > ?1"),
@anmedQuer y(nanme="nagsByTi tle",
query="SELECT x FROM Magazi ne x WHERE x.title = :titleParan')

public class Magazine {

}

These declarations will define two named queries called magsOver Pri ce and magsByTi tl e.

public Query createNanedQuery(String nane);

88

JPA Query

Y ou retrieve named queries with the above Ent i t yManager method. For example:

EntityManager em = .

Query g = em createNanedQJery(magsOver Price");

g.set Paraneter (1, 5.0f);

Li st <Magazi ne> results = (List<Magazine>) q.getResultList();

EntltyManager em = .

Query g = em createNarTedQnery(magsByTltIe);
g.setParanmeter("titl eParant', "JDJ");

Li st <Magazi ne> results = (L| st <l\/agaZ| ne>) g.getResultList();

10.1.11. Delete By Query

Queries are useful not only for finding objects, but for efficiently deleting them as well. For example, you might delete all records
created before a certain date. Rather than bring these objects into memory and delete them individually, JPA allows you to per-
form asingle bulk delete based on JPQL criteria.

Delete by query uses the same JPQL syntax as normal queries, with one exception: begin your query string with the del et e
keyword instead of the sel ect keyword. To then execute the delete, you call the following Quer y method:

public int executeUpdate();

This method returns the number of objects deleted. The following example deletes all subscriptions whose expiration date has
passed.

Example 10.3. Delete by Query

Query g = emcreat eQJery(DELETE FROM Subscription s WHERE s. subscri ptionDate < :today");
qg. set Paranet er(today", new Date());
int deleted = q. executeUpdate();

10.1.12. Update By Query

Similar to bulk deletes, it is sometimes necessary to perform updates against alarge number of queriesin asingle operation,
without having to bring all the instances down to the client. Rather than bring these objects into memory and modifying them in-
dividually, JPA allows you to perform a single bulk update based on JPQL criteria.

Update by query uses the same JPQL syntax as normal queries, except that the query string begins with the updat e keyword in-
stead of sel ect . To execute the update, you call the following Quer y method:

public int executeUpdate();

89

JPA Query

This method returns the number of objects updated. The following example updates all subscriptions whose expiration date has
passed to have the "paid" field set to true..

Example 10.4. Update by Query

Query g = em createQuery("UPDATE Subscription s SET s.paid = :paid WHERE s. subscriptionDate < :today");
g. set Paranet er ("t oday", new Date());

g. set Paranmeter ("pai d", true);

int updated = q. executeUpdate();

10.2. JPQL Language Reference

The Java Persistence Query Language (JPQL) is used to define searches against persistent entities independent of the mechanism
used to store those entities. As such, JPQL is "portable”, and not constrained to any particular data store. The Java Persistence
guery language is an extension of the Enterprise JavaBeans query language, EJB QL, adding operations such as bulk deletes and
updates, join operations, aggregates, projections, and subqueries. Furthermore, JPQL queries can be declared statically in
metadata, or can be dynamically built in code. This chapter provides the full definition of the language.

Much of this section is paraphrased or taken directly from Chapter 4 of the JSR 220 specification.

10.2.1. JPQL Statement Types

A JPQL statement may be either a SELECT statement, an UPDATE statement, or a DELETE statement. This chapter refersto all
such statements as "queries’. Where it isimportant to distinguish among statement types, the specific statement typeis refer-
enced. In BNF syntax, a query language statement is defined as:

» QL_statement ::= select_statement | update _statement | delete statement

The complete BNF for JPQL is defined in Section 10.2.12, “ JPQL BNF " [111]Any JPQL statement may be constructed dynam-
ically or may be statically defined in a metadata annotation or XML descriptor element. All statement types may have parameters,
asdiscussed in Section 10.2.5.4, “ JPQL Input Parameters” [100]

10.2.1.1. JPQL Select Statement

A select statement is a string which consists of the following clauses:

» aSELECT clause, which determines the type of the objects or values to be selected.

» aFROMclause, which provides declarations that designate the domain to which the expressions specified in the other clauses of
the query apply.

 an optional WHERE clause, which may be used to restrict the results that are returned by the query.
» anoptional GROUP BY clause, which allows query results to be aggregated in terms of groups.

» anoptional HAVI NG clause, which allows filtering over aggregated groups.

90

JPA Query

» anoptional ORDER BY clause, which may be used to order the results that are returned by the query.
In BNF syntax, a select statement is defined as:
» select_statement ::= select_clause from_clause [where _clause] [groupby_clause] [having_clause] [orderby clause]

A select statement must always have a SELECT and a FROMclause. The square brackets [] indicate that the other clauses are op-
tional.

10.2.1.2. JPQL Update and Delete Statements

Update and del ete statements provide bulk operations over sets of entities. In BNF syntax, these operations are defined as:

e update statement ::= update clause [where clause]

» delete _statement ::= delete_clause [where _clause]

The update and delete clauses determine the type of the entities to be updated or deleted. The WHERE clause may be used to re-
strict the scope of the update or delete operation. Update and del ete statements are described further in Section 10.2.9, “ JPQL
Bulk Update and Delete” [109]

10.2.2. JPQL Abstract Schema Types and Query Domains

The Java Persistence query language is atyped language, and every expression has atype. The type of an expression is derived
from the structure of the expression, the abstract schematypes of the identification variable declarations, the types to which the
persistent fields and relationships evaluate, and the types of literals. The abstract schematype of an entity is derived from the en-
tity class and the metadata information provided by Java language annotations or in the XML descriptor.

Informally, the abstract schematype of an entity can be characterized as follows:

* For every persistent field or get accessor method (for a persistent property) of the entity class, thereisafield ("state-field")
whose abstract schema type correspondsto that of the field or the result type of the accessor method.

» For every persistent relationship field or get accessor method (for a persistent relationship property) of the entity class, thereis
afield ("association-field") whose type is the abstract schematype of the related entity (or, if the relationship is a one-to-many
or many-to-many, a collection of such). Abstract schematypes are specific to the query language data model. The persistence
provider is not required to implement or otherwise materialize an abstract schematype. The domain of a query consists of the
abstract schematypes of all entitiesthat are defined in the same persistence unit. The domain of a query may be restricted by
the navigability of the relationships of the entity on which it is based. The association-fields of an entity's abstract schema type
determine navigahility. Using the association-fields and their values, a query can select related entities and use their abstract
schematypesin the query.

10.2.2.1. JPQL Entity Naming

Entities are designated in query strings by their entity names. The entity name is defined by the name element of the Entity an-
notation (or the entity-name XML descriptor element), and defaults to the unqualified name of the entity class. Entity names are
scoped within the persistence unit and must be unique within the persistence unit.

10.2.2.2. JPQL Schema Example

This example assumes that the application developer provides several entity classes, representing magazines, publishers, authors,

91

JPA Query

and articles. The abstract schema types for these entities are Magazi ne, Publ i sher, Aut hor ,andArti cl e.

Several Entities with Abstract Persistence Schemas Defined in the Same Persistence Unit. The entity Publ i sher hasaone-
to-many relationships with Magazi ne. Thereis aso aone-to-many relationship between Magazi ne and Arti cl e . The entity
Arti cl e isrelated to Aut hor in aone-to-one relationship.

Queriesto select magazines can be defined by navigating over the association-fields and state-fields defined by Magazine and
Author. A query to find all magazines that have unpublished articlesis as follows:

SELECT DI STI NCT mag FROM Magazi ne AS nmag JO N mag.articles AS art WHERE art. published = FALSE

This query navigates over the association-field authors of the abstract schematype Magazi ne to find articles, and uses the state-
field publ i shed of Arti cl e to select those magazines that have at |east one article that is published. Although predefined re-
served identifiers, such as DI STI NCT, FROM AS, JO N, WHERE, and FAL SE appear in upper case in this example, predefined
reserved identifiers are case insensitive. The SELECT clause of this example designates the return type of this query to be of type
Magazine. Because the same persistence unit defines the abstract persistence schemas of the related entities, the devel oper can
also specify aquery over art i cl es that utilizes the abstract schematype for products, and hence the state-fields and associ-
ation-fields of both the abstract schema types Magazine and Author. For example, if the abstract schema type Author has a state-
field named firstName, a query over articles can be specified using this state-field. Such a query might be to find all magazines
that have articles authored by someone with the first name "John".

SELECT DI STI NCT mag FROM Magazine mag JO N mag. articles art JON art.author auth WHERE auth. firstName = ' John'

Because Magazine is related to Author by means of the relationships between Magazine and Article and between Article and Au-
thor, navigation using the association-fields authors and product is used to express the query. This query is specified by using the
abstract schema name Magazine, which designates the abstract schema type over which the query ranges. The basis for the navig-
ation is provided by the association-fields authors and product of the abstract schema types Magazine and Article respectively.

10.2.3. JPQL FROM Clause and Navigational Declarations

The FROMclause of a query defines the domain of the query by declaring identification variables. An identification variable is an
identifier declared in the FROMclause of aquery. The domain of the query may be constrained by path expressions. Identification
variables designate instances of a particular entity abstract schematype. The FROM clause can contain multiple identification
variable declarations separated by a comma.(,).

» from_clause ::= FROM identification variable declaration {, {identification variable declaration | collec-
tion_member_declaration}}*

* identification variable declaration ::=range variable declaration { join | fetch join}*
» range variable declaration ::= abstract_schema name[AS] identification variable
 join::=join_specjoin_association path_expression [AS] identification variable

« fetch join::=join_spec FETCH join_association path_expression

* join_association_path_expression ::=join_collection valued path_expression |
join_single valued association _path_expression

« join_spec ::= [LEFT [OUTER] | INNER] JOIN

92

JPA Query

» collection_member_declaration ::= IN (collection_valued path_expression) [AS] identification_variable

10.2.3.1. JPQL FROM Identifiers

Anidentifier is a character sequence of unlimited length. The character sequence must begin with a Java identifier start character,
and all other characters must be Java identifier part characters. An identifier start character is any character for which the method
Character.isJaval dentifierStart returnst r ue. Thisincludes the underscore () character and the dollar sign ($)
character. An identifier part character is any character for which the method Char act er . i sJaval denti fi er Part returns
t r ue. The question mark (?) character is reserved for use by the Java Persistence query language. The following are reserved
identifiers:

o SELECT

¢ FROM

* VHERE

» UPDATE

 DELETE

« JON

* QUTER

« | NNER

« LEFT

* GROUP

* BY

* HAVI NG

 FETCH

* DI STI NCT

» OBJECT

* NULL

« TRUE

* FALSE

« AND
. R

- BETWEEN
. LIKE

* IN

93

JPA Query

AS
UNKNOWN
EMPTY

MEMBER

IS

AVG

M N

SUM

COUNT

ORDER

BY

ASC

DESC

MOD

UPPER

LOVER

TRIM

PCSI Tl ON
CHARACTER_LENGTH
CHAR_LENGTH
Bl T_LENGTH
CURRENT_TI ME
CURRENT_DATE
CURRENT_TI MESTAWP
NEW

EXI STS

ALL

ANY

SOVE

94

JPA Query

Reserved identifiers are case insensitive. Reserved identifiers must not be used as identification variables. It is recommended that
other SQL reserved words also not be as identification variablesin queries because they may be used as reserved identifiersin fu-
ture releases of the specification.

10.2.3.2. JPQL Identification Variables

Anidentification variable isavalid identifier declared in the FROM clause of aquery. All identification variables must be de-
clared in the FROMclause. I dentification variables cannot be declared in other clauses. An identification variable must not be are-
served identifier or have the same name as any entity in the same persistence unit. Identification variables are case insensitive. An
identification variable evaluates to a value of the type of the expression used in declaring the variable. For example, consider the
previous query:

SELECT DI STI NCT mag FROM Magazi ne mag JO N mag. articles art JON art.author auth WHERE auth. firstName = ' John'

In the FROMclause declaration mag. ar ti cl esart, theidentification variable ar t evaluatestoany Art i cl e valuedirectly
reachable from Magazi ne. The association-field ar t i cl es isacollection of instances of the abstract schematype Arti cl e
and the identification variable ar t refersto an element of this collection. The type of aut h isthe abstract schema type of Au-
t hor . An identification variable ranges over the abstract schematype of an entity. An identification variable designates an in-
stance of an entity abstract schematype or an element of a collection of entity abstract schema type instances. |dentification vari-
ables are existentially quantified in aquery. An identification variable always designates a reference to asingle value. It is de-
clared in one of three ways:. in arange variable declaration, in ajoin clause, or in a collection member declaration. The identifica-
tion variable declarations are evaluated from left to right in the FROMclause, and an identification variable declaration can use
the result of a preceding identification variable declaration of the query string.

10.2.3.3. JPQL Range Declarations

The syntax for declaring an identification variable as arange variableis similar to that of SQL; optionally, it usesthe AS
keyword.

 range variable declaration ::= abstract_schema_name [AS] identification_variable

Range variable declarations alow the developer to designate a "root" for objects which may not be reachable by navigation. In
order to select values by comparing more than one instance of an entity abstract schematype, more than one identification vari-
able ranging over the abstract schematype is needed in the FROMclause.

The following query returns magazines whose price is greater than the price of magazines published by "Adventure" publishers.
This exampleillustrates the use of two different identification variables in the FROMclause, both of the abstract schematype
Magazine. The SELECT clause of this query determines that it is the magazines with prices greater than those of "Adventure’
publisher's that are returned.

SELECT DI STI NCT nmagl FROM Magazi ne rmagl, Magazi ne mag2
WHERE nagl. price > mag2.price AND nag2. publisher.name = ' Adventure'

10.2.3.4. JPQL Path Expressions

An identification variable followed by the navigation operator (.) and a state-field or association-field is a path expression. The
type of the path expression is the type computed as the result of navigation; that is, the type of the state-field or association-field
to which the expression navigates. Depending on navigability, a path expression that leads to a association-field may be further
composed. Path expressions can be composed from other path expressionsif the original path expression evaluates to a single-
valued type (not a collection) corresponding to a association-field. Path expression navigability is composed using "inner join"
semantics. That is, if the value of a non-terminal association-field in the path expression is null, the path is considered to have no

95

JPA Query

value, and does not participate in the determination of the result. The syntax for single-valued path expressions and collection val-
ued path expressionsis as follows:

single valued path expression ::= state field path _expression | single valued association_path_expression
» state field path_expression ::= {identification_variable | single_valued_association_path_expression} .state field

» single valued association _path expression ::= identifica-
tion_variable{single valued association field.}*single valued association_field

« collection_valued path expression ::= identifica-
tion_variable{single valued association field.}*collection valued association field

. dtate field ::= { embedded_class state field}*simple_state field

A single valued association_field is designated by the name of an association-field in a one-to-one or many-to-one relationship.
Thetype of asingle valued association field and thusasingle valued association_path_expression is the abstract schematype
of the related entity. A collection_valued association field is designated by the name of an association-field in a one-to-many or
amany-to-many relationship. The type of a collection_valued association field is a collection of values of the abstract schema
type of the related entity. An embedded class state field is designated by the name of an entity state field that corresponds to an
embedded class. Navigation to arelated entity resultsin avalue of the related entity's abstract schema type.

The evaluation of a path expression terminating in a state-field results in the abstract schema type corresponding to the Javatype
designated by the state-field. It is syntactically illegal to compose a path expression from a path expression that evaluates to a col-
lection. For example, if mag designates Magazi ne, the path expressionnag. arti cl es. aut hor isillega since navigation
to authors results in a collection. This case should produce an error when the query string is verified. To handle such a navigation,
an identification variable must be declared in the FROMclause to range over the elements of thear t i cl es collection. Another
path expression must be used to navigate over each such element in the WHERE clause of the query, asin the following query
which returns all authors that have any articles in any magazines:

SELECT DI STINCT art.aut hor FROM Magazi ne AS nmag, | N(nmeg.articles) art

10.2.3.5. JPQL Joins

Aninner join may beimplicitly specified by the use of a cartesian product in the FROMclause and ajoin condition in the WHERE
clause.

The syntax for explicit join operationsis as follows:

e join::=join_specjoin_association path_expression [AS] identification variable
+ fetch join::=join_spec FETCH join_association path_expression

* join_association_path_expression ::= join_collection_valued_path_expression |
join_single valued_association path_expression

« join_spec ::= [LEFT [OUTER] | INNER] JOIN

The following inner and outer join operation types are supported.

10.2.3.5.1. JPQL Inner Joins (Relationship Joins)

96

JPA Query

The syntax for the inner join operation is

[INNER] JON join_association_path_expression [AS] identification_variable

For example, the query below joins over the relationship between publishers and magazines. Thistype of join typically equatesto
ajoin over aforeign key relationship in the database.

SELECT pub FROM Publ i sher pub JO N pub. magazi nes mag WHERE pub.revenue > 1000000

The keyword | NNER may optionally be used:

SELECT pub FROM Publ i sher pub INNER JO N pub. magazi nes mag WHERE pub. revenue > 1000000

Thisis equivaent to the following query using the earlier I N construct. It selects those publishers with revenue of over 1 million
for which at least one magazine exists:

SELECT OBJECT(pub) FROM Publisher pub, | N(pub.magazi nes) mag WHERE pub.revenue > 1000000

10.2.3.5.2. JPQL Outer Joins

LEFT JO Nand LEFT QUTER JO N are synonymous. They enable the retrieval of a set of entities where matching valuesin
the join condition may be absent. The syntax for aleft outer join is:

LEFT [OUTER] JO N joi n_associ ati on_pat h_expression [AS] identification_variable

For example:

SELECT pub FROM Publ i sher pub LEFT JO N pub. magazi nes mag WHERE pub. revenue > 1000000

The keyword OUTER may optionally be used:

SELECT pub FROM Publ i sher pub LEFT OQUTER JO N pub. nagazi nes mags WHERE pub.revenue > 1000000

An important use case for LEFT JO Nisin enabling the prefetching of related dataitems as a side effect of aquery. Thisis ac-
complished by specifying the LEFT JO NasaFETCH JO N.

10.2.3.5.3. JPQL Fetch Joins

A FETCH JO N enables the fetching of an association as a side effect of the execution of aquery. A FETCH JO Nis specified
over an entity and its related entities. The syntax for afetch joinis

97

JPA Query

 fetch join::=[LEFT [OUTER] | INNER] JOIN FETCH join_association_path_expression

The association referenced by the right side of the FETCH JO N clause must be an association that belongs to an entity that is
returned as aresult of the query. It is not permitted to specify an identification variable for the entities referenced by the right side
of the FETCH JO N clause, and hence references to the implicitly fetched entities cannot appear el sewhere in the query. The fol-
lowing query returns a set of magazines. As a side effect, the associated articles for those magazines are also retrieved, even
though they are not part of the explicit query result. The persistent fields or properties of the articles that are eagerly fetched are
fully initialized. The initialization of the relationship propertiesof thear t i cl es that are retrieved is determined by the
metadatafor the Art i cl e entity class.

SELECT mag FROM Magazi ne mag LEFT JO N FETCH mag. articles WHERE mag.id = 1

A fetch join has the same join semantics as the corresponding inner or outer join, except that the related objects specified on the
right-hand side of the join operation are not returned in the query result or otherwise referenced in the query. Hence, for example,
if magazineid 1 hasfive articles, the above query returns five references to the magazine 1 entity.

10.2.3.6. JPQL Collection Member Declarations

An identification variable declared by a collection_member_declaration ranges over values of a collection obtained by navigation
using a path expression. Such a path expression represents a navigation involving the association-fields of an entity abstract
schematype. Because a path expression can be based on another path expression, the navigation can use the association-fields of
related entities. An identification variable of a collection member declaration is declared using a special operator, the reserved
identifier | N. The argument to the | N operator is a collection-valued path expression. The path expression evaluates to a collec-
tion type specified as aresult of navigation to a collection-valued association-field of an entity abstract schematype. The syntax
for declaring a collection member identification variableis as follows:

* collection_member_declaration ::= IN (collection_valued_path expression) [AS] identification variable

For example, the query

SELECT DI STI NCT mag FROM Magazi ne mag
JO N mag. articles art
JA N art.author auth
VWHERE aut h. | ast Nane = ' G'i shani

may equivalently be expressed as follows, using the | N operator:

SELECT DI STI NCT mag FROM Magazi ne nag,
IN(mag. articles) art
VWHERE art . aut hor. | ast Nane = ' &i shani

Inthisexample, ar ti cl es isthe name of an association-field whose value is a collection of instances of the abstract schema
type Arti cl e. Theidentification variablear t designates a member of this collection, asingle Ar t i ¢l e abstract schematype
instance. In this example, mag is an identification variable of the abstract schematype Magazi ne.

10.2.3.7. JPQL Polymorphism

Java Persistence queries are automatically polymorphic. The FROM clause of a query designates not only instances of the specif-
ic entity classes to which explicitly refers but of subclasses aswell. The instances returned by a query include instances of the
subclasses that satisfy the query criteria.

98

JPA Query

10.2.4. JPQL WHERE Clause

The WHERE clause of a query consists of a conditional expression used to select objects or values that satisfy the expression. The
WHERE clause restricts the result of a select statement or the scope of an update or delete operation. A WHERE clause is defined as
follows:

» where_clause ::= WHERE conditional_expression

The GROUP BY construct enables the aggregation of values according to the properties of an entity class. The HAVI NG construct
enables conditions to be specified that further restrict the query result as restrictions upon the groups. The syntax of the HAVI NG
clauseisasfollows:

* having_clause ::= HAVING conditional_expression

The GROUP BY and HAVI NG constructs are further discussed in Section 10.2.6, “ JPQL GROUP BY, HAVING " [106]

10.2.5. JPQL Conditional Expressions

The following sections describe the language constructs that can be used in a conditional expression of the WHERE clause or
HAVI NG clause. State-fields that are mapped in serialized form or as lobs may not be portably used in conditional expressions.

The implementation is not expected to perform such query operations involving such fields in memory rather than in the
database.

10.2.5.1. JPQL Literals

A string literal is enclosed in single quotes--for example: 'literal’. A string literal that includes a single quote is represented by two
single quotes--for example: 'literal"s. String literalsin queries, like Java String literals, use unicode character encoding. The use
of Java escape notation is not supported in query string literals. Exact numeric literals support the use of Javainteger literal syn-
tax aswell as SQL exact numeric literal syntax. Approximate literals support the use of Java floating point literal syntax as well
as SQL approximate numeric literal syntax. Enum literals support the use of Javaenum literal syntax. The enum class name must
be specified. Appropriate suffixes may be used to indicate the specific type of anumeric literal in accordance with the Java Lan-
guage Specification. The boolean literals are TRUE and FAL SE. Although predefined reserved literals appear in upper case, they
are case insengitive.

10.2.5.2. JPQL Identification Variables

All identification variables used in the WHERE or HAVI NG clause of a SELECT or DELETE statement must be declared in the
FROMclause, as described in Section 10.2.3.2, “ JPQL ldentification Variables” [95]. The identification variables used in the
WHERE clause of an UPDATE statement must be declared in the UPDATE clause. Identification variables are existentially quanti-
fied in the WHERE and HAVI NG clause. This means that an identification variable represents a member of a collection or anin-
stance of an entity's abstract schematype. An identification variable never designates a collection in its entirety.

10.2.5.3. JPQL Path Expressions

Itisillegal to use acollection_valued_path expression within a WHERE or HAVI NG clause as part of a conditional expression ex-
cept in an empty_collection_comparison_expression, in a collection_member_expression, or as an argument to the Sl ZE operat-
or.

99

JPA Query

10.2.5.4. JPQL Input Parameters

Either positional or named parameters may be used. Positional and named parameters may not be mixed in a single query. Input
parameters can only be used in the WHERE clause or HAVI NG clause of aquery.

Note that if an input parameter value is null, comparison operations or arithmetic operations involving the input parameter will
return an unknown value. See Section 10.2.10, “ JPQL Null Values” [110]

10.2.5.4.1. JPQL Positional Parameters

The following rules apply to positional parameters.

* Input parameters are designated by the question mark (?) prefix followed by an integer. For example: ?71.
* Input parameters are numbered starting from 1. Note that the same parameter can be used more than once in the query string

and that the ordering of the use of parameters within the query string need not conform to the order of the positional paramet-
ers.

10.2.5.4.2. JPQL Named Parameters

A named parameter is an identifier that is prefixed by the":" symboal. It follows the rules for identifiers defined in Sec-
tion 10.2.3.1, “ JPQL FROM Identifiers” [93]. Named parameters are case sensitive.

Example:

SELECT pub FROM Publ i sher pub WHERE pub.revenue > :rev

10.2.5.5. JPQL Conditional Expression Composition

Conditional expressions are composed of other conditional expressions, comparison operations, logical operations, path expres-
sions that evaluate to boolean values, boolean literals, and boolean input parameters. Arithmetic expressions can be used in com-
parison expressions. Arithmetic expressions are composed of other arithmetic expressions, arithmetic operations, path expres-
sions that evaluate to numeric values, numeric literals, and numeric input parameters. Arithmetic operations use numeric promo-
tion. Standard bracketing () for ordering expression evaluation is supported. Conditional expressions are defined as follows:

conditional_expression ::= conditional_term | conditional_expression OR conditional _term
 conditional_term ::= conditional_factor | conditional_term AND conditional_factor

* conditional_factor ::= [NOT] conditional_primary

* conditional_primary ::= simple_cond_expression | (conditional_expression)

» simple_cond_expression ::= comparison_expression | between expression | like_expression | in_expression |

null_comparison_expression | empty_collection_comparison_expression | collection_member_expression | exists_expression

Aggregate functions can only be used in conditional expressionsin a HAVI NG clause. See Section 10.2.6, “ JPQL GROUP BY,
HAVING " [106]

10.2.5.6. JPQL Operators and Operator Precedence

100

JPA Query

The operators are listed below in order of decreasing precedence.

» Navigation operator (.)
 Arithmetic operators: +, - unary *, / multiplication and division +, - addition and subtraction

» Comparison operators. =, >, >=, <, <=, <> (not equal), [NOT] BETVEEEN, [NOT] LI KE, [NOT]I N, I S[NOT] NULL, I S|
NOT] EMPTY, [NOT] MEMBER][OF]

* Logical operators: NOT, AND, OR

The following sections describe other operators used in specific expressions.

10.2.5.7. JPQL Between Expressions

The syntax for the use of the comparison operator [NOT] BETVEEN in a conditional expression is asfollows:
arithmetic_expression [NOT] BETWEEN arithmetic_expression AND arithmetic_expression | string_expression [NOT]
BETWEEN string_expression AND string_expression | datetime_expression [NOT] BETWEEN datetime_expression AND date-
time_expression

The BETWEEN expression

x BETWEEN y AND z

is semantically eguivaent to:

y <= X AND x <= z

Therules for unknown and NULL values in comparison operations apply. See Section 10.2.10, “ JPQL Null Values” [11Q]Ex-
amples are;

p. age BETWEEN 15 and 19

isequivalent to

p.age >= 15 AND p. age <= 19

p. age NOT BETVEEN 15 and 19

is equivalent to

p.age < 15 OR p.age > 19

101

JPA Query

10.2.5.8. JPQL In Expressions

The syntax for the use of the comparison operator [NOT] | Nin aconditional expressionisasfollows:

* in_expression ::= state field path expression [NOT] IN (in_item{, in_item}* | subquery)

 in_item ::=literal | input_parameter

The state field_path_expression must have a string, numeric, or enum value. The literal and/or input_parameter values must be
like the same abstract schematype of the state field path expressionin type. (See Section 10.2.11, “ JPQL Equality and Com-
parison Semantics” [111).

The results of the subquery must be like the same abstract schematype of the state field path expression in type. Subqueries are
discussed in Section 10.2.5.15, * JPQL Subqueries” [104Examples are:

o.country IN ("UK', 'US, 'France')

istrue for UK and false for Peru, and is equivalent to the expression:

(o.country = "UK') OR (o.country = "'US') OR (o.country ="' France')

In the following expression:

o.country NOT IN ('UK', 'US, 'France')

isfasefor UK and true for Peru, and is equivalent to the expression:

NOT ((o.country = "UK') OR (o.country = 'US') OR (o.country = 'France'))

There must be at least one element in the comma separated list that defines the set of values for the | N expression. If the value of
adstate field_path expressioninan| Nor NOT | Nexpressionis NULL or unknown, the value of the expression is unknown.

10.2.5.9. JPQL Like Expressions

The syntax for the use of the comparison operator [NOT] LI KE in a conditional expression is asfollows:
string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]

The string_expression must have a string value. The pattern_value isastring literal or a string-valued input parameter in which an
underscore (_) stands for any single character, a percent (%) character stands for any sequence of characters (including the empty
sequence), and all other characters stand for themselves. The optional escape_character is a single-character string literal or a
character-valued input parameter (i.e., char or Character) and is used to escape the special meaning of the underscore and percent
charactersin pattern_value. Examples are:

addr ess. phone LIKE ' 1298

102

JPA Query

istruefor '123' '12993' and false for '1234'

asentence.word LIKE '|_se'

istrue for 'lose’ and false for 'loose’

awor d. underscored LIKE '_% ESCAPE '\’

istruefor' foo' and false for 'bar'

addr ess. phone NOT LIKE ' 1298’

isfalsefor '123' and '12993' and true for '1234'. If the value of the string_expression or pattern_value is NULL or unknown, the
value of the L1 KE expression is unknown. If the escape character is specified and is NULL, the value of the LI KE expression
is unknown.

10.2.5.10. JPQL Null Comparison Expressions

The syntax for the use of the comparison operator | S NULL in aconditional expression is as follows:
{single valued_path expression | input_parameter } IS[NOT] NULL

A null comparison expression tests whether or not the single-valued path expression or input parameter isa NULL value.

10.2.5.11. JPQL Empty Collection Comparison Expressions

The syntax for the use of the comparison operator | S EMPTY in an empty_collection_comparison_expression is as follows:
collection_valued_path _expression IS[NOT] EMPTY

This expression tests whether or not the collection designated by the collection-valued path expression is empty (i.e, has no ele-
ments).

For example, the following query will return all magazines that don't have any articles at all:

SELECT mag FROM Magazi ne mag WHERE mag. articles |'S EMPTY

If the value of the collection-valued path expression in an empty collection comparison expression is unknown, the value of the
empty comparison expression is unknown.

10.2.5.12. JPQL Collection Member Expressions

The use of the comparison collection_member_expressionis as follows:

* collection_member_expression ::= entity _expression [NOT] MEMBER [OF] collection_valued path_expression

103

JPA Query

* entity_expression ::=single valued association_path _expression | simple_entity _expression

» simple_entity_expression ::= identification_variable | input_parameter

This expression tests whether the designated value is a member of the collection specified by the collection-valued path expres-
sion. If the collection valued path expression designates an empty collection, the value of the MEMBER OF expression is FALSE
and the value of the NOT MEMBER OF expression is TRUE. Otherwise, if the value of the collection-valued path expression or
single-valued association-field path expression in the collection member expression is NULL or unknown, the value of the collec-
tion member expression is unknown.

The use of the reserved word OF is optional in this expression.

10.2.5.13. JPQL Exists Expressions

An EXI STS expression is a predicate that is true only if the result of the subquery consists of one or more values and that is false
otherwise. The syntax of an exists expression is

e exists expression ::= [NOT] EXISTS (subquery)

Example:

SELECT DI STI NCT auth FROM Aut hor auth
WHERE EXI STS
(SELECT spouseAut hor FROM Aut hor spouseAut hor WHERE spouseAut hor = aut h. spouse)

Theresult of this query consists of all authors whose spouse is also an author.

10.2.5.14. JPQL All or Any Expressions

An ALL conditional expression is apredicate that istrue if the comparison operation istrue for all valuesin the result of the sub-
guery or the result of the subquery is empty. An ALL conditional expression isfalseif the result of the comparison isfalse for at
least one row, and is unknown if neither true nor false. An ANY conditional expression isapredicate that is true if the comparison
operation istrue for some value in the result of the subquery. An ANY conditional expression isfalseif the result of the subquery
isempty or if the comparison operation isfalse for every value in the result of the subquery, and is unknown if neither true nor
false. The keyword SOVE is synonymous with ANY. The comparison operators used with ALL or ANY conditional expressions are
=, <, <=, >, >=, <>, The result of the subquery must be like that of the other argument to the comparison operator in type. See
Section 10.2.11, “ JPQL Equality and Comparison Semantics” [111]The syntax of an ALL or ANY expression is specified as
follows:

o dl_or_any expression::={ ALL |ANY | SOME} (subquery)

The following example select the authors who make the highest salary for their magazine:

SELECT auth FROM Aut hor auth
VWHERE aut h. sal ary >= ALL(SELECT a. sal ary FROM Aut hor a WHERE a. nagazi ne = aut h. nagazi ne)

10.2.5.15. JPQL Subqueries

Subqueries may be used in the WHERE or HAVI NG clause. The syntax for subqueriesis as follows:

104

JPA Query

* subquery ::= simple_select_clause subquery_from_clause [where_clause] [groupby_clause] [having_clause]

Subqueries are restricted to the WHERE and HAVI NG clauses in this release. Support for subqueriesin the FROM clause will be
considered in alater release of the specification.
» simple select_clause ::= SELECT [DISTINCT] simple_select_expression

» subquery_from_clause ::= FROM subselect_identification_variable declaration {, subse-
lect_identification variable declaration}*

 subselect_identification_variable declaration ::= identification_variable declaration | association_path_expression [AS] identi-
fication_variable | collection_member_declaration

» simple_select_expression ::= single_valued_path_expression | aggregate_expression | identification_variable

Examples:

SELECT DI STI NCT auth FROM Aut hor auth
WHERE EXI STS (SELECT spouseAut h FROM Aut hor spouseAuth WHERE spouseAuth = auth. spouse)

SELECT mag FROM Magazi ne mag
WHERE (SELECT COUNT(art) FROM neg.articles art) > 10

Note that some contexts in which a subquery can be used require that the subquery be a scalar subquery (i.e., produce asingle
result). Thisisillustrated in the following example involving a numeric comparison operation.

SELECT goodPubl i sher FROM Publ i sher goodPubl i sher
WHERE goodPubl i sher.revenue < (SELECT AVGQ p.revenue) FROM Publisher p)

10.2.5.16. JPQL Functional Expressions

The JPQL includes the following built-in functions, which may be used in the WHERE or HAVI NG clause of a query. If the value
of any argument to afunctional expression is null or unknown, the value of the functional expression is unknown.

10.2.5.16.1. JPQL String Functions

« functions_returning_strings ::= CONCAT(string_primar y, string_primary) | SUBSTRING(string_primar y,
simple_arithmetic_expression, simple_arithmetic_expression) | TRIM([[trim_specification] [trim_character] FROM]
string_primary) | LOWER(string_primar y) | UPPER(string_primar y)

o trim_specification ::= LEADING | TRAILING | BOTH
« functions _returning_numerics ::= LENGTH(string_primar y) | LOCATE(string_primar y, string_primar y][,

simple_arithmetic_expression])

The CONCAT function returns a string that is a concatenation of its arguments. The second and third arguments of the SUB-
STRI NG function denote the starting position and length of the substring to be returned. These arguments are integers. The first

105

JPA Query

position of astring is denoted by 1. The SUBSTRI NG function returns a string. The TRI Mfunction trims the specified character
from astring. If the character to be trimmed is not specified, it is assumed to be space (or blank). The optional trim_character isa
single-character string literal or a character-valued input parameter (i.e., char or Character). If atrim specification is not provided,
BOTH s assumed. The TRI Mfunction returns the trimmed string. The LOVER and UPPER functions convert a string to lower and
upper case, respectively. They return a string. The LOCATE function returns the position of a given string within a string, starting
the search at a specified position. It returns the first position at which the string was found as an integer. The first argument is the
string to be located; the second argument is the string to be searched; the optional third argument is an integer that represents the
string position at which the search is started (by default, the beginning of the string to be searched). The first positionin astring is
denoted by 1. If the string is not found, O isreturned. The LENGTH function returns the length of the string in charactersasan in-

teger.
10.2.5.16.2. JPQL Arithmetic Functions

« functions_returning_numerics ::= ABS(simple_arithmetic_expression) | SQRT(simple_arithmetic_expression) |
MOD(simple_arithmetic_expression, simple_arithmetic_expression) | SIZE(collection_valued_path_expression)

The ABS function takes a numeric argument and returns a number (integer, float, or double) of the same type as the argument to
the function. The SQRT function takes a numeric argument and returns a double.

Note that not all databases support the use of atrim character other than the space character; use of this argument may result in
gueriesthat are not portable. Note that not all databases support the use of the third argument to LOCATE; use of this argument
may result in queries that are not portable.

The MOD function takes two integer arguments and returns an integer. The Sl ZE function returns an integer value, the number of
elements of the collection. If the collection is empty, the SI ZE function evaluates to zero. Numeric arguments to these functions
may correspond to the numeric Java object types as well as the primitive numeric types.

10.2.5.16.3. JPQL Datetime Functions

functions_returning_datetime:= CURRENT_DATE | CURRENT_TIME | CURRENT_TIMESTAMP

The datetime functions return the value of current date, time, and timestamp on the database server.

10.2.6. JPQL GROUP BY, HAVING

The GROUP BY construct enables the aggregation of values according to a set of properties. The HAVI NG construct enables con-
ditions to be specified that further restrict the query result. Such conditions are restrictions upon the groups. The syntax of the
GROUP BY and HAVI NG clausesis asfollows:

» groupby clause ::= GROUP BY groupby_item {, groupby_item}*
 groupby_item ::=single_valued_path_expression | identification_variable

* having_clause ::= HAVING conditional _expression

If aquery contains both a WHERE clause and a GROUP BY clause, the effect is that of first applying the where clause, and then
forming the groups and filtering them according to the HAVI NG clause. The HAVI NG clause causes those groups to be retained
that satisfy the condition of the HAVI NG clause. The requirements for the SELECT clause when GROUP BY is used follow those
of SQL: namely, any item that appears in the SELECT clause (other than as an argument to an aggregate function) must also ap-
pear in the GROUP BY clause. In forming the groups, null values are treated as the same for grouping purposes. Grouping by an
entity is permitted. In this case, the entity must contain no serialized state fields or |ob-valued state fields. The HAVI NG clause
must specify search conditions over the grouping items or aggregate functions that apply to grouping items.

106

JPA Query

If thereisno GROUP BY clause and the HAVI NG clauseis used, the result is treated as a single group, and the select list can
only consist of aggregate functions. When a query declares a HAVI NG clause, it must always also declare a GROUP BY clause.

10.2.7. JPQL SELECT Clause

The SELECT clause denotes the query result. More than one value may be returned from the SELECT clause of aquery. The
SELECT clause may contain one or more of the following elements: a single range variable or identification variable that ranges
over an entity abstract schematype, a single-valued path expression, an aggregate select expression, a constructor expression. The
SELECT clause has the following syntax:

» select_clause ::= SELECT [DISTINCT] select_expression {, select_expression}*

» select_expression ::=single valued path_expression | aggregate expression | identification variable | OB-
JECT (identification_variabl€) | constructor_expression

* constructor_expression ::= NEW constructor_name (constructor_item {, constructor_item}*)
 constructor_item ::= single_valued path_expression | aggregate _expression
» aggregate_expression ::={ AVG | MAX |MIN | SUM } ([DISTINCT] state field_path_expression) | COUNT ([DISTINCT]

identification_variable | state field path_expression | single_valued association_path_expression)

For example:

SELECT pub.id, pub.revenue
FROM Publ i sher pub JO N pub. magazi nes mag WHERE nmg. price > 5.00

Note that the SELECT clause must be specified to return only single-valued expressions. The query below is therefore not valid:

SELECT mag. aut hors FROM Magazi ne AS nmag

The DI STI NCT keyword is used to specify that duplicate values must be eliminated from the query result. If DI STI NCT is not
specified, duplicate values are not eliminated. Standalone identification variables in the SELECT clause may optionally be quali-
fied by the OBJECT operator. The SELECT clause must not use the OBJECT operator to qualify path expressions.

10.2.7.1. JPQL Result Type of the SELECT Clause

The type of the query result specified by the SELECT clause of aquery is an entity abstract schematype, a state-field type, the
result of an aggregate function, the result of a construction operation, or some sequence of these. The result type of the SELECT
clause is defined by the result types of the select_expressions contained in it. When multiple select_expressions are used in the
SELECT clause, the result of the query is of type Object[], and the elements in this result correspond in order to the order of their
specification in the SELECT clause and in type to the result types of each of the select_expressions. The type of the result of a se-
lect_expression isasfollows:

» Asingle valued path_expression that isastate field path expression resultsin an object of the same type as the correspond-
ing state field of the entity. If the state field of the entity isa primitive type, the corresponding object typeis returned.

» single valued path expression that isasingle valued_association _path_expression resultsin an entity object of the type of the
relationship field or the subtype of the relationship field of the entity object as determined by the object/relational mapping.

107

JPA Query

» Theresult type of an identification variableisthe type of the entity to which that identification variable corresponds or a sub-
type as determined by the object/relational mapping.

e Theresult type of aggregate expression is defined in section Section 10.2.7.4, “ JPQL Aggregate Functions” [108]

» Theresult type of a constructor_expression is the type of the class for which the constructor is defined. The types of the argu-
ments to the constructor are defined by the above rules.

10.2.7.2. JPQL Constructor Expressions

A constructor may be used in the SELECT list to return one or more Javainstances. The specified classis not required to be an
entity or to be mapped to the database. The constructor name must be fully qualified.

If an entity class nameis specified in the SELECT NEWCclause, the resulting entity instances are in the new state.

SELECT NEW com conpany. Publ i sher| nfo(pub.id, pub.revenue, nag.price)
FROM Publ i sher pub JO N pub. magazi nes mag WHERE nmg. price > 5.00

10.2.7.3. JPQL Null Values in the Query Result

If the result of aquery corresponds to a association-field or state-field whose value is null, that null valueis returned in the result
of the query method. Thel S NOT NULL construct can be used to eliminate such null values from the result set of the query.
Note, however, that state-field types defined in terms of Java numeric primitive types cannot produce NULL valuesin the query
result. A query that returns such a state-field type as aresult type must not return anull value.

10.2.7.4. JPQL Aggregate Functions

Theresult of aquery may be the result of an aggregate function applied to a path expression. The following aggregate functions
can be used in the SELECT clause of aquery: AVG, COUNT, MAX, M N, SUM For all aggregate functions except COUNT, the path
expression that is the argument to the aggregate function must terminate in a state-field. The path expression argument to COUNT
may terminate in either a state-field or a association-field, or the argument to COUNT may be an identification variable. Argu-
ments to the functions SUMand AVG must be numeric. Arguments to the functions MAX and M N must correspond to orderable
state-field types (i.e., numeric types, string types, character types, or date types). The Javatypethat is contained in the result of a
guery using an aggregate function is as follows:

» COUNT returns Long.
* MAX; M Nreturn the type of the state-field to which they are applied.
* AVGreturns Double.

» SUMreturns Long when applied to state-fields of integral types (other than Biglnteger); Double when applied to state-fields of
floating point types; Biglnteger when applied to state-fields of type Biglnteger; and BigDecimal when applied to state-fields of
type BigDecimal. If SUM , AVG, MAX, or M N isused, and there are no values to which the aggregate function can be applied,
the result of the aggregate functionis NULL. If COUNT is used, and there are no values to which COUNT can be applied, the
result of the aggregate function is 0.

The argument to an aggregate function may be preceded by the keyword DI STI NCT to specify that duplicate values are to be
eliminated before the aggregate function is applied. It islegal to specify DI STI NCT with MAX or M N, but it does not affect the
result. Null values are eliminated before the aggregate function is applied, regardless of whether the keyword DI STI NCT is spe-
cified.

108

JPA Query

10.2.7.4.1. JPQL Aggregate Examples

The following query returns the average price of all magazines:

SELECT AVG mag. price) FROM Magazi ne nag

The following query returns the sum of all the prices from all the magazines published by 'Larry":

SELECT SUM mag. price) FROM Publisher pub JO N pub. negazi nes mag pub.firstNanme = 'Larry’

The following query returns the total number of magazines:

SELECT COUNT(rmag) FROM Magazi ne nmag

10.2.8. JPQL ORDER BY Clause

The ORDER BY clause allows the objects or values that are returned by the query to be ordered. The syntax of the ORDER BY
clauseis

 orderby clause::= ORDER BY orderby _item {, orderby_item}*
» orderby item ::= state field_path expression [ASC | DESC]
When the ORDER BY clauseis used in aquery, each element of the SELECT clause of the query must be one of the following:

an identification variable x, optionally denoted as OBJECT(x) , asingle valued association_path_expression, or a
state field_path _expression. For example:

SELECT pub FROM Publ i sher pub ORDER BY pub.revenue, pub. nane

If more than one orderby_item is specified, the | eft-to-right sequence of the orderby _item elements determines the precedence,
whereby the leftmost orderby _item has highest precedence. The keyword ASC specifies that ascending ordering be used; the
keyword DESC specifies that descending ordering be used. Ascending ordering is the default. SQL rules for the ordering of null
values apply: that is, al null values must appear before all non-null values in the ordering or all null values must appear after all
non-null valuesin the ordering, but it is not specified which. The ordering of the query result is preserved in the result of the
guery method if the ORDER BY clauseis used.

10.2.9. JPQL Bulk Update and Delete

Bulk update and delete operations apply to entities of a single entity class (together with its subclasses, if any). Only one entity
abstract schema type may be specified in the FROMor UPDATE clause. The syntax of these operationsis as follows:

» update statement ::= update clause [where clause]

e update clause::= UPDATE abstract_schema name [[AS] identification_variable] SET update item {, update_item}*

109

JPA Query

» update item ::=[identification_variable]{ state field | single valued association field} = new_vaue

» new_value::=simple_arithmetic_expression | string_primary | datetime_primary | boolean_primary | enum_primary
simple_entity_expression | NULL

» delete_statement ::= delete_clause [where _clause]

 delete clause::= DELETE FROM abstract_schema name [[AS] identification_variabl€]

The syntax of the WHERE clause is described in Section 10.2.4, * JPQL WHERE Clause” [99]. A delete operation only applies
to entities of the specified class and its subclasses. It does not cascade to related entities. The new_value specified for an update
operation must be compatible in type with the state-field to which it is assigned. Bulk update maps directly to a database update
operation, bypassing optimistic locking checks. Portable applications must manually update the value of the version column, if
desired, and/or manually validate the value of the version column. The persistence context is not synchronized with the result of
the bulk update or delete. Caution should be used when executing bulk update or del ete operations because they may result inin-
consistencies between the database and the entities in the active persistence context. In general, bulk update and delete operations
should only be performed within a separate transaction or at the beginning of atransaction (before entities have been accessed
whose state might be affected by such operations).

Examples:

DELETE FROM Publ i sher pub WHERE pub. revenue > 1000000. 0

DELETE FROM Publ i sher pub WHERE pub.revenue = 0 AND pub. nagazi nes | S EMPTY

UPDATE Publ i sher pub SET pub.status = 'outstanding'
WHERE pub. revenue < 1000000 AND 20 > (SELECT COUNT(mag) FROM pub.nmagazi nes nag)

10.2.10. JPQL Null Values

When the target of areference does not exist in the database, its valueis regarded as NULL. SQL 92 NULL semantics definesthe
evaluation of conditional expressions containing NULL values. The following is a brief description of these semantics:

» Comparison or arithmetic operations with a NULL value always yield an unknown value.

Two NULL values are not considered to be equal, the comparison yields an unknown value.

» Comparison or arithmetic operations with an unknown value always yield an unknown value.

Thel S NULL and1 S NOT NULL operators convert aNULL state-field or single-valued association-field value into the re-
spective TRUE or FALSE value.

Note: The JPQL defines the empty string, "", as a string with 0 length, which is not equal to aNULL value. However, NULL val-
ues and empty strings may not always be distinguished when queries are mapped to some databases. Application developers
should therefore not rely on the semantics of query comparisons involving the empty string and NULL value.

110

JPA Query

10.2.11. JPQL Equality and Comparison Semantics

Only the values of like types are permitted to be compared. A type islike another type if they correspond to the same Java lan-
guage type, or if oneis a primitive Javalanguage type and the other is the wrappered Java class type equivalent (e.g., int and In-
teger are like typesin this sense). Thereis one exception to thisrule: it isvalid to compare numeric values for which the rules of
numeric promotion apply. Conditional expressions attempting to compare non-like type values are disallowed except for this nu-
meric case. Note that the arithmetic operators and comparison operators are permitted to be applied to state-fields and input para-
meters of the wrappered Java class equivalents to the primitive numeric Java types. Two entities of the same abstract schematype
areequal if and only if they have the same primary key value. Only equality/inequality comparisons over enums are required to
be supported.

10.2.12. JPQL BNF

The following is the BNF for the Java Persistence query language, from section 4.14 of the JSR 220 specification.

» QL_statement ::= select_statement | update_statement | delete_statement

» select_statement ::= select_clause from_clause [where_clause] [groupby_clause] [having_clause] [orderby_clause]
» update_statement ::= update_clause [where clause]

» delete _statement ::= delete_clause [where _clause]

» from_clause ::= FROMidentification variable declaration {, {identification_variable declaration | collec-
tion_member_declaration} } *

* identification_variable declaration ::= range variable declaration { join | fetch_join }*

 range variable declaration ::= abstract_schema name|[AS] identification variable

* join:=join_specjoin_association_path_expression [AS] identification_variable

« fetch join::=join_spec FETCHjoin_association path_expression

 association_path_expression ::= collection_valued_path_expression | single_valued_association_path_expression
« join_spec::=[LEFT [OUTER]|I NNER] JO N

 join_association_path_expression ::=join_collection valued path_expression |
join_single valued_association_path_expression

 join_collection_valued path expression ::= identification_variable.collection valued_association field

» join_single valued_association _path expression ::= identification_variable.single valued association_field

« collection_member_declaration ::= 1 N(collection_valued path expression) [AS] identification_variable

» single valued path expression ::= state field_path _expression | single valued_association_path expression

- sate field path_expression ::= {identification_variable | single valued_association _path expression}.state field

» single valued_association path expression ::= identification_variable{single valued association_field.} *
single valued_association field

* collection_valued_path_expression ::= identifica-
tion_variable{single valued association field.}*collection_valued association field

» sate field ::= {embedded class state field.}*simple_state field

111

JPA Query

update clause ::= UPDATE abstract_schema name[[AS] identification_variable] SET update item {, update item}*
update _item ::=[identification_variable.]{ state field | single valued association_field} = new_value

new_value ::= simple_arithmetic_expression | string_primary | datetime_primary | boolean_primary | enum_primary
simple_entity_expression | NULL

delete clause ::= DELETEFROMabstract schema name [[AS] identification_variabl€]
select_clause ::= SELECT [DI STI NCT] select_expression {, select_expression}*

select_expression ::= single_valued_path_expression | aggregate_expression | identification_variable | OBJECT
(identification_variable)| constructor_expression

constructor_expression ::= NEWconstructor_name(constructor_item {, constructor_item}*)
constructor_item ::= single_valued_path_expression | aggregate_expression

aggregate_expression ::={ AVG| MAX |M N| SUM} ([DI STI NCT] state field path_expression) | COUNT ([DI STI NCT]
identification_variable | state field path_expression | single_valued association_path_expression)

where_clause ::= WHERE conditional_expression

groupby_clause ::= GROUPBY groupby_item {, groupby_item}*

groupby_item ::= single_valued path_expression | identification_variable

having_clause ::= HAVI NG conditional _expression

orderby_clause ::= ORDERBY orderby_item {, orderby_item}*

orderby_item ::= state field path_expression [ASC | DESC]

subquery ::= simple_select_clause subquery_from_clause [where_clause] [groupby_clause] [having_clause]

subquery_from_clause ::= FROMsubselect_identification_variable declaration {, subse-
lect_identification variable declaration}*

subselect_identification_variable declaration ::= identification_variable_declaration | association_path_expression[AS]
identification_variable | collection_member_declaration

simple_select clause ::= SELECT [DI STI NCT] simple_select_expression

simple_select expression ::= single valued path_expression | aggregate_expression | identification variable
conditional_expression ::= conditional_term | conditional _expression OR conditional_term

conditional_term ::= conditional_factor | conditional_term AND conditional_factor

conditional_factor ::=[NOT] conditional_primary

conditional_primary ::= simple_cond_expression |(conditional_expression)

simple_cond_expression ::= comparison_expression | between_expression | like_expression | in_expression |
null_comparison_expression | empty_collection_comparison_expression | collection_member_expression | exists_expression

between_expression ::= arithmetic_expression [NOT | BETWEEN arithmetic_expression AND arithmetic_expression |
string_expression [NOT | BETWEEN string_expression AND string_expression | datetime_expression [NOT] BETVEEEN date-
time_expression AND datetime_expression

112

JPA Query

in_expression ::= state field path _expression[NOT] | N (in_item {, in_item}* | subquery)

in_item ::=literal | input_parameter

like_expression ::= string_expression [NOT] LI KE pattern_value [ESCAPE escape_character]
null_comparison_expression ::= {single_valued_path_expression | input_parameter} | S[NOT] NULL
empty_collection_comparison_expression ::= collection_valued path _expression | S| NOT | EMPTY
collection_member_expression ::= entity_expression [NOT | MEMBER|[OF] collection_valued path_expression

exists expression ::=[NOT] EXI STS (subquery)

al_or_any expression ::={ ALL | ANY | SOVE } (subquery)

comparison_expression ::= string_expressioncomparison_operator{ string_expression|all_or_any_expression}|
boolean_expression { =|<>} {boolean_expression | all_or_any_expression} | enum_expression { =|<>} {enum_expression |
al_or_any expression} | datetime_expression comparison_operator { datetime_expression | all_or_any expression} | en-
tity_expression { = |<>} {entity_expression | all_or_any_expression} | arithmetic_expression comparison_operator
{arithmetic_expression | al_or_any_expression}

comparison_operator ::== [> [>= |< |[<= |<>

arithmetic_expression ::= simple_arithmetic_expression |[(subquery)

simple_arithmetic_expression ::= arithmetic_term | simple_arithmetic_expression {+ |- } arithmetic_term
arithmetic_term ::= arithmetic_factor | arithmetic_term {* |/ } arithmetic_factor

arithmetic_factor ::= [{+ |-}] arithmetic_primary

arithmetic_primary ::= state field_path_expression | numeric_literal | (simple_arithmetic_expression) | input_parameter | func-
tions_returning_numerics | aggregate_expression

string_expression ::= string_primary |(subquery)

string_primary ::= state field path_expression | string_literal | input_parameter | functions_returning_strings | aggreg-
ate_expression

datetime_expression ::= datetime_primary |(subquery)

datetime_primary ::= state field path _expression | input_parameter | functions_returning_datetime | aggregate _expression
boolean_expression ::= boolean_primary |(subquery)

boolean_primary ::= state field path_expression | boolean_literal | input_parameter |

enum_expression ::= enum_primary |(subquery)

enum_primary ::= state field path _expression | enum_litera | input_parameter |

entity_expression ::= single_valued_association_path_expression | simple_entity_expression

simple_entity _expression ::= identification_variable | input_parameter

functions_returning_numerics ::= LENGTH (string_primary)| LOCATE (string_primary,string_primary [,

simple_arithmetic_expression]) | ABS (simple_arithmetic_expression) | SQRT (simple_arithmetic_expression) | MOD
(simple_arithmetic_expression, simple_arithmetic_expression) | SI ZE (collection_valued path_expression)

113

JPA Query

* functions_returning_datetime ::= CURRENT_DATE | CURRENT_TI ME | CURRENT_TI MESTAMP

* functions_returning_strings ::= CONCAT (string_primary, string_primary) | SUBSTRI NG (string_primary,
simple_arithmetic_expression,simple_arithmetic_expression)| TRI M ([[trim_specification] [trim_character] FROM]
string_primary) | LONER (string_primary) | UPPER (string_primary)

« trim_specification ::= LEADI NG| TRAI LI NG| BOTH

114

Chapter 11. SQL Queries

JPQL isapowerful query language, but there are times when it is not enough. Maybe you're migrating a JDBC application to JPA
on a strict deadline, and you don't have time to translate your existing SQL selects to JPQL. Or maybe a certain query reguires
database-specific SQL your JPA implementation doesn't support. Or maybe your DBA has spent hours crafting the perfect select
statement for a query in your application's critical path. Whatever the reason, SQL queries can remain an essential part of an ap-
plication.

Y ou are probably familiar with executing SQL queries by obtaining aj ava. sql . Connect i on, using the JDBC APIsto cre-
atea St at enent , and executing that St at enment to obtain aResul t Set . And of course, you are free to continue using this
low-level approach to SQL execution in your JPA applications. However, JPA also supports executing SQL queries through the
j avax. per si st ence. Query interface introduced in Chapter 10, JPA Query [79]. Using a JPA SQL query, you can re-
trieve either persistent objects or projections of column values. The following sections detail each use.

11.1. Creating SQL Queries

TheEnt i t yManager hastwo factory methods suitable for creating SQL queries:

public Query createNativeQuery(String sql String, Cl ass resultC ass);
public Query createNativeQuery(String sql String, String resultSetMapping);

Thefirst method is used to create anew Quer y instance that will return instances of the specified class.

The second method uses a Sql Resul t Set Mappi ng to determine the type of object or objects to return. The example below
shows these methods in action.

Example 11.1. Creating a SQL Query

EntityManager em= ...;
Query query = em createNati veQuery("SELECT * FROM MAG', Magazi ne. cl ass);
processMagazi nes(query. get ResultList());

In addition to SELECT statements, OpenJPA supports stored procedure invocations as SQL queries. OpenJPA will as-
sume any SQL that does not begin with the SELECT keyword (ignoring case) is a stored procedure call, and invoke it as
such at the JIDBC level.

11.2. Retrieving Persistent Objects with SQL

When you give a SQL Quer y acandidate class, it will return persistent instances of that class. At aminimum, your SQL must
select the class primary key columns, discriminator column (if mapped), and version column (also if mapped). The JPA runtime
uses the values of the primary key columns to construct each result object's identity, and possibly to match it with a persistent ob-
ject dready inthe Ent i t yManager 's cache. When an object is not already cached, the implementation creates a new object to
represent the current result row. It might use the discriminator column value to make sure it constructs an object of the correct

115

SQL Queries

subclass. Finally, the query records available version column data for use in optimistic concurrency checking, should you later
change the result object and flush it back to the database.

Aside from the primary key, discriminator, and version columns, any columns you select are used to populate the persistent fields
of each result object. JPA implementations will compete on how effectively they map your selected data to your persistent in-
stance fields.

L et's make the discussion above concrete with an example. It uses the following simple mapping between a class and the data-
base:

org.mag

Magazine
- isbn: String
- title: String
- price: double
- capiesSaold: int

Example 11.2. Retrieving Persistent Objects

Query query = em createNati veQuery("SELECT | SBN, TITLE, PRICE, "

+ "VERS FROM MAG WHERE PRICE > 5 AND PRI CE < 10", Magazi ne.cl ass);
Li st <Magazi ne> results = (List<Magazi ne>) query.getResultList();
for (Magazine mag : results)

processMagazi ne(mag) ;

The query above works as advertised, but isn't very flexible. Let's update it to take in parameters for the minimum and maximum
price, so we can reuse it to find magazinesin any price range:

Example 11.3. SQL Query Parameters

Query query = em createNativeQuery("SELECT | SBN, TITLE, PRICE, "
+ "VERS FROM MAG WHERE PRI'CE > ?1 AND PRI CE < ?2", Magazi ne.cl ass);

query. set Parameter (1, 5d);
query. set Paraneter (2, 10d);

Li st <Magazi ne> results = (List<Magazi ne>) query.getResultList();
for (Magazine mag : results)
processMagazi ne (mag);

Like JDBC prepared statements, SQL queries represent parameters with question marks, but are followed by an integer to repres-
ent itsindex.

116

Chapter 12. Mapping Metadata

Object-relational mapping is the process of mapping entities to relational database tables. In JPA, you perform object/relational
mapping through mapping metadata. Mapping metadata uses annotations to describe how to link your object model to your rela-
tional model.

OpenJPA offers tools to automate mapping and schema creation. See Chapter 7, Mapping [2574h the Reference Guide.

Throughout this chapter, we will draw on the object model introduced in Chapter 5, Metadata [25]. We present that model again
below. Aswe discuss various aspects of mapping metadata, we will zoom in on specific areas of the model and show how we
map the object layer to the relational layer.

org.mag org.mag.pub
Author
authors™ * |~id: long
- firstName: String
| Article - lastName: String
gLy - arts® — - version: int
- title: String
- content: byte(] T
- version: int address
Address
- street: String
coverArticle articles® - city: String
| | - state: String
Magazine - Zip: String
- isbn: String |
- title: String i
- price: double putlisher address
- copiesSold: int - Company
- version: int - mags® — -id:long
- name: String
- revenue: double
- version: int
I
magazine subscriptions®
Lineltern_ __Subscription LifetimeSubscription
- comments: String -id: long —elileClub: boolean
- price: double - iterms” - - StartDate: Date
- num: long - payment: double
- version: int
‘L TrialSubscription
Doc - endDate: Date
Contract ~Tdiomg L
-~ ST —*|-version: int
org.mag.subscribe

All mapping metadata is optional. Where no explicit mapping metadatais given, JPA uses the defaults defined by the specifica-
tion. Aswe present each mapping throughout this chapter, we also describe the defaults that apply when the mapping is absent.

117

Mapping Metadata

Mapping metadata is used primarily with schema generation. This metadata should not be relied upon for validation pri-
or to communicating with the database. For example using the @Column(nullable=false) annotation does not do up front
validation that the value in the entity is correct.

12.1. Table

The Tabl e annotation specifies the table for an entity class. If you omit the Tabl e annotation, base entity classes default to a
table with their unqualified class name. The default table of an entity subclass depends on the inheritance strategy, as you will see
in Section 12.6, “ Inheritance” [128]

Tabl eshave the following properties:

* String nane: The name of the table. Defaults to the unqualified entity class name.

e String schema: Thetable's schema. If you do not name a schema, JPA uses the default schemafor the database connec-
tion.

* String catal og: Thetable's catalog. If you do not name a catalog, JPA uses the default catalog for the database connec-
tion.

* Uni queConstraint[] uniqueConstraints:Anarray of unique constraints to place on the table. We cover unique
constraints below. Defaults to an empty array.

The equivalent XML element ist abl e. It has the following attributes, which correspond to the annotation properties above:

* nane
* schema

e catal og

Thet abl e element also accepts nested uni que- const r ai nt elements representing unique constraints. We will detail
unigue constraints shortly.

Sometimes, some of the fieldsin a class are mapped to secondary tables. In that case, use the class Tabl e annotation to name
what you consider the class' primary table. Later, we will see how to map certain fields to other tables.

The example below maps classes to tables to separate schemas. The CONTRACT, SUB, and LI NE_| TEM tablesarein the
CNTRCT schema; al other tables are in the default schema.

Example 12.1. Mapping Classes

package org. nag;

@ntity

@ dCl ass(Magazi ne. Magazi nel d. cl ass)
@rabl e(name="MAG'")

public class Magazine {

public static class Magazineld {

}
}

@ntity
@abl e(name="ART")

118

Mapping Metadata

public class Article {

}

package org. nag. pub;

@ntity
@abl e(name=" COVP")
public class Conpany {

}

@ntity
@rabl e(nane="AUTH")
public class Author {

}

@nbeddabl e

public class Address {
}

package org. nag. subscri be;

@MmppedSuper cl ass
publ i ¢ abstract class Docunment {

}

@ntity

@rabl e(schema=" CNTRCT")

public class Contract
extends Document {

}

@ntity
@abl e(name="SUB", schema="CNTRCT")
public class Subscription {

@ntity
@abl e(name="LI NE_| TEM', schema="CNTRCT")
public static class Lineltem

extends Contract {

}

@ntity(name="Lifetime")
public class LifetimeSubscription
extends Subscription {

}

@Entity(name="Trial")
public class Trial Subscription
ext ends Subscription {

The same mapping information expressed in XML:

<entity-mappi ngs xm ns="http://java. sun. conl xn / ns/ persi stence/ or n
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schera- i nst ance"
xsi : schemaLocati on="http://] ava. sun. com xm / ns/ per si stence/orm orm 1_0. xsd"
version="1.0">
<mapped- super cl ass cl ass="org. mag. subscri be. Docunent " >

</ mapped- super cl ass>
<entity class="org.nmag. Magazi ne">
<t abl e name="MAG'/ >
<i d-cl ass="org. nag. Magazi ne. Magazi nel d"/ >

</entity>

<entity class="org.mag. Article">
<t abl e nane="ART"/>

</entity>

<entity class="org. mag. pub. Conpany" >
<t abl e name="COW"/ >

</eniiiy>

119

Mapping Metadata

<entity class=" org. mg. pub. Aut hor " >
<t abl e nane="AUTH'/ >

</enti ty>
<entity class="org. mag. subcribe. Contract">
<tabl e schema="CNIRCT"/>

</entity>

<entity class="org.mg. subcribe. Subscription">
<t abl e name="SUB" schema="CNTRCT"/>

</entity>

<entity class=" org. mag. subscri be. Subscri pt | on. Li nel tent >
<tabl e name="LI NE_| TEM' schenma="CNTRCT"/ >

</enti ty>

<entity class="org.mg. subscribe. LifetimeSubscription" name="Lifetinme">
</ ent iiy>

<entity class="org.mg. subscribe. Tri al Subscri ption" name="Trial ">

</ ent iiy>

<enbeddabl e cl ass="org. mag. pub. Addr ess" >

</ enbeddabl e>
</ entity-mappi ngs>

12.2.

Unique Constraints

Unique constraints ensure that the data in a column or combination of columns is unique for each row. A table's primary key, for
example, functions as an implicit unique constraint. In JPA, you represent other unique constraints with an array of Uni que-
Const r ai nt annotations within the table annotation. The unique constraints you define are used during table creation to gener-
ate the proper database constraints, and may also be used at runtime to order | NSERT, UPDATE , and DEL ETE statements. For
example, suppose there is a unique constraint on the columns of field F. In the same transaction, you remove an object A and per-
sist anew object B, both with the same F value. The JPA runtime must ensure that the SQL deleting A is sent to the database be-
fore the SQL inserting B to avoid a unique constraint violation.

Uni queConst r ai nt hasasingle property:

* String[] col unmNanes: The names of the columns the constraint spans.

In XML, unique constraints are represented by nesting uni que- const r ai nt elementswithinthet abl e element. Each
uni que- const rai nt element in turn nestscol umMm- nane text elements to enumerate the contraint's columns.

Example 12.2. Defining a Unique Constraint

The following defines a unique constraint on the Tl TLE column of the ART table;

@ntity
@abl e(name="ART", uni queConstrai nt s=@Jhni que(col utmNanes="TIl TLE"))
public class Article {

}

The same metadata expressed in XML form:

<entity class="org.mg.Article">
<t abl e nane="ART">
<uni que- constrai nt >

120

Mapping Metadata

<col um- nanme>Tl TLE</ col um- nanme>
</ uni que- constrai nt >
</tabl e>

</ eniiiy>

12.3. Column

In the previous section, we saw that aUni queConst r ai nt usesan array of column names. Field mappings, however, use full-

fledged Col um annotations. Column annotations have the following properties:

e String nane: The column name. Defaults to the field name.

e String columbDefi ni ti on: The database-specific column type name. This property is only used by vendors that sup-
port creating tables from your mapping metadata. During table creation, the vendor will use the value of the col urmDef i n-
i ti on asthedeclared column type. If nocol urmDef i ni ti on isgiven, the vendor will choose an appropriate default
based on the field type combined with the column's length, precision, and scale.

* int | ength: The column length. This property istypicaly only used during table creation, though some vendors might use
it to validate data before flushing. CHAR and VARCHAR columns typically default to alength of 255; other column types use
the database defaullt.

e int precision: Theprecision of anumeric column. This property is often used in conjunction with scal e to form the
proper column type name during table creation.

e int scal e: The number of decimal digits a numeric column can hold. This property is often used in conjunction with pr e-
ci si on toform the proper column type name during table creation.

* bool ean nul | abl e: Whether the column can store null values. Vendors may use this property both for table creation and
at runtime; however, it is never required. Defaultstot r ue.

» bool ean i nsert abl e: By setting this property to f al se, you can omit the column from SQL | NSERT statements. De-
faultstot r ue.

* bool ean updat abl e: By setting this property to f al se, you can omit the column from SQL UPDATE statements. De-
faultstot r ue.

» String tabl e: Sometimesyou will need to map fields to tables other than the primary table. This property allows you spe-
cify that the column resides in a secondary table. We will see how to map fields to secondary tables |ater in the chapter.

The equivalent XML element iscol umm. This element has attributes that are exactly equivalent to the Col urm annotation's
properties described above:

e name

e col um-definition

* length

* precision

e scale

insertabl e

121

Mapping Metadata

e updat abl e

e table

12.4. Identity Mapping

With our new knowledge of columns, we can map the identity fields of our entities. The diagram below now includes primary
key columns for our model'stables. The primary key column for Aut hor uses nonstandard type | NTEGER64, and the

Magazi ne. i sbn fieldis mapped to a VARCHAR(9) column instead of a VARCHAR(255) column, which is the default for
string fields. We do not need to point out either one of these oddities to the JPA implementation for runtime use. If, however, we
want to use the JPA implementation to create our tables for us, it needs to know about any desired non-default column types.
Therefore, the example following the diagram includes this datain its encoding of our mappings.

org.mag org.mag.pub
Magazine Company
- isbn: String -id: lang
- title: String
Article Author
-id: long - = - - - id: long
Trial Document
Subseription [7] -id: long Contract [---#
I 10 BIGI
1 "
Subscription |
-id: long L_.
|
! Lineltern | === =
Lifetime | __J: — _
Subscription
—— urg.mﬂg.ﬁuhﬂﬂrlbﬂ

Note that many of our identity fields do not need to specify column information, because they use the default column name and
type.

Example 12.3. I dentity Mapping

package org. nag;

@Entity

@ dd ass(Magazi ne. Magazi nel d. cl ass)
@rabl e(name="MAG'")

public class Magazine {

@col um(| engt h=9)

@d private String isbn;
@d private String title;

public static class Magazineld {

}
}

@ntity
@rabl e(name="ART", uni queConstrai nt s=@ni que(col uimNanes="TI TLE"))

122

Mapping Metadata

public class Article {

@d private long id;

package org. mag. pub;

@ntity
@abl e(nane="COVP")
public class Conpany {

@col um(name="Cl D")
@d private long id;

}

@ntity

@rabl e(name="AUTH")
public class Author {

@ol um(name="Al D', col umbDefi niti on="1NTEGER64")
@d private long id;

}

@ nbeddabl e

public class Address {
) ce

package org. mag. subscri be;

@bppedSuper cl ass
publ i ¢ abstract class Docunent {

@d
@ener at edVal ue(strat egy=Cener ati onType. | DENTI TY)
private long id;

}

@ntity

@abl e(schema="CNTRCT")

public class Contract
ext ends Docunent {

}

@ntity
@abl e(name="SUB", schema="CNTRCT")
public class Subscription {

@d private long id;

@ntity
@rabl e(name="LI NE_| TEM', schema="CNTRCT")
public static class Lineltem

extends Contract {

}

@Entity(name="Lifetine")
public class LifetineSubscription
ext ends Subscription {

}

@ntity(name="Trial")
public class Trial Subscription
extends Subscription {

The same metadata for Magazi ne and Conpany expressed in XML form:

<entity cl ass="org.mg. Magazi ne">

123

Mapping Metadata

<id-class cl ass="org. mg. Magazi ne. Magazi ne. Magazi nel d"/ >
<t abl e nane="MAG'/ >
<attributes>

<i d name="ishbhn">

</id>

<id name="title"/>

</attributes>
</entity>
<entity class=" org. mag. pub. Conpany" >
<t abl e name="COW"/ >
<attributes>
<id name="id">
<col um nanme="Cl D'/ >
</id>

</attribut es>
</entity>

12.5. Generators

One aspect of identity mapping not covered in the previous section is JPA's ability to automatically assign a value to your numer-
ic identity fields using generators. We discussed the avail able generator typesin Section 5.2.2,“ Id ” [31]. Now we show you
how to define named generators.

12.5.1. Sequence Generator

Most databases allow you to create native sequences. These are database structures that generate increasing numeric values. The
SequenceCener at or annotation represents a named database sequence. Y ou can place the annotation on any package, entity
class, persistent field declaration (if your entity usesfield access), or getter method for a persistent property (if your entity uses
property access). SequenceGener at or hasthe following properties:

* String name: Thegenerator name. This property is required.

» String sequenceNane: The name of the database sequence. If you do not specify the database sequence, your vendor
will choose an appropriate default.

e int initial Val ue: Theinitial sequence value.
« int allocationSi ze: Some databases can pre-allocate groups of sequence values. This alows the database to service se-

guence requests from cache, rather than physically incrementing the sequence with every request. This alocation size defaults
to 50.

OpenJPA allows you to use one of OpenJPA's built-in generator implementationsin the sequenceName property. You
can also set the sequenceNane to syst emto use the system sequence defined by the openj pa. Sequence config-
uration property. See the Reference Guide's Section 9.6, “ Generators” [297or details.

The XML element for a sequence generator issequence- gener at or . Itsattributes mirror the above annotation's properties:

e namne

e sequence- nane

124

Mapping Metadata

 initial-value
» all ocation-size
To use a sequence generator, set your Gener at edVal ue annotation'sst r at egy property to Gener at i on-

Type. SEQUENCE, anditsgener at or property to the sequence generator's declared name. Or equivalently, set your gener -
at ed- val ue XML element'sst r at egy attribute to SEQUENCE and itsgener at or attribute to the generator name.

12.5.2. TableGenerator

A Tabl eGener at or refersto a database table used to store increasing sequence values for one or more entities. As with Se-
guenceCener at or, you can placethe Tabl eGener at or annotation on any package, entity class, persistent field declara-
tion (if your entity uses field access), or getter method for a persistent property (if your entity uses property access). Tabl eGen-
er at or hasthe following properties:

e String nane: Thegenerator name. This property is required.

* String tabl e: Thename of the generator table. If left unspecified, your vendor will choose a default table.

e String schema: The named table's schema.

» String catal og: The named table's catal og.

e String pkCol umNane: The name of the primary key column in the generator table. If unspecified, your implementation
will choose a defaullt.

e String val ueCol utmName: The name of the column that holds the sequence value. If unspecified, your implementation
will choose a default.

* String pkCol unmVal ue: The primary key column value of the row in the generator table holding this sequence value.
Y ou can use the same generator table for multiple logical sequences by supplying different pkCol untmVal ue s. If you do not
specify avalue, the implementation will supply a default.

e int initial Val ue: Thevalue of the generator's first issued number.

 int allocationSize: The number of valuesto allocate in memory for each trip to the database. Allocating valuesin

memory allows the JPA runtime to avoid accessing the database for every sequence request. This number also specifiesthe
amount that the sequence value is incremented each time the generator table is updated. Defaults to 50.

TheXI_/IL equivalent isthet abl e- gener at or element. This element's attributes correspond exactly to the above annotation's
properties:

e name

o table

* schema

e catal og

e pk-col um- nane

» val ue-col um- nane

e pk-col umm-val ue

125

Mapping Metadata

 initial-value
» all ocation-size
To use atable generator, set your Gener at edVal ue annotation'sst r at egy property to Gener at i onType. TABLE, and

itsgener at or property to the table generator's declared name. Or equivalently, set your gener at ed- val ue XML element's
st r at egy attribute to TABLE and itsgener at or attribute to the generator name.

12.5.3. Example

Let's take advantage of generatorsin our entity model. Here are our updated mappings.

Example 12.4. Generator Mapping

package org. nag;

@ntity

@ dCl ass(Magazi ne. Magazi nel d. cl ass)
@rabl e(name="MAG'")

public class Magazine {

@ol umm(| engt h=9)
@d private String isbn;
@d private String title;

public static class Magazineld {

}
}

@ntity

@abl e(nane="ART", uni queConstrai nt s=@hi que(col umNanes="TI TLE"))
@equenceCener at or(nane "ArticleSeq", sequenceName="ART_SEQ')
public class Article {

@Bener at edVal ue(strat egy=Gener ati onType. SEQUENCE, generator="Articl eSeq")
private long id;

package org. mag. pub;

@Entity
@rabl e(nane="COVP")
public class Conpany {

@col um(nanme="Cl D")
@d private long id;

}

@ntity
@rabl e(nane " AUTH")
public class Author {

@d

@zener at edVal ue(st rat egy=CGener at i onType. TABLE, gener at or =" Aut hor Gen")

@rabl eGener at or (nane=" Aut hor Gen", tabl e=" AUTH_GEN', pkCol utmNane="PK",
val ueCol umNane="Al D")

@Col um(name="Al D', col umbDefi niti on="1NTEGER64")

private long id;

}

@nbeddabl e
public class Address {

}

package org. mag. subscri be;

126

Mapping Metadata

@bppedSuper cl ass
public abstract class Document {

@d
@ener at edVal ue(gener at e=Gener at i onType. | DENTI TY)
private long id;

}

@ntity

@abl e(schema="CNTRCT")

public class Contract
extends Docunent {

}

@ntity
@abl e(nanme="SUB", schema="CNTRCT")
public class Subscription {

@d
@zener at edVal ue(st rat egy=Gener at i onType. | DENTI TY)
private long id

@ntity
@abl e(nane "LI NE_I TEM', schenma="CNTRCT")
public static class Li nel t em

extends Contract {

}

@ntity(name="Lifetime")
public class LifetimeSubscription
extends Subscription {

}

@ntity(name="Trial")
public class Trial Subscription
ext ends Subscription {

The same metadatafor Art i cl e and Aut hor expressed in XML form:

<entity class="org.mg. Article">
<t abl e name="ART">
<uni que- constrai nt >
<col um- nane>Tl TLE</ col um- nanme>
</ uni que- constrai nt >
</t abl e>
<sequence- generator name="Articl eSeq" sequence-nanme="ART_SEQ'/>
<attributes>
<id name="id">
<gener at ed- val ue strategy="SEQUENCE" generator="Articl eSeq"/>
</id>

</attributes>
</entity>
<entity class=" org. mag. pub Aut hor "
<t abl e name="AUTH
<attributes>
<id name="id">
<col um nanme="Al D' col um- defi ni ti on="1NTEGER64"/ >
<gener at ed- val ue strategy="TABLE" generat or =" Aut hor Gen"/>
<t abl e- generat or nanme="Aut hor Gen" tabl e=" AUTH CGEN'
pk- col urm- name="PK" val ue- col um- nane="Al D'/ >
</id>

</attribut es>
</entity>

127

Mapping Metadata

12.6. Inheritance

In the 1990's programmers coined the term impedance mismatch to describe the difficulties in bridging the object and relational
worlds. Perhaps no feature of object modeling highlights the impedance mismatch better than inheritance. There is no natural, ef-
ficient way to represent an inheritance relationship in arelational database.

Luckily, JPA gives you a choice of inheritance strategies, making the best of a bad situation. The base entity class definesthe in-
heritance strategy for the hierarchy with the | nher i t ance annotation. | nher i t ance hasthe following properties:

* I nheritanceType strategy: Enum value declaring the inheritance strategy for the hierarchy. Defaultsto | nheri t -
anceType. S| NGLE_TABLE. We detail each of the available strategies below.

The corresponding XML element isi nher i t ance, which has asingle attribute:
» strategy: Oneof SI NGLE_TABLE, JO NED, or TABLE_PER_CLASS.

The following sections describe JPA's standard inheritance strategies.

OpenJPA allows you to vary your inheritance strategy for each class, rather than forcing a single strategy per inheritance
hierarchy. See Section 7.7, “ Additional JPA Mappings” [269h the Reference Guide for details.

12.6.1. Single Table

Thel nheri tanceType. SI NGLE_TABLE strategy maps all classesin the hierarchy to the base class' table.

org.mag.subscribe

Subscription

T

Lifetime
Subscription

In our model, Subscri pti on ismapped to the CNTRCT. SUB table. Li f et i neSubscri pt i on, which extends Sub-
scri ption, addsitsfield datato thistable aswell.

Example 12.5. Single Table Mapping

@ntity

@abl e(nanme="SUB", schema="CNTRCT")

@ nheritance(strategy=IlnheritanceType. S| NGLE_TABLE)
public class Subscription {

}

@Entity(name="Lifetine")
public class LifetineSubscription
ext ends Subscription {

128

Mapping Metadata

The same metadata expressed in XML form:

<entity class="org. mg. subcribe. Subscription">
<t abl e name="SUB" schema="CNTRCT"/>
<i nheritance strategy="SI NGLE_TABLE"/ >
</ ent iiy>
<entity class="org.nmag. subscribe.LifetinmeSubscription">

</ eniiiy>

Single table inheritance is the default strategy. Thus, we could omit the @ nher i t ance annotation in the example above and
get the same resullt.

Mapping subclass state to the superclass table is often called flat inheritance mapping.

12.6.1.1. Advantages

Single table inheritance mapping is the fastest of al inheritance models, since it never requires ajoin to retrieve a persistent in-
stance from the database. Similarly, persisting or updating a persistent instance requires only asingle | NSERT or UPDATE state-
ment. Finally, relations to any class within a single table inheritance hierarchy are just as efficient as relations to a base class.

12.6.1.2. Disadvantages

The larger the inheritance model gets, the "wider" the mapped table gets, in that for every field in the entire inheritance hierarchy,
a column must exist in the mapped table. This may have undesirable consequence on the database size, since awide or deep in-
heritance hierarchy will result in tables with many mostly-empty columns.

12.6.2. Joined

Thel nheritanceType. JO NED strategy uses a different table for each classin the hierarchy. Each table only includes state
declared inits class. Thusto load a subclass instance, the JPA implementation must read from the subclass table as well asthe ta-
ble of each ancestor class, up to the base entity class.

Using joined subclass tablesis also called vertical inheritance mapping.

129

Mapping Metadata

org.mag.subscribe
Contract | ___
I BIGI 18
Lineltem [----#
1D BIGI

Pri mar yKeyJoi nCol unm annotationstell the JPA implementation how to join each subclass table record to the correspond-
ing record in its direct superclasstable. In our model, theLl NE_| TEM | D column joinsto the CONTRACT. | D column. The
Pr i mar yKeyJoi nCol unn annotation has the following properties:

e String name: The name of the subclass table column. When there is a single identity field, defaultsto that field's column
name,

* String referencedCol unmNare: The name of the superclass table column this subclass table column joins to. When
thereisasingleidentity field, defaults to that field's column name.

e String columDefi nition: Thisproperty hasthe same meaning asthecol urmDef i ni t i on property onthe
Col umm annotation, described in Section 12.3, “ Column ” [121].

The XML equivalentisthe pri mar y- key-j oi n- col urm element. Its attributes mirror the annotation properties described
above:

* name

» referenced- col um- nane

e col um-definition

The example below shows how we use | nher i t anceTabl e. JO NED and aprimary key join column to map our sample
model according to the diagram above. Note that a primary key join column is not strictly needed, because there is only one iden-

tity column, and the subclass table column has the same name as the superclass table column. In this situation, the defaults suf-
fice. However, we include the primary key join column for illustrative purposes.

Example 12.6. Joined Subclass Tables

@Entity
@rabl e(schema="CNTRCT")
@ nheritance(strategy=IlnheritanceType. JO NED)
public class Contract
extends Docunent {

}

public class Subscription {

@ntity
@abl e(name="LI NE_| TEM', schema="CNTRCT")
@ri mar yKeyJoi nCol unim(nane="1D", referencedCol umNanme="1D")
public static class Lineltem
extends Contract {

130

Mapping Metadata

The same metadata expressed in XML form:

<entity cl ass="org. mg. subcribe. Contract">
<tabl e schema="CNTRCT" /
<i nheritance strategy="JO NED'/ >
</ eniiiy>
<entity class=" org. mag. subscri be. Subscri ption. Li nel t ent' >
/>

<t abl e name="LI NE_| TEM' scherra— CNTRCT"
<pri mary-key-j oi n-col uim name="1D" refer enced- col urm- name="PK"/ >

</eniiiy>

When there are multiple identity columns, you must define multiple Pr i mar yKeyJoi nCol unms using the aptly-named
Pri mar yKeyJoi nCol unms annotation. This annotation's valueis an array of Pr i mar yKeyJoi nCol unm s. We could re-
write Li nel t enis mapping as:

@ntity
@rabl e(name="LI NE_| TEM', schema="CNTRCT")
@ri mar yKeyJoi nCol umms({
@r i mar yKeyJoi nCol uim(nane="1D", referencedCol umNane="1D")

1
public static class Lineltem
extends Contract {

}

In XML, simply list asmany pri mar y- key-j oi n- col unm elements as necessary.

12.6.2.1. Advantages

Thejoined strategy has the following advantages:
1. Using joined subclass tables results in the most normalized database schema, meaning the schema with the least spurious or
redundant data.

2. Asmore subclasses are added to the data model over time, the only schema modification that needs to be made is the addition
of corresponding subclass tables in the database (rather than having to change the structure of existing tables).

3. Relationsto abase class using this strategy can be loaded through standard joins and can use standard foreign keys, as op-
posed to the machinations required to load polymorphic relations to table-per-class base types, described below.

12.6.2.2. Disadvantages

Aside from certain uses of the table-per-class strategy described below, the joined strategy is often the slowest of the inheritance
models. Retrieving any subclass requires one or more database joins, and storing subclasses requires multiple | NSERT or UP-
DATE statements. Thisis only the case when persistence operations are performed on subclasses; if most operations are per-
formed on the |east-derived persistent superclass, then this mapping is very fast.

131

Mapping Metadata

When executing a select against a hierarchy that uses joined subclass table inheritance, you must consider how to load
subclass state. Section 5.8, “ Eager Fetching” [247h the Reference Guide describes OpenJPA's options for efficient
data loading.

12.6.3. Table Per Class

Likethe JO NED strategy, thel nheri t anceType. TABLE PER CLASS strategy uses adifferent table for each classin the
hierarchy. Unlike the JO NED strategy, however, each table includes all state for an instance of the corresponding class. Thusto
load a subclass instance, the JPA implementation must only read from the subclass table; it does not need to join to superclass
tables.

org.mag

Magazine
-isbn: String
-title: String |- - =

Tabloid
- data: Object

- -

TAB_DATA: BLOB
T

Suppose that our sample model's Magazi ne class has a subclass Tabl oi d. The classes are mapped using the table-per-class
strategy, asin the diagram above. In a table-per-class mapping, Magazi ne'stable MAG contains all state declared in the base
Magazi ne class. Tabl oi d mapsto a separate table, TABLO D. Thistable contains not only the state declared in the Tabl oi d
subclass, but all the base class state from Magazi ne aswell. Thusthe TABLO D table would contain columnsfor i sbn,

titl e, andother Magazi ne fields. These columns would default to the names used in Magazi ne's mapping metadata. Sec-
tion 12.8.3, “ Embedded Mapping " [148)ill show you how touse At t ri but eQverri desand Associ ati onOverri de
sto override superclass field mappings.

Example 12.7. Table Per Class Mapping

@ntity

@rabl e(name="MAG'")

@ nheritance(strategy=I nheritanceType. TABLE_PER CLASS)
public class Magazine {

}

@ntity

@abl e(name="TABLO D")

public class Tabloid
extends Magazine {

}

And the same classesin XML:

<entity class="org.mag. Magazi ne">
<t abl e name="MAG'/ >

132

Mapping Metadata

<i nheritance strategy="TABLE_PER CLASS"/>
</entit y>
<entity cl ass="org.mg. Tabl oi d">

<t abl e name="TABLO D'/ >

</ enii.iy>

12.6.3.1. Advantages

The table-per-class strategy is very efficient when operating on instances of aknown class. Under these conditions, the strategy
never requires joining to superclass or subclass tables. Reads, joins, inserts, updates, and deletes are all efficient in the absence of
polymorphic behavior. Also, asin the joined strategy, adding additional classes to the hierarchy does not require modifying exist-
ing class tables.

12.6.3.2. Disadvantages

Polymorphic relations to non-leaf classes in a table-per-class hierarchy have many limitations. When the concrete subclass is not
known, the related object could be in any of the subclass tables, making joins through the relation impossible. This ambiguity also
affects identity lookups and queries; these operations require multiple SQL SELECTSs (one for each possible subclass), or acom-
plex UNI ON.

Section 7.12.1, “ Table Per Class” [281) the Reference Guide describes the limitations OpenJPA places on table-
per-class mapping.

12.6.4. Putting it All Together

Now that we have covered JPA's inheritance strategies, we can update our mapping document with inheritance information. Here
is the complete model:

133

Mapping Metadata

org.mag org.mag.pub
Magazine Company
- isbn: String -id: long
- title: String
Article Author
-id: lang r-- -id: lang
Trial Contract
Subscription [7] ~id: long
I A
Subscription !
-id: long L_.
:
]
'?' ! Lineltem ==~ =
Lifetime | J: —
Subscription
—— Drg.mﬂg.suhmrlm

And hereis the corresponding mapping metadata:

Example 12.8. Inheritance Mapping

package org. mag;

@ntity

@ dd ass(Magazi ne. Magazi nel d. cl ass)
@rabl e(name="MAG'")

public class Magazi ne {

@col um(| engt h=9)
@d private String isbn;
@d private String title;

public static class Magazineld {

}
}

@Entity
@abl e(name="ART", uni queConstr ai nt s=@i que(col uimNanes="TI TLE"))

@BequenceGener at or (nane="Arti cl eSeq", sequenceNane="ART_SEQ')
public class Article {

@d
@zener at edVal ue(st rat egy=Gener ati onType. SEQUENCE, generator="Articl eSeq")
private long id;

}

package org. nag. pub;
@ntity

@abl e(name="COVP")
public class Conpany {

@ol um(name="Cl D")
@d private long id;
}

@Entity
@rabl e(name="AUTH")

134

Mapping Metadata

public class Author {

@d

@cener at edVal ue(st rat egy=CGener at i onType. TABLE, gener at or =" Aut hor Gen")

@rabl eGener at or (nane=" Aut hor Gen", tabl e=" AUTH_GEN', pkCol utmNane="PK",
val ueCol umNane="Al D")

@Col um(name="Al D', col umbDefi niti on="1NTEGER64")

private long id;

}

@nbeddabl e

public class Address {
) ce

package org. mag. subscri be;

@mppedSuper cl ass
public abstract class Docunent {

@d
@cener at edVal ue(st rat egy=CGener at i onType. | DENTI TY)
private long id;

}

@ntity
@abl e(schema="CNTRCT")
@ nheritance(strategy=IlnheritanceType. JO NED)
public class Contract
extends Docunent {

}

@ntity

@abl e(name="SUB", schema="CNTRCT")

@ nheritance(strategy=IlnheritanceType. S| NGLE_TABLE)
public class Subscription {

@d
@cener at edVal ue(st rat egy=Gener at i onType. | DENTI TY)
private long id;

@ntity
@abl e(name="LI NE_| TEM', schema="CNTRCT")
@r i mar yKeyJoi nCol uim(nane="1D", referencedCol unmNane="1D")
public static class Lineltem
extends Contract {

}

@Entity(name="Lifetine")
public class LifetimeSubscription
ext ends Subscription {

}

@ntity(name="Trial")
public class Trial Subscription
ext ends Subscription {

The same metadata expressed in XML form:

<entity-mappi ngs xm ns="http://java. sun. coml xm / ns/ per si st ence/ or ni'
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocation="http://java. sun. conl xm / ns/ persi stence/ormorm1_0. xsd"
version="1.0">
<mapped- super cl ass cl ass="or g. mag. subscri be. Docunent " >
<attributes>
<id name="id">
<gener at ed- val ue strategy="1DENTITY"/>
</id>

</attributes>

</ mapped- super cl ass>

<entity class="org.mag. Magazi ne">
<t abl e name="MAG'/ >

135

Mapping Metadata

<i d-cl ass="or g. nag. Magazi ne. Magazi nel d"/ >
<attributes>
<id name="isbn">
<col um | engt h="9"/>
</id>
<id name="title"/>

</attributes>
</entity>
<entity class=" org. mg. Article">
<t abl e name="ART">
<uni que- constr ai nt >
<col um- nanme>T| TLE</ col uim- nanme>
</ uni que- constrai nt >
</tabl e>
<sequence- generator name="Articl eSeq" sequence-name="ART_SEQ'/>
<attributes>
<id name="id">
/i d<gener at ed- val ue strategy="SEQUENCE" generator="Articl eSeq"/>
</id>

</attributes>
</entity>
<entity class=" org. rmg pub Conpany" >
<t abl e name="COW"/
<attributes>
<id name="id">
<col um nanme="Cl D'/ >
</id>

</attributes>
</entity>
<entity class="org.mg. pub. Aut hor">
<t abl e name="AUTH'/ >
<attributes>
<id name="id">
<col um nanme="Al D' col um-defi ni ti on="1 NTEGER64"/ >
<gener at ed- val ue strategy="TABLE" generat or =" Aut hor Gen"/>
<t abl e- generat or nanme="Aut hor Gen" tabl e=" AUTH CGEN'
pk- col um- name="PK" val ue- col um- nane="Al D'/ >
</id>

</attributes>

</entity>

<entity class="org. mg. subcribe. Contract">
<t abl e schema="CNTRCT"/ >
<i nheritance strategy="JO NED'/ >
<attributes>

</attributes>
</entity>
<entity class=" org. mag. subcri be. Subscri ption">
<t abl e nanme="SUB" schema— CNTRCT" / >
<i nheritance strategy="SI NGLE_TABLE"/ >
<attributes>
<id name="id">
<gener at ed- val ue strategy="1DENTITY"/>
</id>

</attributes>
</entity>
<entity class="org. mg. subscribe. Subscri pti on. Li neltent>
<tabl e name="LI NE_I TEM' schenma="CNTRCT"/ >
<pri mary-key-joi n-col um nane="1D" referenced-col um-nanme="PK"/ >

</ ent iiy>
<entity class="org.mg. subscribe. LifetimeSubscription" name="Lifetinme">
<lentit y>
<entity class="org.mg. subscribe. Tri al Subscri ption" name="Trial ">
</ ent iiy>
</ entity-nmappi ngs>

12.7. Discriminator

The single table inheritance strategy results in a single table containing records for two or more different classesin an inheritance
hierarchy. Similarly, using the joined strategy results in the superclass table holding records for superclass instances aswell as
for the superclass state of subclassinstances. When selecting data, JPA needs away to differentiate a row representing an object
of one class from arow representing an object of another. That is the job of the discriminator column.

136

Mapping Metadata

The discriminator column is alwaysin the table of the base entity. It holds a different value for records of each class, allowing the
JPA runtime to determine what class of object each row represents.

TheDi scri m nat or Col unm annotation represents a discriminator column. It has these properties:

e String nane: The column name. Defaultsto DTYPE .
* | engt h: For string discriminator values, the length of the column. Defaultsto 31.

e String columDefi nition: Thisproperty hasthe same meaning asthecol urmDef i ni t i on property on the
Col um annotation, described in Section 12.3,“ Column ” [121].

» Di scrimnatorType discrim nator Type: Enum value declaring the discriminator strategy of the hierarchy.
The corresponding XML element isdi scri m nat or - col umm. Its attribues mirror the annotation properties above:

* name

* length

e col um-definition

e di scrim nator-type: Oneof STRI NG CHAR, or | NTEGER.

TheDi scri mi nat or Val ue annotation specifies the discriminator value for each class. Though this annotation's valueis -
ways a string, the implementation will parseit accordingtothe Di scri m nat or Col umm'sdi scri m nat or Type property
above. Thetype defaultsto Di scri m nat or Type. STRI NG, but may beDDi scri m nat or Type. CHARor Di scri m n-
at or Type. | NTEGER. If you do not specify aDi scri mi nat or Val ue, the provider will choose an appropriate defaullt.

The corresponding XML elementisdi scri m nat or - val ue. The text within this element is parsed as the discriminator
value.

OpenJPA assumes your model employs a discriminator column if any of the following are true:

1. The base entity explicitly declares an inheritance type of S| NGLE_TABLE.

2. The base entity sets a discriminator value.

3. The base entity declares a discriminator column.

Only SI NGLE_TABLE inheritance hierarchies require a discriminator column and values. JO NED hierarchies can use

adiscriminator to make some operations more efficient, but do not require one. TABLE_PER_CLASS hierarchies have
no use for a discriminator.

OpenJPA defines additional discriminator strategies; see Section 7.7, “ Additional JPA Mappings” [269h the Refer-
ence Guide for details. OpenJPA also supports final entity classes. OpenJPA does not use a discriminator on final
classes.

We can now translate our newfound knowledge of JPA discriminators into concrete JPA mappings. We first extend our diagram
with discriminator columns:

137

Mapping Metadata

org.mag org.mag.pub
Magazine Company
- isbn: String - id: long
- title: String
Article Author
-id: lang - id: long
Trial
Subscription [7 Contract -- =
: "
Subscription |
-id: long L_.
:
]
! Lineltem
Lifetime | J: —
Subscription
—— Drg.mﬂg.suhmrlm

Next, we present the updated mapping document. Notice that in this version, we have removed explicit inheritance annotations
when the defaults sufficed. Also, notice that entities using the default DTYPE discriminator column mapping do not need an ex-
plicit Di scri mi nat or Col unrm annotation.

Example 12.9. Discriminator Mapping

package org. nag;

@ntity

@ dCl ass(Magazi ne. Magazi nel d. cl ass)
@rabl e(name="MAG'")

@i scri m nator Val ue("Mag")

public class Magazine {

@ol um(| engt h=9)
@d private String isbn;
@d private String title;

public static class Magazineld {

}
}

@ntity

@abl e(name="ART", uni queConstrai nt s=@Jhni que(col uimNanes="TIl TLE"))
@equenceCener at or (name="Arti cl eSeq", sequenceNane="ART_SEQ')
public class Article {

@d
@ner at edVal ue(st rat egy=Cener ati onType. SEQUENCE, generator="Articl eSeq")
private long id;

}

package org. mag. pub;

@Entity
@rabl e(nane=" COVP")
public class Conpany {

@col um(name="Cl D")
@d private long id;

138

Mapping Metadata

}

@ntity
@rabl e(name="AUTH")
public class Author {

@d

@cener at edVal ue(st rat egy=CGener ati onType. TABLE, gener at or =" Aut hor Gen")

@abl eGener at or (name="Aut hor Gen", tabl e="AUTH GEN', pkCol utmName="PK",
val ueCol umNane="Al D")

@ol um(name="Al D', col umbDefi nition="1 NTEGER64")

private long id;

}

@nbeddabl e

public class Address {
) ce

package org. mag. subscri be;

@mppedSuper cl ass
public abstract class Docunent {

@d
@zener at edVal ue(st rat egy=CGener at i onType. | DENTI TY)
private long id

}

@ntity
@abl e(schema="CNTRCT")
@nheritance(strategy=l nher| t anceType JO NED)
@i scri m nat or Col um(name="CTYPE")
public class Contract

extends Document {

}

@ntity

@abl e(nanme="SUB", schema="CNTRCT")

@i scri m nat or Col um(name="KI ND', discrim natorType=Di scrim nator Type. | NTEGER)
@i scri m natorVal ue("1")

public class Subscription {

@Bener at edVal ue(strat egy=Gener ati onType. | DENTI TY)
private long id;

@ntity
@rabl e(narre "LI NE_I TEM', schenma="CNTRCT")
public static class Li nel tem

extends Contract {

}

@ntity(name="Lifetinme")

@i scrim natorVal ue("2")

public class LifetimeSubscription
ext ends Subscription {

}

@ntity(name="Trial")

@i scrim natorVal ue("3")

public class Trial Subscription
ext ends Subscription {

The same metadata expressed in XML.:

<entity-mappi ngs xm ns="http://java. sun. conm xm / ns/ persi st ence/ or ni'
xm ns: xsi ="http://wwm. wW3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://] ava. sun. conf xm / ns/ per si stence/ orm orm 1_0. xsd"
versi on="1.0">
<mapped- super cl ass cl ass="org. mag. subscri be. Docunent " >
<attributes>
<id name="id">

139

Mapping Metadata

<gener at ed- val ue strategy="1DENTITY"/>
<lid>

</ attributes>
</ mapped- super cl ass>
<entity class="org. mag. Magazi ne">
<t abl e name="MAG'/ >
<i d-cl ass="or g. mag. Magazi ne. Magazi nel d"/ >
<di scri m nat or - val ue>Mag</ di scri m nat or - val ue>
<attributes>
<i d name="isbn">
<col um | engt h="9"/>
</id>
<id name="title"/>

</attributes>
</entity>
<entity class="org.mag. Article">
<t abl e nane="ART">
<uni que- constrai nt >
<col um- name>TIl TLE</ col utm- name>
</ uni que- constrai nt >
</tabl e>
<sequence-generator nane="ArticleSeq" sequence-name="ART_SEQ'/>
<attributes>
<id name="id">

</id

</attributes>
</entity>
<entity class="org. mg. pub. Conpany" >
<t abl e name="COW"/ >
<attributes>
<id name="id">
<col um nane="Cl D'/ >
</id>

</attributes>
</entity>
<entity class="org.mg. pub. Aut hor">
<t abl e nane="AUTH'/ >
<attributes>
<id name="id">
<col um nanme="Al D' col urm-definiti on="1NTEGER64"/ >
<gener at ed- val ue strategy="TABLE" generat or =" Aut hor Gen"/ >
<t abl e- generat or nanme="Aut hor Gen" tabl e=" AUTH CGEN'
i pk- col umm- nanme="PK" val ue- col um-nane="Al D"/ >
</id>

</attributes>

</entity>

<entity cl ass="org. mg. subcribe. Contract">
<t abl e schema="CNTRCT"/ >
<i nheritance strategy="JO NED'/ >
<di scri m nat or - col um nane="CTYPE"/ >
<attributes>

</attributes>
</entity>
<entity class="org. mg. subcribe. Subscri ption">
<tabl e nane="SUB" schenma="CNTRCT"/>
<i nheritance strategy="SI NGLE_TABLE"/ >
<di scri m nat or - val ue>1</di scri m nat or - val ue>
<di scri m nat or-col um name="KI ND' discrim nator-type="1NTECER'/ >
<attributes>
<id name="id">
. d<gener at ed-val ue strategy="1DENTITY"/>
</id>

</attributes>
</entity>
<entity class="org. mg. subscribe. Subscri pti on. Li neltent>
<t abl e name="LI NE_I TEM' schema="CNTRCT"/>
<pri mary-key-j oi n-col um name="1D" referenced-col um-name="PK"/>

</ eniiiy>

<gener at ed- val ue strategy="SEQUENCE"' generator="Articl eSeq"/>
>

<entity class="org.mg. subscribe.LifetimeSubscription" name="Lifetinme">

<di scri m nat or - val ue>2</ di scri m nat or - val ue>
</entity>)) o _
<entity class="org. mg. subscribe. Tri al Subscri ption" name="Trial">
<di scri m nat or - val ue>3</di scri m nat or - val ue>

</ enfify>

</ entity-nmappi ngs>

140

Mapping Metadata

12.8. Field Mapping

The following sections enumerate the myriad of field mappings JPA supports. JPA augments the persistence metadata covered in
Chapter 5, Metadata [25] with many new object-relational annotations. As we explore the library of standard mappings, we in-
troduce each of these enhancements in context.

OpenJPA supports many additional field types, and allows you to create custom mappings for unsupported field types or
database schemas. See the Reference Guide's Chapter 7, Mapping [257or complete coverage of OpenJPA's mapping
capabilities.

12.8.1. Basic Mapping

A basic field mapping stores the field value directly into a database column. The following field metadata types use basic map-
ping. These types were defined in Section 5.2, “ Field and Property Metadata” [29].

e | dfields.
* Ver si on fidds.

» Basi c fields.

In fact, you have aready seen examples of basic field mappings in this chapter - the mapping of al identity fieldsin Ex-
ample 12.3, “ Identity Mapping " [122]. Asyou saw in that section, to write a basic field mapping you use the Col um an-
notation to describe the column the field value is stored in. We discussed the Col urm annotation in Section 12.3,“ Column ”
[121]. Recall that the name of the column defaults to the field name, and the type of the column defaults to an appropriate type
for the field type. These defaults allow you to sometimes omit the annotation altogether.

12.8.1.1. LOBs

Adding the Lob marker annotation to a basic field signals that the datais to be stored as a LOB (Large OBject). If the field holds
string or character data, it will map to a CLOB (Character Large OBject) database column. If the field holds any other data type, it
will be stored as binary datain a BLOB (Binary Large OBject) column. The implementation will serialize the Javavaue if
needed.

The equivalent XML element is| ob, which has no children or attributes.

12.8.1.2. Enumerated

Y ou can apply the Enuner at ed annotation to your Enumfields to control how they map to the database. The Enuner at ed
annotation's value one of the following constants from the Enunily pe enum:

» Enunilype. ORDI NAL: The default. The persistence implementation places the ordinal value of the enum in a numeric
column. Thisis an efficient mapping, but may break if you rearrange the Java enum declaration.

e Enunilype. STRI NG Store the name of the enum value rather than the ordinal. This mapping uses a VARCHAR column rather
than anumeric one.

The Enuner at ed annotation is optional. Any un-annotated enumeration field defaults to ORDI NAL mapping.

The corresponding XML element isenuner at ed. Its embedded text must be one of STRI NGor ORI DI NAL.

141

Mapping Metadata

12.8.1.3. Temporal Types

The Tenpor al annotation determines how the implementation handles your basicj ava. uti | . Dat e and

java. util. Cal endar fieldsat the JDBC level. The Tenpor al annotation's value is a constant from the Tenpor al Type
enum. Available values are:

» Tenpor al Type. TI MESTAMP: The default. Use JDBC's timestamp APIs to manipulate the column data.
» Tenpor al Type. DATE: Use JDBC's SQL date APIsto manipulate the column data.

e Tenpor al Type. Tl ME: Use IDBC'stime APIs to manipulate the column data.

If the Tenpor al annotation is omitted, the implementation will treat the data as a timestamp.
The corresponding XML element ist enrpor al , whose text value must be one of: TI ME, DATE, or TI MESTAMP.
12.8.1.4. The Updated Mappings

Below we present an updated diagram of our model and its associated database schema, followed by the corresponding mapping
metadata. Note that the mapping metadata relies on defaults where possible. Also note that as a mapped superclass, Docunent

can define mappings that will automatically transfer to its subclass' tables. In Section 12.8.3, “ Embedded Mapping " [148)ou
will see how a subclass can override its mapped superclass mappings.

arg.mag org.mag.pub
Magazine Company
- isbn: String - id: long
- title: String - name: String
- price: double - revenue: double
- copiesSold: int - version: int
= VGIER. _
Article —
: {ﬂl: bg? I - firstName: String
~ - lastName: String
- content: byte(] - version: int
- version: int
N
org.mag.subscribe
Subscription Document
~id: long - -id: long
- startDate: Date ¢, ° - version: int
- payment: double | °
- version: int "
S ——— " Contract
- terms: String
TrialSubscription
- endDate: Date S
N Lineltem
LifetimeSubscription |, - comments: String
- eliteClub: boolean - PrCG
- num: lang
e —
_—

142

Mapping Metadata

Example 12.10. Basic Field Mapping

package org. nag;

@ntity

@ dd ass(Magazi ne. Magazi nel d. cl ass)
@abl e(name="MAG')

@i scrim nat or Val ue(" Mag")

public class Magazine {

@ol um(| engt h=9)
@d private String isbn;
@d private String title;

@col um(name="VERS")
@/ersion private int version;

private String nane;
private double price;

@ol umm(name="COPI ES")
private int copiesSold;

public static class Magazineld {

}
}

@Entity

@abl e(name="ART", uni queConstrai nt s=@Jni que(col utmNanmes="TIl TLE"))
@equenceGener at or (nanme="Arti cl eSeq", sequenceNane="ART_SEQ')
public class Article {

@d
@cener at edVal ue(strat egy=Gener ati onType. SEQUENCE, generator="Articl eSeq")
private long id;

@ol um(nane="VERS")
@/ersion private int version;

private String title;
private byte[] content;

package org. mag. pub;

@ntity
@rabl e(nane="COVP")
public class Conpany {

@col um(nanme="Cl D")
@d private long id;

@ol umm(name="VERS")
@/ersion private int version;

private String nane;

@col um(nanme="REV")
private doubl e revenue;

}

@ntity
@abl e(name="AUTH")
public class Author {

@d

@cener at edVal ue(st rat egy=CGener at i onType. TABLE, gener at or =" Aut hor Gen")

@rabl eGener at or (nane=" Aut hor Gen", tabl e=" AUTH_GEN', pkCol utmNane="PK",
val ueCol umNane="Al D")

@Col um(nanme="Al D', col umbDefi niti on="1NTEGER64")

private long id;

@col um(nanme="VERS")
@/ersion private int version;

@ol umm(name="FNAVME")
private String firstName;

@Col umm(nanme="LNAME")
private String |astNane;

143

Mapping Metadata

}

@nbeddabl e

public class Address {
i c

package org. nmag. subscri be;

@mppedSuper cl ass
publ i ¢ abstract class Document {

@d
@cener at edVal ue(st rat egy=Gener at i onType. | DENTI TY)
private long id;

@Col um(nane="VERS")
@/ersion private int version;

}

@ntity
@rabl e(schena " CNTRCT")
@ nheritance(strategy=IlnheritanceType. JO NED)
@i scri m nat or Col um(name="CTYPE")
public class Contract
extends Docunent {

@ob
private String terns;

}

@ntity

@abl e(name="SUB", schema="CNTRCT")

@i scri m nator Col um(name="KI ND', discrim natorType=Di scri m nator Type. | NTECER)
@i scrim natorVal ue("1")

public class Subscription {

@d
@cener at edVal ue(st rat egy=Gener at i onType. | DENTI TY)
private long id;

@Col um(nane="VERS")
@/ersion private int version;

@col um(nanme="START")
private Date startDate;

@ol um(name=" PAY")
private doubl e paynent;

@Entity
@rabl e(name="LI NE_| TEM', schema="CNTRCT")
public static class Lineltem

extends Contract {

@ol um(nanme="COWM'")
private String coments;

private double price;
private | ong num

}

@ntity(name="Lifetinme")

@i scrim natorVal ue("2")

public class LifetimeSubscription
extends Subscription {

@asi c(fetch= FetchType LAZY)

@ol um(name="ELI TE")

private boolean getElitedub () { }

public void setElited ub (bool ean ellte) { ...}

}

@ntity(name="Trial")

@i scrim nator Val ue("3")

public class Trial Subscription
extends Subscription {

@Col um(name="END")
public Date getEndDate () { }
public void set EndDat e (Date end) { ...}

144

Mapping Metadata

The same metadata expressed in XML:

<entity-mappi ngs xm ns="http://java. sun. conf xm / ns/ per si st ence/ or ni'
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocation="http://]ava. sun. conl xm / ns/ persi stence/ ormorm1_0. xsd"
version="1.0">
<mapped- super cl ass cl ass="or g. mag. subscri be. Docunent " >
<attributes>
<id name="id">
<gener at ed- val ue strategy="1DENTITY"/>
</id>
<versi on name="version">
<col um nane="VERS"/>
</ version>

</attributes>
</ mapped- super cl ass>
<entity class="org.nmg. Magazi ne">
<t abl e name="MAG'/ >
<i d-cl ass="org. mag. Magazi ne. Magazi nel d"/ >
<di scri m nat or - val ue>Mag</ di scri m nat or - val ue>
<attributes>
<i d name="isbhn">
<col um | engt h="9"/>
</id>
<id name="title"/>
<basi ¢ name="nane"/ >
<basi ¢ name="price"/>
<basi ¢ nanme="copi esSol d" >
<col utm nane="COPI ES"/ >
</ basi c>
<versi on name="versi on">
<col utm nane="VERS"/ >
</ versi on>

</attributes>
</entity>
<entity class="org.mag. Article">
<t abl e nane="ART" >
<uni que- constrai nt >
<col um- nanme>T| TLE</ col um- nanme>
</ uni que- constrai nt >
</tabl e>
<sequence- generator name="Articl eSeq", sequenceNanme="ART_SEQ'/>
<attributes>
<id name="id">
/i d<gener at ed- val ue strategy="SEQUENCE" generator="Articl eSeq"/>
</id>
<basi c name="title"/>
<basi ¢ nanme="content"/>
<versi on name="version">
<col um nane="VERS"/>
</ versi on>

</attributes>
</entity>
<entity cl ass="org. mg. pub. Conpany" >
<t abl e nane="COW"/ >
<attributes>
<id name="id">
<col um nanme="Cl D'/ >
</id>
<basi ¢ nane="nane"/ >
<basi ¢ nane="revenue">
<col um nane="REV"/ >
</ basi c>
</attributes>
</entity>
<entity class="org.mg. pub. Aut hor">
<t abl e name="AUTH'/ >
<attributes>
<id name="id">
<col utm nanme="Al D' col um-defi ni ti on="1 NTEGER64"/ >
<gener at ed- val ue strategy="TABLE" generat or =" Aut hor Gen"/ >
<t abl e- generat or nanme="Aut hor Gen" tabl e=" AUTH CGEN'
pk- col um- nanme="PK" val ue- col um- nane="Al D'/ >
</id>
<basi ¢ name="first Name">
<col utm nanme="FNAME"/ >
</ basi c>
<basi ¢ name="| ast Nane" >
<col utm name="LNAME"/ >

145

Mapping Metadata

</ basi c>

<versi on name="version">
<col um nane="VERS"/ >

</ versi on>

</attributes>
</entity>
<entity class="org. mg. subcribe. Contract"
<t abl e schema="CNTRCT" /
<i nheritance strategy="JO NED'/ >
<di scri m nat or - col um name="CTYPE"/ >
<attributes>
<basi ¢ name="terns">
<l ob/ >
</ basi c>

</attributes>
</entity>
<entity class="org.mg. subcribe. Subscri ption">
<t abl e name="SUB" schema="CNTRCT"/>
<i nheritance strategy="SI NGLE_TABLE"/ >
<di scri m nat or - val ue>1</di scri m nat or - val ue>
<di scri m nator-col um nanme="KI ND' discrim nator-type="INTEGER'/ >
<attributes>
<id name="id">
<gener at ed- val ue strategy="1DENTITY"/>
</id>
<basi ¢ nane="paynent">
<col utm nane="PAY"/ >
</ basi c>
<basi ¢ nane="start Date">
<col utm nane="START"/ >
</ basi c>
<versi on name="version">
<col utm nane="VERS"/ >
</ version>

</attributes>
</entity>
<entity class=" org. mag. subscri be. Subscri pti on. Li nel tent' >
<t abl e name="LI NE_| TEM' scherm— CNTRCT"/ >
<pri mary-key-j oi n-col unm nanme="1D" referenced- col um-nane="PK"/>
<attributes>
<basi ¢ nane="comments" >
<col um nanme="COW'/ >
</ basi c>
<basi c nanme="price"/>
<basi ¢ nane="nunt/>

</attributes>
</entity>
<entity class="org.mg. subscribe. LifetinmeSubscription" name="Lifetinme">
<di scri m nat or - val ue>2</ di scri ni nat or - val ue>
<attributes>
<basi c nanme="eliteC ub" fetch="LAZY">
<col um nane="ELI TE"/ >
</ basi c>

</attributes>
</entity>
<entity class="org.mg. subscribe. Tri al Subscri ption" name="Trial ">
<di scri m nat or - val ue>3</ di scri m nat or - val ue>
<attributes>
<basi ¢ nane="endDat e" >
<col utm nanme="END'/ >
</ basi c>

</attribut es>
</entity>
</entity-mappi ngs>

12.8.2. Secondary Tables

Sometimes alogical record is spread over multiple database tables. JPA calls aclass declared table the primary table, and calls
other tables that make up alogical record secondary tables. Y ou can map any persistent field to a secondary table. Just write the
standard field mapping, then perform these two additional steps:

1. Setthet abl e attribute of each of the field's columns or join columns to the name of the secondary table.

146

Mapping Metadata

2. Define the secondary table on the entity class declaration.
Y ou define secondary tables with the Secondar y Tabl e annotation. This annotation has al the properties of the Tabl e an-
notation covered in Section 12.1, “ Table” [118] , plusapkJoi nCol umms property.

The pkJoi nCol urms property isan array of Pri mar yKeyJoi nCol urmsdictating how to join secondary table recordsto
their owning primary table records. Each Pr i mar yKeyJoi nCol unm joins a secondary table column to a primary key column
in the primary table. See Section 12.6.2, “ Joined " [129] above for coverage of Pri nmar yKeyJoi nCol umm's properties.

The corresponding XML element issecondar y-t abl e. Thiselement has al the attributes of thet abl e element, but also ac-
ceptsnested pr i mar y- key-j oi n- col urm elements.

In the following example, we movethe Arti cl e. cont ent field we mapped in Section 12.8.1, “ Basic Mapping” [141] into
ajoined secondary table, like so:

org.mag
Article AR
- coth [" :

- content: byte[]

COMNTENT: BLC

Example 12.11. Secondary Table Field Mapping

package org. mag;

@Entity
@rabl e(name="ART")
@secondar yTabl e(name="ART_DATA",
pkJoi nCol ums=@pr i mar yKeyJoi nCol uim(name="ART_| D', referencedCol uimNanme="1D"))
public class Article {

@d private long id;

@col um(t abl e=" ART_DATA")
private byte[] content;

Andin XML:

<entity class="org.mag. Article">
<t abl e nane="ART"/>
<secondary-tabl e name="ART_DATA" >
<pri mary-key-joi n-col um nanme="ART_I D' referenced-col um-name="1D"/>
</ secondary-t abl e>
<attributes>
<id name="id"/>
<basi ¢ nane="content">
<col um t abl e=" ART_DATA"/ >
</ basi c>

</attributes>
</entity>

147

Mapping Metadata

12.8.3. Embedded Mapping

Chapter 5, Metadata [25] describes JPA's concept of embeddable objects. The field values of embedded objects are stored as
part of the owning record, rather than as a separate database record. Thus, instead of mapping a relation to an embeddable object
asaforeign key, you map al the fields of the embeddable instance to columnsin the owning field's table.

arg.mag.pub
Company

-name: String [___________________

-revenue: double p------------—-——-—-—-——-

- address: Address - Address
- street: String Fo
- city: String i .
- state: String [ZP A
- Zip: String

JPA defaults the embedded column names and descriptions to those of the embeddable class field mappings. The At t ri bu-

t eOverri de annotation overrides a basic embedded mapping. This annotation has the following properties:

e String nane: The name of the embedded class field being mapped to this class' table.

e Col um col umm: The column defining the mapping of the embedded class' field to this class table.

The corresponding XML elementisat t ri but e- overri de. It hasasingle nane attribute to name the field being overridden,
and asingle col umm child element.

To declare multiple overrides, usethe At t r i but eQOver ri des annotation, whosevalueisan array of At t ri but eQOverri de
s. In XML, simply list multipleat t ri but e- over ri de elementsin succession.

To override amany to one or one to one relationship, usethe Associ at i onOverri de annotationin placeof Att ri bu-
teOverri de. Associ ati onOverri de hasthefollowing properties:

* String name: The name of the embedded class field being mapped to this class table.

e Joi nCol umm[] j oi nCol unms: The foreign key columns joining to the related record.

The corresponding XML elementisassoci ati on-overri de. It hasasingle nane attribute to name the field being overrid-
den, and one or morej oi n- col umm child elements.

To declare multiple relation overrides, usethe Associ at i onOverri des annotation, whose valueis an array of Associ -
ati onOverri de s In XML, simply list multipleassoci at i on- over ri de elementsin succession.

Example 12.12. Embedded Field Mapping

In this example, Conpany overrides the default mapping of Addr ess. st reet and Addr ess. ci ty. All other embedded
mappings are taken from the Addr ess embeddable class.

package org. nag. pub;
@ntity

@abl e(name="COVP")
public class Conpany {

@nbedded

148

Mapping Metadata

@\t tributeOverrides({
@\t tributeOverride(name="street", colum=@ol um(name="STRT")),
@\t tributeOverride(name="city", colum=@Col um(nane="ACI TY"))

private Address address;

}

@ntity
@rabl e(nanme="AUTH")
public class Author {

/1 use all defaults from Address class mappi ngs
private Address address;

}

@nbeddabl e
public class Address {

private String street;

private String city;

@ol um(col umbDefi ni ti on="CHAR(2)")
private String state;

private String zip;

The same metadata expressed in XML:

<entity cl ass="org. mg. pub. Conpany" >
<t abl e name="COW"/ >
<attributes>

<enbedded nanme="address">
<attribute-override name="street">
<col um name="STRT"/ >
</attribute-override>
<attribute-override name="city">
<col um name="ACl TY"/ >
</attribute-override>
</ enbedded>
</attributes>
</entity>
<entity class="org. mag. pub. Aut hor">
<t abl e nane="AUTH'/ >
<attributes>
<enbedded nanme="address">
<!-- use all defaults from Address -->
</ enbedded>
</attributes>
</entity>
<enbeddabl e cl ass="org. mag. pub. Addr ess" >
<attributes>
<basi ¢ name="street"/>
<basi ¢ name="city"/>
<basi c nane="state">
<col um col um-defi ni ti on="CHAR(2)"/>
</ basi c>
<basi ¢ name="zip"/>
</attributes>
</ enbeddabl e>

Y ou can a'so use attribute overrides on an entity class to override mappings defined by its mapped superclass or table-per-class
superclass. The example below re-maps the Docurnrent . ver si on field to the Cont r act table's CVERSI ON column.

Example 12.13. Mapping Mapped Superclass Field

@mppedSuper cl ass
public abstract class Docunent {

149

Mapping Metadata

@col um(nanme="VERS")
@/ersion private int version;

}

@ntity
@abl e(schema="CNTRCT")
@ nheritance(strategy=IlnheritanceType. JO NED)
@i scri m nat or Col um(name="CTYPE")
@\ttributeOverride(name="version", colum=@ol um(nane="CVERSI ON'))
public class Contract

ext ends Document {

The same metadata expressed in XML form:

<mapped- super cl ass cl ass="org. mag. subcri be. Docunent " >
<attributes>
<versi on name="version">
<col utm nane="VERS" >
</ versi on>

</attributes>

</ mapped- super cl ass>

<entity cl ass="org. mg. subcribe. Contract">
<t abl e schema="CNTRCT"/ >
<i nheri tance strategy="JO NED'/ >
<di scri m nat or - col um nane="CTYPE"/ >
<attribute-override name="version">

<col utm nane=" CVERSI ON'/ >

</attribute-override>
<attributes>

</attributes>
</entity>

12.8.4. Direct Relations

A direct relation is a non-embedded persistent field that holds a reference to another entity. many to one and one to one metadata
field types are mapped as direct relations. Our model has three direct relations; Magazi ne'spubl i sher fieldisadirect rela-
tion to aConpany, Magazi ne'scover Arti cl e fieldisadirect relationto Arti cl e, andtheLi nel t em magazi ne field
isadirect relation to aMagazi ne. Direct relations are represented in the database by foreign key columns:

150

Mapping Metadata

org.mag
Magazine

- isbn: String

- title: String A

- publisher: Company

- coverArticle: Article

Article
-id: long L

—
org.mag.pub

Company
-id: long (—

S
org.mag.subscribe

Lineltem
- magazine: Magazine

Y ou typically map adirect relation with Joi nCol umm annotations describing how the local foreign key columns join to the
primary key columns of the related record. The Joi nCol unm annotation exposes the following properties:

» String nane: The name of the foreign key column. Defaults to the relation field name, plus an underscore, plus the name of
the referenced primary key column.

e String referencedCol unmNare: The name of the primary key column being joined to. If thereis only one identity
field in the related entity class, the join column name defaults to the name of the identity field's column.

* bool ean uni que: Whether this column is guaranteed to hold unique values for all rows. Defaultsto false.
Joi nCol um aso hasthesamenul | abl e ,i nsert abl e, updat abl e, col utmDef i ni ti on,andt abl e propertiesas
the Col umm annotation. See Section 12.3, “ Column ” [121] for details on these properties.

Thej oi n- col umm element represents ajoin column in XML. Its attributes mirror the above annotation's properties:

e name
» referenced- col um- nane
e uni que

 nul |l abl e

e insertable

e updat abl e

e colum-definition

 table

151

Mapping Metadata

When there are multiple columns involved in the join, aswhen aLi nel t emreferencesaMagazi ne in our model, the Joi n-
Col umms annotation allows you to specify an array of Joi nCol urm values. In XML, simply list multiplej oi n- col unn ele-
ments.

OpenJPA supports many non-standard joins. See Section 7.6, “ Non-Standard Joins” [2674h the Reference Guide for
details.

Example 12.14. Direct Relation Field Mapping

package org. nag;

@abl e(name="AUTH")
public class Magazine {

@ol um(| engt h=9)

@d private String isbn;

@d private String title;

@neTone

@oi nCol uim(name="COVER_| D' ref erencedCol uimNanme="1D")
private Article coverArticle;

@manyToOne

@oi nCol utm(nanme="PUB_| D' referencedCol umNane="Cl D")
private Conpany publisher;

}

@abl e(nane="ART")
public class Article {

@d private long id;

package org. mag. pub;

@abl e(name="COVP")
public class Conpany {

@Col um(nane="Cl D")
@d private long id;

package org. mag. subscri be;

public class Subscription {

@abl e(name="LI NE_| TEM', schema="CNTRCT")
public static class Lineltem
extends Contract {

@manyToOne

@oi nCol ums({
@oi nCol uim(name="MAG_| SBN" referencedCol umNanme="1SBN'),
@oi nCol uim(nanme="MAG_TI TLE" referencedCol ummNanme="TI TLE")

)
private Magazi ne magazi ne;

The same metadata expressed in XML form:

152

Mapping Metadata

<entity class="org. mag. Magazi ne">
<t abl e nane="MAG'/ >
<i d-cl ass="org. mag. Magazi ne. Magazi nel d"/ >
<attributes>
<i d name="isbn">
<col um | engt h="9"/>
</id>
<id name="title"/>
<one-to-one nane="coverArticle">
<j oi n-col um name="COVER_I D' referenced-col um-name="1D"/>
</ one-t 0- one>
<many-t o- one name="publisher">
<j oi n-col um nane="PUB_I C' referenced- col um-nanme="Cl D'/ >
</ many-t o- one>

</attributes>
</entity>
<entity class="org.mg. Article">
<t abl e name="ART"/>
<attributes>
<id name="id"/>

</attributes>
</entity>
<entity class="org. mag. pub. Conpany" >
<t abl e nane="COW"/ >
<attributes>
<id name="id">
<col um nanme="Cl D'/ >
</id>

</attributes>
</entity>
<entity class="org. mag. subscribe. Subscri ption. Li nel tent >
<tabl e nane="LI NE_I TEM' schenma="CNTRCT"/>
<pri mary-key-joi n-col um name="1D" referenced-col um-name="PK"/>
<attributes>
<many-t 0- one nane="nagazi ne" >
<j oi n-col um name="MAG_| SBN' referenced-col um-name="1SBN'/ >
<j oi n-col um nanme="MAG TI TLE" referenced-col um-name="TI TLE"/ >
</ many-t o- one>

</attribut es>
</entity>

When the entities in a one to one relation join on shared primary key values rather than separate foreign key columns, use the
Pri mar yKeyJoi nCol umm('s) annotation or pri mar y- key-j oi n- col urm elementsin place of Joi nCol umm(s) /
j oi n- col um elements.

12.8.5. Join Table

A join table consists of two foreign keys. Each row of ajoin table associates two objects together. JPA usesjoin tables to repres-
ent collections of entity objects: one foreign key refers back to the collection's owner, and the other refers to a collection element.

oneto many and many to many metadata field types can map to join tables. Several fieldsin our model use join table mappings,
including Magazi ne. articl esandArticl e. aut hors.

153

Mapping Metadata

org.mag

Magazine
- isbn: String
- title: String
- articles: Collection<Article>

Article

-id: lang
- authors: Collection<Author>

Author
- id: lang

Y ou define join tables with the Joi nTabl e annotation. This annotation has the following properties:

String nane: Table name. If not given, the name of the table defaults to the name of the owning entity's table, plus an un-
derscore, plus the name of the related entity's table.

String catal og: Table catalog.
String schemnma: Table schema.

Joi nCol um[] j oi nCol ums: Array of Joi nCol urm showing how to associate join table records with the owning
row in the primary table. This property mirrorsthe pkJoi nCol umms property of the Secondar yTabl e annotation in func-
tionality. See Section 12.8.2, “ Secondary Tables” [146] to refresh your memory on secondary tables.

If thisisabidirectional relation (see Section 5.2.9.1, “ Bidirectional Relations” [36]), the name of ajoin column defaultsto
the inverse field name, plus an underscore, plus the referenced primary key column name. Otherwise, the join column name de-
faultsto the field's owning entity name, plus an underscore, plus the referenced primary key column name.

Joi nCol um[] inverseJoi nCol ums: Array of Joi nCol unrms showing how to associate join table records with the
records that form the elements of the collection. These join columns are used just like the join columns for direct relations, and
they have the same naming defaults. Read Section 12.8.4, “ Direct Relations” [150] for areview of direct relation mapping.

j oi n-t abl e isthe corresponding XML element. It has the same attributes asthe t abl e element, but includes the ability to

nestj oi n- col utm andi nver se-j oi n- col umm elements as children. We have seenj o0i n- col unm elements already;
i nver se-j oi n- col um elements have the same attributes.

Here are the join table mappings for the diagram above.

Example 12.15. Join Table Mapping

package org. mag;

154

Mapping Metadata

@Entity
@rabl e(name="MAG'")
public class Magazine {

@col um(| engt h=9)
@d private String isbn;
@d private String title;

@neToMany(. . .)
@ der By
@oi nTabl e(nane="MAG_ARTS",
j oi nCol utms={
@oi nCol utm(name="MAG | SBN', referencedCol uimNanme="|SBN'"),
@oi nCol uim(name="MAG_TI TLE", referencedCol ummNane="TI TLE")

i nver seJoi nCol ums=@oi nCol um(nane="ART_I| D', referencedCol umNane="1D"))
private Collection<Article> articles;

}

@Entity
@rabl e(name="ART")
public class Article {

@d private long id;

@mnyToMany(cascade=CascadeType. PERSI ST)
@ der By("1 ast Name, firstNane")
@oi nTabl e(name=" ART_AUTHS",
j oi nCol ums=@oi nCol um(nane="ART_I D', referencedCol umNanme="1D"),
i nver seJoi nCol ums=@oi nCol um(nane="AUTH_| D', referencedCol umNane="AlD"))
private Col |l ecti on<Aut hor> aut hors;

package org. nag. pub;

@ntity
@abl e(name="AUTH")
public class Author {

@Col um(nanme="Al D', col umbDefi niti on="1NTEGER64")
@d private long id;

The same metadata expressed in XML:

<entity class="org.mag. Magazi ne">
<t abl e name="MAG'/ >
<attributes>
<id name="isbn">
<col um | engt h="9"/>
</id>
<id name="title"/>
<one-to-many name="articl es">
<order - by/>
<j oi n-t abl e nane="MAG_ARTS">
<j oi n- col um nane="MAG_| SBN' referenced-col um-nanme="|SBN'/ >
<J oi n- col utm nane="MAG_TI TLE" referenced-col um- nane="TI TLE"/ >
<i nverse-joi n-col um name="ART_I D' referenced-col um-name="1D"/>
</j oi n-tabl e>
</ one-t o- many>

</attributes>
</entity>
<entity class="org.mag. Article">
<t abl e nane="ART"/>
<attributes>
<id name="id"/>
<many-t o- many nanme="aut hors">
<order - by>l ast Nane, firstNane</order-by>
<j oi n-t abl e name="ART_AUTHS" >
<j oi n-col um name="ART_I D' referenced-col um-name="1D"/>
<i nver se-j oi n-col um name="AUTH_| D' referenced-col um- nane="Al D'/ >
</j oi n-tabl e>
<cascade>
<cascade- persi st/ >
</ cascade>
</ many-t o- many>

</attribut es>

155

Mapping Metadata

</entity>
<entity class="org. mag. pub. Aut hor">
<t abl e nane="AUTH'/ >
<attributes>
<id name="id">
. d<co| um nane="Al D' col unm- defi ni ti on="1 NTEGER64"/ >
</id>

</attribut es>
</entity>

12.8.6. Bidirectional Mapping

Section 5.2.9.1, “ Bidirectional Relations” [36] introduced bidirectional relations. To map a bidirectional relation, you map one
field normally using the annotations we have covered throughout this chapter. Then you use the mappedBy property of the other
field's metadata annotation or the corresponding mapped- by XML attribute to refer to the mapped field. Look for this pattern in
these bidirectional relations as you peruse the compl ete mappings below:

* Magazi ne. publ i sher and Conpany. mags.

e Article.authorsandAuthor.articles.

12.8.7. Map Mapping

All map fieldsin JPA are modeled on either one to many or many to many associations. The map key is always derived from an
associated entity's field. Thus map fiel ds use the same mappings as any one to many or many to many fields, namely dedicated
join tables or bidirectional relations. The only additions are the MapKey annotation and map- key element to declare the key
field. We covered these additionsin in Section 5.2.13,“ Map Key " [38].

org.mag.subscribe

Subscription

- items: Map<Long,Lineltem> | I B -

Lineltem
- num: lang

The example below maps Subscri pti on'smap of Li nel t ensto the SUB_| TEMS join table. The key for each map entry is
theLi nel t emsnum field value.

Example 12.16. Join Table Map Mapping

package org. mag. subscri be;

@Entity

156

Mapping Metadata

@rabl e(name="SUB", schema="CNTRCT")
public class Subscription {

@neToMany(cascade={ CascadeType. PERS| ST, CascadeType. REMOVE})
@bpKey(name="num')
@oi nTabl e(nane="SUB_| TEM5", schema="CNTRCT",
j 0i nCol ums=@oi nCol utm(nane="SUB_I D"),
i nver seJoi nCol utms=@oi nCol um(nane="1TEM | D"))
private Map<Long, Linelten® itens;

@ntity
@rabl e(name="LI NE_| TEM', schema="CNTRCT")
public static class Lineltem

extends Contract {

private | ong num

The same metadata expressed in XML:

<entity class="org. mg. subscribe. Subscri ption">
<t abl e name="SUB" schema="CNTRCT"/>
<attributes>

<one-to-many name="itens">
<map- key name="nuni' >
<j ol n-tabl e name="SUB_I TEMS" schema="CNTRCT" >
<j oi n-col um nane="SUB_I D'/ >
<i nver se-j oi n-col utm nanme="|TEM | D'/ >
</j oi n-tabl e>
<cascade>
<cascade- persi st/ >
<cascade-renove/ >
</ cascade>
</ one-t o- many>

</attributes>

</entity>

<entity class="org. mg. subscribe. Subscri pti on. Li neltent>
<t abl e name="LI NE_I TEM' schema="CNTRCT"/>
<attributes>

<basi ¢ name="nuni'/>

</attribut es>
</entity>

12.9. The Complete Mappings

We began this chapter with the goal of mapping the following object model:

157

Mapping Metadata

org.mag org.mag.pub
Author
authors™ *= [_id: |gng
- firstName: String
R Article - lastMame: String
=Ny - arts® — - version: int
- title: String
- content: byte(] T
- version: int address
Address
- street: String
coverArticle articles” - city: String
| - state: String
Magazine - Zip: String
- isbn: String | T
- title: String :
- price: double ubilgher ardress
- copiesSold: int = Company
- version: int - mags® — -id: long
- name: String
- revenue: double
- version: int
I
magazine subscriptions™
v
Lineltem Subscription LifetimeSubscription
- comments: String -id: lang ~ eliteClub: boolean
- price: double 4 ilems® 4 - startDate: Date
- num: long - payment: double
- version: int
l TrialSubscription
Doc - endDate: Date
Contract ~7d: Tong s
- Torms - version: int
org.mag.subscribe

That goal has now been met. In the course of explaining JPA's object-relational mapping metadata, we slowly built the requisite
schema and mappings for the complete model. First, the database schema:

158

Mapping Metadata

And finally, the complete entity mappings. We have trimmed the mappings to take advantage of JPA defaults where possible.

Example 12.17. Full Entity Mappings

package org. nag;

@ntity

@ dd ass(Magazi ne. Magazi nel d. cl ass)
@rabl e(name="MAG")

@i scri m nator Val ue("Mag")

public class Magazine {

@col um(| engt h=9)
@d private String isbn;
@d private String title;

@col um(name="VERS")
@/ersion private int version;

159

Mapping Metadata

private String nane;
private double price;

@ol umm(name="COPI ES")
private int copiesSold;

@neToOne(f et ch=Fet chType. LAZY,

cascade={ CascadeType. PERSI ST, CascadeType. REMOVE})
@oi nCol uim(name="COVER_| D")
private Article coverArticle;

@neToMany(cascade={ CascadeType. PERSI ST, CascadeType. REMOVE})
@ der By
@oi nTabl e(name="MAG_ARTS",
j oi nCol ums={
@oi nCol utm(name="MAG | SBN', referencedCol ummNane="1SBN'"),
@oi nCol um(nane="NAG_TI TLE ref erencedCol utmNane=""TI TLE")

i nver seJoi nCol ums=@oi nCol um(nane="ART_I D"))
private Collection<Article> articles;

@mbnyToOne(f et ch=Fet chType. LAZY, cascade=CascadeType. PERSI ST)
@oi nCol um(nane="PUB_I D")
private Conpany publisher;

@ransient private byte[] data;

public static class Magazineld {

}
}

@ntity

@abl e(name="ART", uni queOonstral nt s=@Jni que(col unnNames- TI TLE"))
@equenceCener at or(nane "ArticleSeq", sequenceNane="ART_SEQ')
public class Article {

@d
@cener at edVal ue(st rat egy=CGener at i onType. SEQUENCE, generator="Articl eSeq")
private long id;

@ol um(nanme="VERS")
@/ersion private int version;

private String title;
private byte[] content;

@anyToMany(cascade= CascadeType. PERSI ST)
@x der By("l ast Nare, firstName")
@oi nTabl e(nane=" ART AUTHS",
j 0i nCol uMs =@ oi nCol urm(nan‘e "ART_I D),
i nver seJoi nCol utms=@oi nCol urm(nanme=" AUTH 1D"))
private Col | ecti on<Author> authors;

package org. mag. pub;

@ntity
@rabl e(nane="COVP")
public class Conpany {

@col um(nanme="Cl D")
@d private long id;

@ol umm(name="VERS")
@/ersion private int version;

private String nane;

@col um(nanme="REV")
private doubl e revenue;

@nbedded

@\t tributeOverrides({
@\t tributeOverride(name="street", colum=@Col um(nane="STRT")),
@\ttributeOverride(name="city", colum=@Col um(nane="ACl TY"))

1
private Address address;

@neToMany(mappedBy="publ i sher", cascade=CascadeType. PERSI ST)
private Col | ecti on<Magazi ne> mags;

@DneToMany(cascade CascadeType. PERS| ST, CascadeType. REMOVE)
@oi nTabl e(nanme=" COVP_SUBS",

j 0i nCol uMs =@ oi nCol urm(nama "COW_ID"),

i nver seJoi nCol urms=@oi nCol urm(name=" SUB 1D"))
private Col |l ecti on<Subscription> subscriptions;

160

Mapping Metadata

}

@Entity
@rabl e(name="AUTH")
public class Author {

@d

@=ener at edVal ue(strat egy=Cener ati onType. TABLE, gener at or =" Aut hor Gen")

@abl eGener at or (nane="Aut hor Gen", tabl eName="AUTH GEN', pkCol utmNanme="PK",
val ueCol umNane="Al D")

@ol um(name="Al D', col umbDefi niti on="1 NTEGER64")

private long id;

@ol um(nanme="VERS")
@/ersion private int version;

@col um(name="FNAVE")
private String firstNane;

@col um(nanme="LNAME")
private String | ast Nane;

private Address address;

@manyToMany(mappedBy="aut hors", cascade=CascadeType. PERSI ST)
private Collection<Article> arts;

}

@nbeddabl e
public class Address {

private String street;

private String city;

@ol umm(col umbDef i ni ti on="CHAR(2)")
private String state;

private String zip;

package org. mag. subscri be;

@mppedSuper cl ass
public abstract class Docunent {

@d
@cener at edVal ue(st rat egy=CGener at i onType. | DENTI TY)
private long id;

@ol um(nanme="VERS")
@/ersion private int version;

}

@Entity
@rabl e(schema="CNTRCT")
@ nheritance(strategy=IlnheritanceType. JO NED)
@i scri m nat or Col um(nanme="CTYPE")
public class Contract
extends Document {

@ob
private String terns;

}

@Entity

@abl e(name="SUB", schenma="CNTRCT")

@i scri m nat or Col um(nanme="KI ND', discrim natorType=Di scrim nator Type. | NTEGER)
@i scrimnatorVal ue("1")

public class Subscription {

@d
@cener at edVal ue(st rat egy=CGener at i onType. | DENTI TY)
private long id;

@ol umm(nanme="VERS")
@/ersion private int version;

@Col um(nane=" START")
private Date startDate;

@col um(nanme=" PAY")
private doubl e paynent;

@neToMany(cascade={ CascadeType. PERSI ST, CascadeType. REMOVE})
@bpKey(name="num')
@oi nTabl e(nanme="SUB_| TEM5", schema="CNTRCT",

161

Mapping Metadata

j oi nCol utms=@oi nCol unm(nanme="SUB_I D"),
i nver seJoi nCol uims=@oi nCol urm(name="1 TEM 1D"))
private Map<Long, Linelten> itens;

@ntity
@abl e(nanme="LI NE_| TEM', schema="CNTRCT")
public static class Lineltem

extends Contract {

@ol umm(nanme="COW")
private String comments;

private double price;
private |ong num

@anyToOne

@oi nCol ums({
@oi nCol um(nane="MAG_| SBN', referencedCol umNane="1SBN'),
@oi nCol unm(nane="NAG_TI TLE r ef erencedCol utmNane=""TI TLE")

}
private Magazi ne magazi ne;

}

@ntity(name="Lifetime")

@i scrimnator Val ue("2")

public class LifetimeSubscription
ext ends Subscription {

@Basi c(fet ch:Fet chType. LAZY)

@col um(nanme="ELI TE"

private boolean getElitedub () { }

public void setElited ub (bool ean e||te) { ...}

}

@ntity(name="Trial")

@i scrimnatorVal ue("3")

public class Trial Subscription
extends Subscription {

@ol umm(name="END")
public Date getEndDate () { }
public void set EndDate (Date end) { ...}

The same metadata expressed in XML form:

<entity-mappi ngs xm ns="http://java. sun. con xm / ns/ persi st ence/ or ni'
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://] ava. sun. com xm / ns/ persi stence/orm orm 1_0. xsd"
versi on="1.0">
<mapped- super cl ass cl ass="org. mag. subscri be. Docunment " >
<attributes>
<id name="id">
<gener at ed- val ue strategy="1DENTITY"/>
</id>
<versi on name="version">
<col um nane="VERS"/ >
</ versi on>
</attributes>
</ mapped- super cl ass>
<entity class="org.nmag. Magazi ne">
<t abl e name="MAG'/ >
<i d-cl ass="org. nag. Magazi ne. Magazi nel d"/ >
<di scri m nat or - val ue>Mag</ di scri m nat or - val ue>
<attributes>
<i d name="isbn">
<col um | engt h="9"/>
</id>
<id name="title"/>
<basi ¢ name="nane"/ >
<basi c name="price"/>
<basi ¢ name="copi esSol d" >
<col utm nane="COPI ES"/ >
</ basi c>
<versi on name="version">
<col utm nane="VERS"/ >
</ versi on>
<many-t o- one name="publisher" fetch="LAZY">

162

Mapping Metadata

<j 0i n- col um nanme="PUB_I D'/ >
<cascade>
<cascade- persi st/ >
</ cascade>
</ many-t o- one>
<one-to-nmany nane="articl es">
<order - by/>
<j oi n-t abl e name="MAG _ARTS" >
<j oi n-col um nanme="MAG_| SBN' referenced-col um-name="1SBN'/ >
<j 0i n- col utm nane="MAG_TI TLE" ref er enced- col umm- nane="TI TLE"/ >
<i nver se-j oi n-col um name="ART_| D'/ >
</j oi n-tabl e>
<cascade>
<cascade- persi st/ >
<cascade-renove/ >
</ cascade>
</ one-t o- many>
<one-to-one nane="coverArticle" fetch="LAZY">
<j oi n- col um nane="COVER_| D'/ >
<cascade>
<cascade- persi st/ >
<cascade-renove/ >
</ cascade>
</ one-t 0- one>
<transi ent nanme="data"/>
</attributes>
</entity>
<entity class="org.mag.Article">
<t abl e name="ART">
<uni que- constrai nt >
<col um- nanme>T| TLE</ col um- nanme>
</ uni que- constrai nt >
</ tabl e>
<sequence-generator name="Articl eSeq", sequenceNanme="ART_SEQ'/>
<attributes>
<id name="id">
<gener at ed- val ue strategy="SEQUENCE" generator="Articl eSeq"/>
</id>
<basic nane="title"/>
<basi ¢ nane="content"/>
<versi on name="versi on">
<col um nane="VERS"/ >
</ versi on>
<many-to-many name="articl es">
<or der - by>l ast Nane, firstNane</order-by>
<j oi n-t abl e name="ART_AUTHS" >
<j oi n-col um nane="ART_I D' referenced-col um-name="1D"/>
<i nver se-j oi n-col um name="AUTH | D' referenced-col um- nane="Al D'/ >
</j oi n-tabl e>
</ many-t o- many>
</attributes>
</entity>
<entity class="org. mg. pub. Conpany" >
<t abl e name="COW"/ >
<attributes>
<id name="id">
<col um nanme="Cl D'/ >
</id>
<basi ¢ nane="nane"/ >
<basi ¢ nane="revenue">
<col um nane="REV"/ >
</ basi c>
<versi on name="version">
<col utm nane="VERS"/ >
</ versi on>
<one-to-many name="mags" mapped- by="publ i sher">
<cascade>
<cascade- persi st/ >
</ cascade>
</ one-t o- many>
<one-to-many name="subscri pti ons">
<j oi n-t abl e nane="COWP_SUBS" >
<j 0i n- col um nane="COWP_I D'/ >
<i nverse-j oi n-col um nanme="SUB_I D'/ >
</j oi n-tabl e>
<cascade>
<cascade- persi st/ >
<cascade-renove/ >
</ cascade>
</ one-t o- many>
<enbedded nanme="address">
<attribute-override name="street">
<col utm nane="STRT"/ >
</attribute-override>
<attribute-override name="city">
<col um nanme="ACI TY"/ >
</attribute-override>
</ embedded>
</attributes>
</entity>
<entity class="org.mg. pub. Aut hor">
<t abl e name="AUTH'/ >
<attributes>

163

Mapping Metadata

<id name="id">
<col um nane="Al D' col utm-defi niti on="1NTEGER64"/ >
<gener at ed- val ue strategy="TABLE" generat or =" Aut hor Gen"/ >
<t abl e- gener at or name="Aut hor Gen" t abl e=" AUTH_GEN'
Jid pk- col um- nane="PK" val ue-col um- nanme="Al D'/ >
</1d>
<basi ¢ nane="firstNane">
<col utm nane="FNAME"/ >
</ basi c>
<basi ¢ nanme="1| ast Nanme" >
<col utm nanme="LNAME"/ >
</ basi c>
<versi on name="versi on">
<col utm nane="VERS"/ >
</ version>
<many-to-many name="arts" mapped-by="aut hors">
<cascade>
<cascade- persi st/ >
</ cascade>
</ many-t o- many>
<enbedded nanme="address"/>
</attributes>
</entity>
<entity class="org. mg. subcribe. Contract">
<t abl e schema="CNTRCT"/ >
<i nheritance strategy="JO NED'/ >
<di scri m nat or - col um nane="CTYPE"/ >
<attributes>
<basi ¢ name="terns">
<l ob/ >
</ basi c>
</attributes>
</entity>
<entity class="org. mag. subcri be. Subscri ption">
<tabl e nane="SUB" schenma="CNTRCT"/>
<i nheritance strategy="SI NGLE_TABLE"/>
<di scri m nat or - val ue>1</ di scri m nat or - val ue>
<di scri m nator-col um name="KI ND" discrim nator-type="|NTEGER"/ >
<attributes>
<id name="id">
<gener at ed- val ue strategy="1DENTITY"/>
</id>
<basi ¢ nanme="paynent" >
<col utm nane="PAY"/ >
</ basi c>
<basi ¢ name="start Date">
<col utm nane="START"/ >
</ basi c>
<versi on name="versi on">
<col um nane="VERS"/ >
</ versi on>
<one-to-many name="itens">
<map- key name="nuni >
<j ol n-tabl e name="SUB_I TEMS" schema="CNTRCT" >
<j oi n-col utm nane="SUB_I D'/ >
<i nver se-j oi n-col um narme="1TEM | D"/ >
</j oi n-tabl e>
<cascade>
<cascade- persi st/ >
<cascade-renove/ >
</ cascade>
</ one-t o- many>
</attributes>
</entity>
<entity class="org. mg. subscribe. Subscri pti on. Li neltent>
<tabl e name="LI NE_I TEM' schema="CNTRCT"/>
<attributes>
<basi ¢ nane="conmments" >
<col utm nane="COW'/ >
</ basi c>
<basi ¢ name="price"/>
<basi ¢ nanme="nunt'/>
<many-t 0- one nane="nagazi ne">
<j oi n-col um narme="MAG | SBN' referenced-col um-name="1SBN'/ >
<] oi n-col um name="MAG_TI TLE" referenced-col um-name="TI TLE"/ >
</ many-t o- one>
</attributes>
</entity>
<entity class="org.mg. subscribe. LifetimeSubscription" name="Lifetinme">
<di scri m nat or - val ue>2</ di scri m nat or - val ue>
<attributes>
<basi ¢ name="el ited ub" fetch="LAZY">
<col utm nane="ELI TE"/ >
</ basi c>
</attributes>
</entity>
<entity cl ass="org.mg. subscribe. Tri al Subscri ption" name="Trial ">
<di scri m nat or - val ue>3</ di scri m nat or - val ue>
<attributes>
<basi ¢ name="endDat e" >
<col utm nane="END"/ >
</ basi c>
</attributes>

164

Mapping Metadata

</entity>
<enbeddabl e cl ass="org. mag. pub. Addr ess" >
<attributes>
<basi ¢ name="street"/>
<basic name="city"/>
<basi c nane="state">
<col um col um-defi ni ti on="CHAR(2)"/>
</ basi c>
<basi ¢ name="zip"/>
</attributes>
</ embeddabl e>
</entity-mappi ngs>

165

Chapter 13. Conclusion

This concludes our overview of the JPA specification. The OpenJPA Refer ence Guide contains detailed documentation on all
aspects of the OpenJPA implementation and core devel opment tools.

166

Part 3. Reference Guide

O I 1100 [o o RPN 174

O 1= 0o (=0 [U o 1o = T PP 174
A O] 0 [TU = 1o o AP TPTPPT 175
2% I 1 oo [0 1o o PP 175
2.2. RUNtIME CONFIQUIGLIONiiieieeii et e e e e e e e e et e e e e e et e e et e e e eeannas 175
2.3. Command Line ConfigUIationccuuieieuieiiieiei e e e e e e e e e e e e e et e e e e e e e eennas 175
PR N ©ce o (] o110 1] o EO PP 176
2.4, PlUgin CONfIGQUIBLIONcceetieeeii ettt ettt ettt e et e et e et et e e e ena e e eenans 177
2.5, OPENIPA PrOPEITIES ...ttt ettt e et ettt e et e e et e e e ah e e et e e e e e e tn e e e e aaaas 178
2.5. 1. OPENJPAAULOCTEAN ettt ettt et et e et e e e e e e e e e e e e e 178
2.5.2. 0PENJPAAULODEIACK ... iiii e e e 178
2.5.3. 0PN PaBIOKEIFACIONYv i e 178
2.5.4, 0peniPaBroKerTMPl ... e 179
2.5.5, 0PN PACIASSRESOIVEL ... ittt ettt et eaaas 179
2.5.6. 0penjpa.CompatibDIliTycoouiii e 179
2.5.7. 0penjpa.ConNeCtiONDIIVEINGITIEc.uiiiiiii ettt e e e e e e e eeanas 179
2.5.8. 0penjpa.ConneCtioN2DIIVEINGIMEuiiii i e e e e e e e e e e eanaas 179
2.5.9. 0penjPa.CONNECHIONFBCIONYiveeiieii et e e e e e e e e e e e e e e e e et e e e e e e e eennas 180
2.5.10. 0penjPa.CONNECHIONFACLONY2cceuuiiee ittt ettt e et e ettt e e e e eenans 180
2.5.11. openjpa.ConneCtioNFACLONYNEBIMIEcieiii ittt ettt e e e e eenaas 180
2.5.12. openjpa.ConNeCtioNFECIONY2INAIMEiiue et e e e e e e et e e e e eeanas 180
2.5.13. 0penjpa.ConNeCtioNFaCIONYMOUEc.uiiiiiiii e e 181
2.5.14. openjpa.ConnectionNFaCtOryPrOPEItIESiiei e e e e e e e aaas 181
2.5.15. openjpa.ConnectionFaCtory2PrOPEITIESvuu i iiei e e e e e e e 181
2.5.16. 0penjpa.ConNECiONPASSWOITuuiiiiiii ettt e e e e e e e e eenans 181
2.5.17. openjpa.ConNECiONZ2PASSIWOITuiieiiie ettt ettt ettt e e e e e eaa e eenans 182
2.5.18. 0penjpa.CoNNECLIONPIOPEITIESicuu ittt e e e et e e et e e e e e et e e e e eeanns 182
2.5.19. 0penjpa.CoNNECLIONZ2PIOPEITIESc.u ettt et e e et e e e e eaas 182
2.5.20. 0penjpa.ConNECLIONURLcccuiiiii e e e e e e e e e e e e e e e e et e r e anas 182
2.5.21. 0penjpa.ConNECION2URLc.uuiiiiieiis et e e e e e e e e e e e e e e anas 183
2.5.22. 0penjpa.ConNECtiONUSEINEIMEccuuiieiiii ettt et e e e e et e eeaans 183
2.5.23. 0penjpa.ConneCtioN2USEINEITIEuiiiiiie ettt ettt ettt e e e e eenans 183
2.5.24. openjpa.ConNeCtioNRELAINIMOOEccuuiiitiiii e e e e e et e e e eanas 183
2.5.25. 0penjpaDAaCACIEcuu e 183
2.5.26. 0penjpa.DataCaCheManaQErccuuiiiiiiiii e e e e 184
2.5.27. openjpa.DataCaCheTimEOULccuuiiiiiiiiii i e e e e e e e e e eenn s 184
2.5.28. OPENPADELACNSEALE i ceiie et 184
2.5.29. 0penjPa.DYNaMiCDAIASIIUCESceevieeeiii ettt ettt ettt e e e e e enb e eenans 184
2.5.30. 0penjPAFEtChBEICNSIZE ieiieii et e 185
2.5.31. OPEN)PAFEICNGIOUPS ... ettt ettt 185
2.5.32. 0penjpa.FIUShBEfOTEQUETTESiiiiieii e et e e e e e e e e e e e eanaas 185
2.5.33. 0peN|PAl GNOTECNANGES ... vie e e e e e e e e e e e e e e r e 185
2.5.34. OPENMTPAIT .ttt e aaaas 186
2.5.35. OPENPAINVErSEMANAGESceeteieeeii ettt ettt ettt enaas 186
2.5.36. 0PEN)PALLOCKIMANAGES et et et eaas 186
2.5.37. 0PEN)PALOCKTIMEOUL ...ttt et et et e e e e e e e e e e e e eennas 186
PRI T 0o = g o= T oo P 187
2.5.39. 0penjpa.ManagedRUNIIMEc.uuiiii e e e e e e e e e e e e e e e e eennas 187
2.5.40. OPENJPAMBPPING ... eeeetie ettt ettt a et eaans 187
2.5.41. openjpaMaxFEtChDEDLNuee e 187
2.5.42. 0penjpa.Met@DAIAFACIONYieeiiei ettt eaas 188
2.5.43. 0penjpa.MetaDalaREPOSITONYiiti ittt et et e e e aaas 188
2.5.44. openjpa.MUItItRreadedccoviiii e 188
2.5.45. 0pENPAOPLIMISHIC .vuiiiteeii e e e e e e e e e e a e 188
2.5.46. openjpa.Orphan@dl @Y ACHIONc.uuiiei ettt e e eeaans 189
2.5.47. openjpa.NONtranSaCtioNAlREAAooiiiiii e 189
2.5.48. openjpa.NontransaCtioNaIVWIITEiiue e et 189
2.5.49. 0PEN|PAPIOXYIMBNEOEN ... ieeiiitie ettt ettt 189

168

Reference Guide

3. Logging

2.5.50. OpEN P QUEINYCECNE .. .cee e e 189
2.5.51. openjpa.QUEryCompilatioNCaCtheiiiiiiii e e 190
2.5.52. 0penjpaREAILOCKLEVELooeiiiiii et 190
2.5.53. 0penjpa.REMOLECOMMITPIOVITESi it eenens 190
2.5.54. OPENPARESIOIESIALE ... ieei ettt e eaas 190
2.5.55. OPENJPARELAINSLALEuiiee ittt et e 191
2.5.56. 0penjpa.RetryClassREJISIIAIONcccuuiiiiieii e e e e e e e e e e e 191
2.5.57. openjpa.RUNtiMmeUnenhanCedCIBSSESuiieuniieiiiii e e e e e e e e e aaas 191
2.5.58. 0penjpa.SAVEPOINIIMANAGES ettt ettt et et e eaans 191
2.5.50. O BN PALSEOUENCE ...t eete ettt ettt ettt e ettt a et ettt et aa e e eaaas 192
2.5.60. openjpa. TranSaCtIONMOUEiiiui it e e e e et e e e e et e e e e eeanns 192
2.5.61. 0penjpaWITELOCKLEVEL ... e e 192
2.6. OPENIPA JDBC PrOPEITIES ... iieeeii ittt e e e e e e e e e e e e e e e et e e et e e e e aaaas 193
2.6.1. openjpa.jdbC.CoNNECtIONDECOIBIONScivueiieeeeteeeieeet e e e e e e e et e e et e e e an e e e e e e e e e e eaneeennas 193
2.6.2. 0penjPajdDC.DBDICHIONGIYuuiiiiitieei ittt et 193
2.6.3. 0penjpajADC.DIVEIDEIASOUITEuuiiiiii ettt ettt e e e e e eenans 193
2.6.4. openjpajdbC.EagerFetChMOTEc.uiiiiii e 193
2.6.5. 0penjPajdDC.FEICNDITECHIONc..uiii e e e e e e e 194
2.6.6. 0pENj P ADC.IDBCLISIENENS ...uiiiiiii et e e e e e e e e e e e e e e e e et e e e aaaas 194
2.6.7. 0PN PAJADC.LRSSIZE ...t et 194
2.6.8. 0penjpajdbc.MappiNgDEFAUITSuuiiiiii e 194
2.6.9. 0penjpajdbC.MaPPINGFACIONYcceetiieieii ettt et e e e eeaaas 195
2.6.10. openjpa.jdbc.QUENYSQLCACNEccui et 195
2.6.11. 0penjpajabC.RESUITSEITYPE ... eeiiiiiie et e e e 195
2.6.12. 0penjPajabC.SCHEMA i 195
2.6.13. 0penjpa.jdbC.SChEMEFACIONYiiiii e e e 196
2.6.14. 0penjPadOC.SCHEMAS ... i 196
2.6.15. 0penjPajdiC.SQLFACOIYuueiiitie ettt ettt eaaas 196
2.6.16. openjpa.jdbc.SUbClassFEtChMOEcc.uniii e 196
2.6.17. openjpa.jdbe. SynChroNiZEMEPPINGSc.uuiie e e e e e e e 197
2.6.18. openjpa.jdbe. TransaCtionI SOIAtiONccvuuiiiii e e e e e e e 197
2.6.19. openjpa.jdbC.UpdatEManagerc.uieieiiiiii i 197
... 198
3.1.L0gOIiNG ChaNNEIS ...ttt ettt ettt ettt et e et et eaaas 198
3.2 OPENIPA LOGUING etneetnaetnaeetaeet et e et e e e at e e et e e et e et ta e e et e e et e aeta e e eta e eat e aaa e e et e aebn e aan e eeanns 199
BTG T 1" o 1T oo 8 o T T o S 200
G 30 oo N 200
3.5. Apache COmMMONS LOGGING ++.vvuueetneetnieeeuerateeetnaeetnseetneeeneeataeeanaeeanaeeanaeenaeenaerrnaernnaerennns 200
3.5.1. IDK 1.4 JaVAULHTIOGUING .. eeeetieeeeete ettt ettt eaaas 200
R @0 o 4 I I oo PP PP 201
... 203
4.1. UsiNg the OPENIPA DEASOUITEcuuuietn ettt e et e e et e e e e e et e e et e e eaa e ean e eeaaeeanaes 203
4.2.UsiNg @ Third-Party DAlaSOUICEc.uuiieuniiiiieii e eie e e e e e e e e e e e e e e e et e e et e e et e eean e eeaneeeenaaes 203
4.2.1. Managed and XA DalaSOUICESc.uuiieuneetnieeitieeeaeeeteeetaeeaaeeanereneeetaeeraeraaeranaarennaarnnaees 204
4.3. RUNtIME ACCESS 1O DAASOUICEuueieiieiineeii e e et e e et e e e e e e e e e et e e et e e e e e e an e eenneeeenaees 205
A4, DALADESE SUDPPONT ..t eeeeti ettt ettt ettt ettt e et et e ettt et ettt e e 206
4.4.1. DBDICONAY PrOPEITIESc..iiiieiit ittt e e et e et e e e e e e et e e ea e aea e 207
4.4.2. MYySQLDICtONArY PrOPEITIESuiieiiii ettt et ettt et e et e e e ean e 214
4.4.3. OracleDICtioNary ProPErtiES ...cvuuiiii i eii et e et e e e e e e e e e e e e e e e e e e e aa e 215
4.5. Setting the TransaCtion [SOIGHONiieuniiiiie e e e e e e e e e e e eeenaees 215
4.6. Setting the SQL JOIN SYNEBXuuuiiiiiieeeeit et e et e e et e e e et e e eana s 216
4.7. AcCesSING MUILIPIE DELADESESccevuiieiiiiie ettt e e 217
4.8. Configuring the Use of IDBC CONNECLIONSccuuiiiieiiiie et e e e e e e e e aea e 217
4.9, StatemMeENt BalChingoiiii i e 218
400, LargE RESUIT SELSieii it ee e e et e e e e e e e e e r e e aaaae 219
T B = = 0 S o 1= 0= PP 221
4.12. SChemMa REFIECHION e et e e e e e e e e 221
S o 0 T= 1 1 =] I PP 222
4.12.2. SCNEMAIFECIONY ..ttt e ettt e e e e e e e et bbb e e e e e e e e eanbnaa s 222

169

Reference Guide

e TS o1 1= 112 I o PSP 223
414, XML SCheMaFOMMELu it e et e et e e et e e e eaan s 226
I = £ LSS 228
T = S S = O = P 228
B2 BNNANCEMENT ...ttt ettt et e et e e et e et e e e e aa s 228
5.2.1. ENhancing at BUild TIMEiieiiii et e e e e e e e e eaas 229
5.2.2. Enhancing JPA ENtitiesS 0N DEPlOYMENL ... ccuuuiiiiiei e ee e e e e e e e e e e e e aaas 230
5.2.3. ENhanCing @t RUNTIMIEuuiiieiei e et e e e e e e e e e e et e e e e et e e e e e anneeennes 230
5.2.4. Omitting the OPenJPA NNEINCESuiiiiii ettt eenans 231
5.3. MANaGEd INTEITACESiieiiii ettt ettt e e e e ena e eeneas 232
Y @ o)1= ol Lo (=01 Y 232
L I B T = (o (= o = Y/ 232
5.4.2. Entitiesas [dentity FIEIAScoouiiiiiiiiiii e 233
G AN o o) [Tor= Lo I Ko (=0 111 Y200 oo S 234
5.4.4, Autoassign / ldentity Strategy CaVEALSviieuuuiiiiiiie et 235
5.5, MANBGEA INVEISESeeiiiieiii ettt ettt ettt e et e et e e e e e e e e eaaas 235
T = S 1 = | = o 237
L S I (== (o o = = 237
L2 Y/ o T o =g o JL@ o =4 T oo 237
5.6.3. Calendar FIeldS and TIMEZONESccuuuiiiiiii ettt et et e e e e e e e eenans 237
LI . o)1 === 238
I S 0 i . o) (== PR 238
5.6.4.2. Large RESUIT SEL PrOXIES ...c.uuiiiteiiieee ettt et e e e e a et e ean e eees 238
5.6.4.3. CUSIOM PrOXIES ...ttt ettt ettt ettt et ettt e et e e et e e et e ean e eees 239
ST (= 107 T2 (o P 240
B5.6.5.1. EXIEINAl VEIUBSuiiiiiiieeiii ettt et e et e e et eaaas 243

A = = (o 1 1 € (0T o= PP 243
5.7.1. CUSIOM FEICN GIOUDS ...eevteiiiiie ettt ettt ettt ettt ettt e et e et e e e e e ena e e eenens 243
5.7.2. Custom Fetch Group COnfigUIaLioNcouuiieuiii e e e e et e e eeanas 245
5.7.3. Per-field Fetch ConfigUIrationccuiiiiiiii e e e e e e e e eaas 246
B 7.4, IMPIEMENTAtiON NOLESeve e e et e e e e e e e e e et e et e e e e e et eeaneeennns 246
o3RS T =T 1= g = [1 oo 247
5.8.1. Configuring Eager FELChINGuiiiiiiiiiei et eaans 248
5.8.2. Eager Fetching Considerations and LimitalionSoocveeiiiiiiiiiiiiiiiie e 249
LIV = = - PP 250
LV = = N = ok 0] Y 250
A VL= o v = = 0101 1 (o Y 251
6.3. AAdItioNal JPA MELBOBEAceeeveieeeii et e et et et eaans 251
6.3.1. DABSIONE IABNLILY ... eeeeit ettt ettt et et e e et e e aa e e eaans 251
5.3.2. SUIMOUELE VEISIONeeeeti ettt ettt ettt ettt ettt e et e et et e et et e e e et n e et e tb e e e et e e eenans 251
6.3.3. PErSIStENt FIEld VAUESuiiiiiii et e e e e et e e e et e e e et e e eenens 251
6.3.4. Persistent ColleCtion FIElASc.uniii e 252
6.3.5. PErsistent Map FIElOSouuiiiiiei i e 252
6.4, Metadata EXEENSIONS ... coeiiiieiiii e et e et e e et e e et e e e e anans 253
Ot I O S Y 4 = 1S o 253
B.4. 1.1 FEICN GIOUDS .. .eeviieiiii ettt ettt e et e e e e e enans 253
A DT - N O 1 TP 253
D= o g 1< o S = = P 253
S a T o 1= g o = P 254
Lt 1= o= o = | 254
6.4.2.2. LOAH FEICN GrOUD ...ieiiiiieeii et e 254

L B T I L 254
B.4.2.4. INVEISE-LOGICELeuiiiiie et 254

L B ST == o L@ 5 Y 254
LG T 1Y/ o= 255
B.4.2.7. EXEEINMAIIZEN ... 255
B.4.2.8. FACLOIYeieeii e 255
6.4.2.9. EXIEINGI VBIUES .. .cuiiiiiieii et eas 255
L T - 01 o= TP 256

170

Reference Guide

5017, o] 11 o 257
8 oo 1Y T o o 257
7.1.2. USINg the Mapping TOOIccouuuiiiiiie ettt et et e eeaaas 258
7.1.2. GENErating DDL SQLeuuiieeieieiittiae ettt e e e e et ettt e e e e et e et et bbb e e e e e et ee bbb aaaaaaeanes 259
7.1.3. Runtime FOrward MaPPiNgceuuieuneiie et e e ettt e e e e et et a e e 259
7.2. REVEISE MBPPING ettt ettt et et ettt et et et e e e et e e e e 260
7.2.1. Customizing REVErSE MBPPING «..vvuieiieiiieeeie et e e e e e e e e e e e e e e et e e et e et e e et e e e e eaneeannns 262
7.3. Meet-in-the-Middl@ MaPPIiNGuoveeiiii e e e e e e e e e e e e e e e e e eeennas 264
T4, MAPPING DEFBLITSvuiieeit ettt e et ettt eeaaas 264
7.5, MAPPING FBCIOMY ...ttt ettt e et ettt e e e e e eaaas 266
AT Lo g S =g o= o N o 1] P 267
7.7. Additional JPA IM@DPINGS ...ttt e e et e et et ettt e e e et e e e e 269
7.7.1. Datastore 1dentity MapDiNgceeeeeernieeeieeie e e e e e e e e e e e e e et e e e e et e eaan e e st e eean e eaneeannns 269
7.7.2. SUrrogate Version MaPPiNGgceeeuieerneeeeieeiteeeteeeteeean s eeenaeeat e eean e ean s eean e eenneeeaaeeaneeanaeeennns 269
7.7.3. MUIti-COlUMN MBPPINGS ... eeeeeie ettt ettt e et et e e ettt e e e et e e eenans 270
7.7.4. 30iN ColUMN ATIHDULE TArGEIS ...ttt eaaas 270
ARSI = 1100 0= o 1Y = o) 11 o R P 270
T.7.6. COIBCLIONS ...ttt et e et et ettt e e e e e et e et b e ean e eeanns 272

A ST R T = T = G I PP 272
7.7.6.2. E1ement JOIN COIUMNSciiiiiieeiiiie ettt ettt e et e e et e e et e e e eaa e eeenens 272
A A T @ (L= o 11 4o o 272
7.7.7. One-Sided ONe-Many MaPPINGccuuuiieiii ettt ettt e e e e e ena e eenens 273
AR S T .- oL 274
7.7.9. INAEXES AN CONSLIAINTSietieeite ettt e et et ettt e e et e e e e e e an e eaaeeennes 274
A A T T 14 o L=~ SR 274
A A I o = Lo I = 274
7.7.9.3. UNIQUE CONSITAINTS ...eettieieii ettt ettt e et e et e e e e ab e e eaa e eeenans 275
7.7.20. XML COlUMN MEPPING ..ttt e ettt ettt e et e ettt e et et e e e et e e e e et e e e eaan e eeenens 275
7.7.11. Stream LOB SUPPOIuuuieiiiiteeeiitite ettt e e e eat e e eaat s e eeeaan s e e e esta e e eeaan s e eaesan s eeeessneeeesnneeeesnns 279
8= T 1=,V o [0 279
RS B =,V AN o 1 4 1 o1 0 P 279
7.10. Key EMbedded MapPingcc.uueieeieeieeee s e e e e et e e e e e e e et e e e e e e e e e e et r e ans 279
A8 N o 0o = PSPPI 280
7.12. Mapping LIMITaioNSuuniiiiiiie ettt e et eaaas 280
A T - o 1= o = O P 281
7.13. M@PPING EXLENSIONS ...ttt ettt e e e e et e e e e e e et e e e eeeanas 281
7.13. 1. ClASS EXEENSIONS ...uuiiiitiieteiti e ettt e ettt s e e et e e et e e e et s e e e eeb e e e e et r e e e etan e e e e esbnneeeetan e eeennns 281
7.13.1.1. SUDCIASS FEICh MOUE ... ettt e e e eaans 281
A B B S 1 (= 1Y PP 281
7.13.1.3. DiSCHiMINGLOr SEFAEEJY ... eevvueeeetieeeeeii ettt e et et ettt e et eeb e e e e e e e eera e eeenens 281
A I R RV s o) g S 1 = 1= o | PP 281
7132 FIEIA EXEENSIONSctiiiiteeii ettt et ettt et et b e e e e e et e et b e e e e eeaaas 282
80 T T = o = gl = (o o 11/ o = 282
7.13.2.2. NONPOIYMOIPRIC .vnieiieii e e e e e e e e e e e e e e e eeees 282
80 T2 T O - =Y @ 1) =1 = 282
FA A S (- (= s |YTPSUPPPTTTTRTSS 282
714, CUSLOM IMBPIINGS .- etne ettt ettt e et et et et e et e e et e e et e et e e et e ettt e e et et et s e e ea e e et e aean e eaneennnns 283
7.14.1. CUSIOM ClaSS IMBPPING ... eetnietie ittt ettt e et ettt e e e e e et e et b e e e e eennns 283
7.14.2. Custom Discriminator and Version SratEgi€Svuuueiunieieiieeiiieeeire e e e e e e e e e e e eanaeeannns 283
8 T XUt (o g g I T Ko Y=o oo 283
8 B IV U o - o | = 283
T.14.3.2. FIEld SAEOIES ..eevveiiiie ettt ettt e e e e et a bt e e e e e e et 283
A e e R @Ce g 1o U= (o] o PP 283
7.15. Orphaned KEYS ... ettt et 284

ST 3 1= o o)V 0 2T 0| 285
ST = ox (o) Y/ D 1= o [)Y/ 1 1= 0| S 285
8.1.1. StandalONE DEPIOYMENT ... ieiiiiee ittt ettt e e et e e e e e eaans 285
8.1.2. ENtityManager INJECLIONcceeuieeiiti ettt ettt ettt e et e et e e e et e e e eaa e eenans 285
8.2. Integrating with the Transaction MaNagErcoeuu i e 285

171

Reference Guide

R A N I -0 £ o PR 286
8.3.1. Using OpenJPA With XA TranSaCtiONScc.uiieiniiiiieii e e e e e e e e e e e e e e e e e enas 286
LS 01T S o = o) 1 288
S N (o a1 = (1= PP 288
O.1.1. BroKer FINAIIZAHONccuuiiiieeiiie et e e e et e et e e e eaas 288
9.1.2. Broker Customization and EVICHIONooouuiiiiiii e 288
SN N e [g1 o P 289
9.2.1. OpenJPAENtItYMaNagerFaClOryccueeieiiee et e e e e e e e e e e e e e aaas 289
9.2.2. OPENIPAENTTYMANAGES ... ettt ettt et e et ettt aaans 289
0.2.3. OPENIPA QUENY .eitiieeeei ettt e et e ettt e e ettt e e e e e e e e et e e et e et a et r e aanaa 289
S (= o | P 290
0.2.5. SIOTECACNE ...ttt e 290
9.2.6. QUENYRESUITCACKEuiiiii i e e e e e e 290
O.2.7. FEICNPIAN ..ot ettt aaans 290
9.2.8. OpenIPAENLIYTIANSACHION ...cevuunieiiii ettt ettt e et e e e eenans 290
0.2.9. OPENIPAPEISISIENCE ...ttt ettt et enaas 291
LS R A ® o= o I o To: (] oo P 291
9.3.1. Configuring Default LOCKINGuiiiniiiieiiei e e e e e e e e e e e eenas 291
9.3.2. Configuring Lock LevelSat RUNTIMEccvuuiiiiiei e e e e e e e e e e e e aaaas 291
(GG AN @ o1 ox oo (1 0 172N 292
LS A oo g I K= 0= o L= PP 293
9.3.5. RUIESTOr LOCKING BENAVIOT ...ttt et eeaeas 294
9.3.6. KNOWN 1SSUES @NA LIMITAIIONSuietieeeiie ettt e e et e et e e et e e et e e e e eeanas 294
0.4, SAVEPOINLS ... et et ettt ettt et et e et et ettt e e et et e e e e ea s 294
S I S T TS Vo g =P 295
9.4.2. CONfigUIING SAVEPOINTS ... eeeteeet e eei et e e e e e e e e e e et e e e e et e e et e e e e e e et e e ea e e et eeeanaeeaneeennns 296
LS ST 1V 1= 1 3To o [P 296
R T 0= - (o = T PP 297
0.6. 1. RUNEIME ACCESS ...t et ettt ettt ettt e e et e et e et e ettt e et e e e at e e e ea e e et e aetn e eean e eennns 299
O.7. TranSaCtiON EVENES ...t et e e e et e e e e 299
9.8. NON-REIBLIONE] SLOIESeeeiiieeiiii ettt e e ettt e e et e e e et e e e eaa e e e et e eeeeans 300
0 o 11 o 301
0 50 I - = o 1= 301
10.1.1. Data Cache CONFIGUIBLIONceuuieieiiie ettt ettt e et e e et et e e et et e e e eebe e eeees 301
10.1.2. Data CaCh@USAQE . .ceuuieieiii ettt et et e et e et e e et e et e et e e e e e eanas 303
10.1.3. QUENY CACHE ..uiiiii it e e a et e aae 305
O 0o 1] o q =0 T o SRR 308
T10.1.5. IMPOITANE NOLESueeeeeieet e e ettt e e e e e e e e et e et e e e e e e et e et e e e en e en e eaneeaneeeneeen 308
10.1.6. Known 1ssues and Limitalionsoeeunieieniieiiee e e e e e e e e e e e e e eennes 308
10.2. Query Compilation CAChEcooui e 309
10.3. QUENY SQL CBCNE ...eitiieeeiie ettt e e e et e e e e et e e e e et e e e e et e e e eatt e e e e et e e e aaraaaaaes 309
11. Remote and OffliNE OPEIELIONu ittt ettt e e et e et et et e e et e e et e et an e eaneaannns 311
R B T = 1= g Lo A 1 = SRR 311
11.1.0. DEtaCh BENAVIONvuuiiiiiiieee it e et e ettt e e e e et e e e e et e e e eeba e eaee 311
I N 1 = ot g T 2 T o S 311
11.1.3. Defining the Detached ObJECE GIraphc.uuuiiiiiiii e 312
11.1.3.1. Detached SEAa FIElTuiiiiiiiiieiie e e et e e et e e e aaaa e eaees 313

11.2. Remote Event Notification Framework ..o 314
11.2.1. Remote Commit Provider CONfigUrationcoovuuoiiiiiiii e e e e e e e e e 314
2 0 1 PPN 314

8 00t [PP 315
11.2.1.3. COMMON PrOPEITIES ...oeviueeiiiieee ettt ettt e e et e ettt e e et e e et et e e e et e e e eeneaeeees 316
2 @01 00112 1o PPN 316
12, DiStriDULEO PEISISIENCE ... ettt ettt e et e e et e et e et e e et e e ea e ettt et an e e aneeannas 317
O = 4T PSPPI 317
12,2, SAlIENE FEBIUNESieeii et e e ettt e e e et e e e e et e e e e et e e e eeta e e e eeta e eaae 317
N T I =0 0= = 10 PP PPP 317
12.2.2. Custom DistribDULioN POIICYueiiiiii e 317
12.2.3. HEterogen@oUS DEIANASEuieen ittt ettt e e e et e et e et a e e e e e 318

172

Reference Guide

12.2.4, Parall€] EXECULION ...uiiiiiiiee ittt e e e e e et e e e e et e e e eeta e e e eeta e e e eetenaeaees 318
S B TR 1 o 1U (= o 1 1= 318
12.2.6. TAGEIEA QUETY ...ttt ettt ettt et e et e e ettt e et et e e e e et e e e e e bt e e e eebe e e eeeba e eeees 318
12.2.7. DiStribDUtEd TranSACHION ... ccuuuieie et e e e e et e et e e et e e et e e e eeennes 318
12.2.8. CollOCELON CONSITAINT ... ettt e et e e et e e e et e e et e e et e e e an e eeneeeanns 319
G R U o PP PPPTTPTOT P PUUPPPPPPTN 319
12.3.1. How to activate SIHCE RUNLIME?coovtiiiiiiii e e et e e et e e e eabe e eeees 319
12.3.2. How to configure each database SlICE?covniiiieiiie e e 319
12.3.3. Implement DistributionPolicy INtEIfacecooeiiiiiii e 320
R TSP PTTTPTR T RUPPPRPIN 320
12.4. GlODEI PrOPaItiES ... e et et e e e eaa s 321
12.4.1. openjpa.glice.DistribUtIONPOIICYcccuuiiii e 321
D A o o 1= g1 0 = o= = 1= | 321
12.4.3. 0PN PASHCEIMASIESiieiiii e 321
12.4.4, 0penjPaSliCEINGIMESo it ettt e e e e 321
12.4.5. openjpaslice. ThreadingPOlICYocuuiiiiiiii e 321
12.4.6. openjpa.dlice. TranSaCtioNPOIICYoieue i e e 322
12,5, PEr-SliCE PrOPEITIES ..ttt ettt et et aaas 322
T o TT o = Y2 01 = = o 323
G 00 I N o o 1 A | 323
13.1.1. Common Ant Configuration OPLtIONSu.iiiiiiiieiiiie et et eeaba e 323
T A g0 g Tol Y o IS PP 325
13.1.3. Application Identity TOOI ANE TASKccuuiiiiieii e e e e e e e e 325
13.1.4. MapPIiNg TOOI ANE TASK .. ittt et e et e et e et e e e e eeenes 326
13.1.5. Reverse Mapping TOOI ANt TaSKvvuuiiiiiieii e e e e e e e e e e e e e e e e e eannas 326
13.1.6. SChEMATOO! ANE TASK ..eevtiieeiiiiie ettt et e et e e et e e e e et e e e eeta e e eeebaaeeees 327
14. OptiMIZation GUILEITNESooueeieii ettt e et e e e e et e e e e et e e e e e bt e eeeebaaeaees 328

173

Chapter 1. Introduction

1.1.

OpenJPA is a JDBC-based implementation of the JPA standard. This document is areference for the configuration and use of
OpenJPA.

Intended Audience

This document is intended for OpenJPA developers. It assumes strong knowledge of Java, familiarity with the eXtensible Markup
Language (XML), and an understanding of JPA.. If you are not familiar with JPA, please read the JPA Overview before proceed-

ing.

Certain sections of this guide cover advanced topics such as custom object-relational mapping, enterprise integration, and using
OpenJPA with third-party tools. These sections assume prior experience with the relevant subject.

174

Chapter 2. Configuration

2.1.

Introduction

2.2.

This chapter describes the OpenJPA configuration framework. It concludes with descriptions of al the configuration properties
recoghized by OpenJPA. Y ou may want to browse these properties now, but it is not necessary. Most of them will be referenced
later in the documentation as we explain the various features they apply to.

Runtime Configuration

2.3.

The OpenJPA runtime includes a comprehensive system of configuration defaults and overrides:

» OpenJPA first looks for an optional openj pa. xm resource. OpenJPA searches for this resource in each top-level directory
of your CLASSPATH. OpenJPA will also find the resource if you place it within a META- | NF directory in any top-level dir-
ectory of the CLASSPATH. Theopenj pa. xnl resource contains property settingsin JPA's XML format.

* You can customize the name or location of the above resource by specifying the correct resource path in the open-
j pa. properti es System property.

» You can override any value defined in the above resource by setting the System property of the same name to the desired
value.

* InJPA, thevaluesin the standard META- | NF/ per si st ence. xm bootstrapping file used by the Per si st ence class at
runtime override the values in the above resource, as well as any System property settings. The Map passed to Per si st -
ence. creat eEnti t yManager Fact or y at runtime also overrides previous settings, including properties defined in
persi stence. xm .

* When using JCA deployment the conf i g- pr oper ty vauesinyourr a. xm file override other settings.

» All OpenJPA command-line tools accept flags that alow you to specify the configuration resource to use, and to override any
property. Section 2.3, Command Line Configuration ” [175lescribes these flags.

Internally, the OpenJPA runtime environment and devel opment tools manipulate property settings through a general
Confi gur at i on interface, and in particular its OpenJPAConf i gur at i on and JDBCConf i gur ati on sub-
classes. For advanced customization, OpenJPA's extended runtime interfaces and its development tools allow you to ac-
cess these interfaces directly. See the Javadoc for details.

Command Line Configuration

OpenJPA development tools share the same set of configuration defaults and overrides as the runtime system. They aso allow
you to specify property values on the command line:

e -properties/-p <configuration file or resource>:Usethe-properti es flag, or its shorter - p form, to
specify aconfiguration file to use. Note that OpenJPA aways searches the default file locations described above, so thisflagis
only needed when you do not have a default resource in place, or when you wish to override the defaults. The given value can
be the path to afile, or the resource name of afile somewhere in the CLASSPATH. OpenJPA will search the given location as
well asthe location prefixed by META- | NF/ . Thus, to point an OpenJPA tool at META- | NF/ ny- per si st ence. xm
yOU Can USE:

175

../javadoc/ResultObjectProvider/lib/conf/Configuration.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html
../javadoc

Configuration

<tool > -p ny-persistence. xm

If you want to run atool against just one particular persistence unit in a configuration file, you can do so by specifying an an-

chor along with the resource. If you do not specify an anchor, the tools will run against all the persistence units defined within
the specified resource, or the default resource if none is specified. If the persistence unit is defined within the default resource
location, then you can just specify the raw anchor itself:

<t ool > -p ny-persistence. xnl #sal es- persi st ence-uni t
<t ool > -p #i nvoi ce-persistence-unit

e -<property nane> <property val ue>: Any configuration property that you can specify in a configuration file can
be overridden with acommand line flag. The flag name is always the last token of the corresponding property name, with the
first letter in either upper or lower case. For example, to override the openj pa. Connect i onUser Name property, you
could passthe- connect i onUser Nane <val ue> flagto any tool. Values set thisway override both the valuesin the
configuration file and values set via System properties.

2.3.1. Code Formatting

Some OpenJPA devel opment tools generate Java code. These tools share a common set of command-line flags for formatting
their output to match your coding style. All code formatting flags can begin with either thecodeFor mat or cf prefix.

e -codeFormat./-cf.tabSpaces <spaces>: The number of spacesthat make up atab, or O to use tab characters. De-
faultsto using tab characters.

e -codeFormat./-cf.spaceBeforeParen <true/t | fal se/f>:Whether or not to place a space before opening
parentheses on method calls, if statements, loops, etc. Defaultstof al se.

e -codeFormat./-cf.spacel nParen <true/t | fal se/f>:Whether or not to place a space within parentheses;
i.e.met hod(arg) .Defaultstof al se.

o -codeFormat./-cf.braceOnSaneLine <true/t | fal se/f>:Whether or not to place opening braces on the
same line as the declaration that begins the code block, or on the next line. Defaultstot r ue .

e -codeFormat./-cf. braceAt SaneTabLevel <true/t | fal se/f>:WhenthebraceOnSaneLi ne optionis
disabled, you can choose whether to place the brace at the same tab level of the contained code. Defaultstof al se.

e -codeFormat./-cf.scoreBeforeFiel dName <true/t | false/f> :Whetherto prefix an underscoreto
names of private member variables. Defaultstof al se.

e -codeFormat./-cf.linesBetweenSections <l|ines>: Thenumber of linesto skip between sections of code. De-
faultsto 1.

Example 2.1. Code Formatting with the Application Id Tool

java org. apache. openj pa. enhance. Appl i cati onl dTool -cf.spaceBeforeParen true -cf.tabSpaces 4

176

2.4.

Configuration

Plugin Configuration

Because OpenJPA is a highly customizable environment, many configuration properties relate to the creation and configuration
of system plugins. Plugin properties have a syntax very similar to that of Java5 annotations. They allow you to specify both what
class to use for the plugin and how to configure the public fields or bean properties of the instantiated plugin instance. The easiest
way to describe the plugin syntax is by example:

OpenJPA has a pluggable L2 caching mechanism that is controlled by the openj pa. Dat aCache configuration property. Sup-
pose that you have created a new class, com xyz. MyDat aCache, that you want OpenJPA to use for caching. Y ou've made in-
stances of MyDat aCache configurable viatwo methods, set CacheSi ze(i nt size) andset Renot eHost (String
host) . The sample below shows how you would tell OpenJPA to use an instance of your custom plugin with a max size of 1000
and aremote host of cacheser ver

<property nanme="openj pa. Dat aCache"
val ue="com xyz. MyDat aCache(CacheSi ze=1000, RenpteHost=cacheserver)"/>

Asyou can see, plugin properties take a class name, followed by a comma-separated list of values for the plugin's public fields or
bean properties in parentheses. OpenJPA will match each named property to afield or setter method in the instantiated plugin in-
stance, and set the field or invoke the method with the given value (after converting the value to the right type, of course). The
first letter of the property names can bein either upper or lower case. The following would a so have been valid:

com xyz. MyDat aCache(cacheSi ze=1000, renpteHost =cacheserver)

If you do not need to pass any property settings to a plugin, you can just name the class to use:

com xyz. MyDat aCache

Similarly, if the plugin has a default class that you do not want to change, you can simply specify alist of property settings,
without a class name. For example, OpenJPA's query cache companion to the data cache has a default implementation suitable to
most users, but you still might want to change the query cache's size. It hasa CacheSi ze property for this purpose:

CacheSi ze=1000

Finally, many of OpenJPA's built-in options for plugins have short alias names that you can use in place of the full class name.
The data cache property, for example, has an available alias of t r ue for the standard cache implementation. The property value
simply becomes:

true

The standard cache implementation class also hasa CacheSi ze property, so to use the standard implementation and configure
the size, specify:

177

Configuration

true(CacheSi ze=1000)

2.5.

The remainder of this chapter reviews the set of configuration properties OpenJPA recognizes.

OpenJPA Properties

2.5.1.

OpenJPA defines many configuration properties. Most of these properties are provided for advanced users who wish to customize
OpenJPA's behavior; the majority of developers can omit them. The following properties apply to any OpenJPA back-end,
though the given descriptions are tailored to OpenJPA's default JIDBC store.

openjpa.AutoClear

2.5.2.

Property name: openj pa. Aut oCl ear

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Aut oCl ear
Resour ce adaptor config-property: Aut oCl ear

Default: dat ast ore

Possiblevalues: dat ast or e, al |

Description: When to automatically clear instance state: on entering a datastore transaction, or on entering any transaction.

openjpa.AutoDetach

2.5.3.

Property name: openj pa. Aut oDet ach

Configuration API: or g. apache. openj pa. conf. QpenJPAConf i gur ati on. get Aut oDet ach
Resour ce adaptor config-property: Aut oDet ach

Default: -

Possiblevalues: cl ose, commi t, nont x-r ead

Description: A comma-separated list of events when managed instances will be automatically detached.

openjpa.BrokerFactory

Property name: openj pa. Br oker Fact ory

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Broker Fact ory
Resour ce adaptor config-property: Br oker Fact ory

Default: j dbc

Possiblevalues: j dbc, abst ract st ore, renot e

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing the
or g. apache. openj pa. ker nel . Br oker Fact or y typeto use.

178

../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getAutoClear()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getAutoDetach()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getBrokerFactory()
../javadoc/org/apache/openjpa/kernel/BrokerFactory.html

2.5.4.

Configuration

openjpa.Brokerimpl

2.5.5.

Property name: openj pa. Br oker | npl

Configuration API: or g. apache. openj pa. conf. QpenJPAConf i gur ati on. get Br oker | npl
Resour ce adaptor config-property: Br oker | npl

Default: def aul t

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing the

or g. apache. openj pa. ker nel . Br oker typeto use at runtime. See Section 9.1.2, “ Broker Customization and Evic-
tion " [288)n for details.

openjpa.ClassResolver

2.5.6.

Property name: openj pa. O assResol ver

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Cl assResol ver
Resour ce adaptor config-property: Cl assResol ver

Default: def aul t

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing the

or g. apache. openj pa. util . C assResol ver implementation to use for class name resolution. Y ou may wish to plug in
your own resolver if you have special classloading needs.

openjpa.Compatibility

2.5.7.

Property name: openj pa. Conpati bility

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gurati on. get Conpatibility
Resour ce adaptor config-property: Conpati bility

Default: -

Description: Encapsulates options to mimic the behavior of previous OpenJPA releases.

openjpa.ConnectionDriverName

2.5.8.

Property name: openj pa. Connecti onDri ver Nane

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Connecti onDri ver Nane
Resour ce adaptor config-property: Connecti onDri ver Nane

Default: -

Description: Thefull class name of either the JDBCj ava. sql . Dri ver, oraj avax. sql . Dat aSour ce implementation
to use to connect to the database. See Chapter 4, JDBC [203or details.

openjpa.Connection2DriverName

Property name: openj pa. Connecti on2Dri ver Nane

179

../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getBrokerImpl()
../javadoc/org/apache/openjpa/kernel/Broker.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getClassResolver()
../javadoc/org/apache/openjpa/util/ClassResolver.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getCompatibility()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionDriverName()

Configuration

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Connecti on2Dri ver Nane
Resour ce adaptor config-property: Connecti on2Dr i ver Name

Default: -

Description: This property isequivalent to the openj pa. Connect i onDri ver Namne property described in Section 2.5.7, “

openjpa.ConnectionDriver Name” [179], but applies to the alternate connection factory used for unmanaged connections. See
Section 4.2.1, “ Managed and XA DataSources” [204jor details.

2.5.9. openjpa.ConnectionFactory

Property name: openj pa. Connect i onFact ory

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Connecti onFact ory
Resour ce adaptor config-property: Connect i onFact ory

Default: -

Description: A j avax. sql . Dat aSour ce to useto connect to the database. See Chapter 4, JDBC [20For details.

2.5.10. openjpa.ConnectionFactory?2

Property name: openj pa. Connecti onFact ory?2

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Connecti onFact ory?2
Resour ce adaptor config-property: Connect i onFact ory?2

Default: -

Description: Anunmanaged j avax. sqgl . Dat aSour ce to use to connect to the database. See Chapter 4, JIDBC [203or de-
tails.

2.5.11. openjpa.ConnectionFactoryName

Property name: openj pa. Connect i onFact or yNane

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Connect i onFact or yNane
Resour ce adaptor config-property: Connect i onFact or yNane

Default: -

Description: The JNDI location of aj avax. sql . Dat aSour ce to use to connect to the database. See Chapter 4, JDBC [203]
for details.

2.5.12. openjpa.ConnectionFactory2Name

Property name: openj pa. Connect i onFact or y2Namne
Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Connect i onFact or y2Nane
Resour ce adaptor config-property: Connect i onFact or y2Nane

Default: -

180

../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnection2DriverName()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionFactory()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionFactory2()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionFactoryName()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionFactory2Name()

Configuration

Description: The INDI location of an unmanaged j avax. sql . Dat aSour ce to use to connect to the database. See Sec-
tion 8.3, “ XA Transactions” [28d]or details.

2.5.13. openjpa.ConnectionFactoryMode

Property name: openj pa. Connect i onFact or yMode

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Connecti onFact or yMbde
Resour ce adaptor config-property: Connect i onFact or yMode

Default: | ocal

Possiblevalues: | ocal , managed

Description: The connection factory mode to use when integrating with the application server's managed transactions. See Sec-
tion 4.2.1, “ Managed and XA DataSources” [204jor details.

2.5.14. openjpa.ConnectionFactoryProperties

Property name: openj pa. Connecti onFact or yProperti es

Configuration API:
or g. apache. openj pa. conf . OpenJPAConf i gur ati on. get Connecti onFact oryProperti es

Resour ce adaptor config-property: Connect i onFact or yProperti es
Default: -

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) listing properties for configuration of the data-
source in use. See the Chapter 4, JDBC [203or details.

2.5.15. openjpa.ConnectionFactory2Properties

Property name: openj pa. Connecti onFact or y2Pr operti es

Configuration API:;
or g. apache. openj pa. conf . OQpenJPAConf i gur ati on. get Connecti onFact ory2Properties

Resour ce adaptor config-property: Connect i onFact or y2Pr operti es
Default: -
Description: This property isequivaent to the openj pa. Connect i onFact or yPr operti es property described in Sec-

tion 2.5.14, “ openjpa.ConnectionFactoryProperties” [181], but appliesto the alternate connection factory used for unman-
aged connections. See Section 4.2.1, “ Managed and XA DataSources” [204or details.

2.5.16. openjpa.ConnectionPassword

Property name: openj pa. Connect i onPassword
Configuration API: or g. apache. openj pa. conf. QpenJPAConf i gur ati on. get Connect i onPassword
Resour ce adaptor config-property: Connect i onPasswor d

Default: -

181

../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionFactoryMode()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionFactoryProperties()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionFactory2Properties()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionPassword()

Configuration

Description: The password for the user specified in the Connect i onUser Nane property. See Chapter 4, JDBC [203or de-
tails.

2.5.17. openjpa.Connection2Password

Property name: openj pa. Connect i on2Passwor d

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Connecti on2Password
Resour ce adaptor config-property: Connect i on2Passwor d

Default: -

Description: This property isequivalent to the openj pa. Connect i onPasswor d property described in Section 2.5.16, “

openjpa.ConnectionPassword " [181], but applies to the alternate connection factory used for unmanaged connections. See Sec-
tion 4.2.1,“ Managed and XA DataSources” [204jor details.

2.5.18. openjpa.ConnectionProperties

Property name: openj pa. Connecti onProperties

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Connecti onProperties
Resour ce adaptor config-property: Connecti onProperti es

Default: -

Description: A plugin string (see Section 2.4, “ Plugin Configuration " [177]) listing properties to configure the driver listed in
theConnecti onDri ver Name property described below. See Chapter 4, JDBC [20For details.

2.5.19. openjpa.Connection2Properties

Property name: openj pa. Connecti on2Properties

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Connecti on2Properties
Resour ce adaptor config-property: Connecti on2Pr operti es

Default: -

Description: This property isequivaent to the openj pa. Connect i onProperti es property described in Section 2.5.18, “
openjpa.ConnectionProperties” [182], but applies to the alternate connection factory used for unmanaged connections. See
Section 4.2.1, “ Managed and XA DataSources” [204jor details.

2.5.20. openjpa.ConnectionURL

Property name: openj pa. Connect i onURL

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Connecti onURL
Resour ce adaptor config-property: Connect i onURL

Default: -

Description: The JDBC URL for the database. See Chapter 4, JDBC [20For details.

182

../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnection2Password()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionProperties()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnection2Properties()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionURL()

Configuration

2.5.21. openjpa.Connection2URL

Property name: openj pa. Connecti on2URL

Configuration API: or g. apache. openj pa. conf. QpenJPAConf i gur ati on. get Connecti on2URL
Resour ce adaptor config-property: Connect i on2URL

Default: -

Description: This property is equivaent to the openj pa. Connect i onURL property described in Section 2.5.20, “ open-

jpa.ConnectionURL " [182], but appliesto the alternate connection factory used for unmanaged connections. See Section 4.2.1,
“ Managed and XA DataSources” [204jor details.

2.5.22. openjpa.ConnectionUserName

Property name: openj pa. Connect i onUser Nane

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Connect i onUser Name
Resour ce adaptor config-property: Connect i onUser Nane

Default: -

Description: The user name to use when connecting to the database. See the Chapter 4, JDBC [20For details.

2.5.23. openjpa.Connection2UserName

Property name: openj pa. Connect i on2User Nare

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Connecti on2User Name
Resour ce adaptor config-property: Connect i on2User Name

Default: -

Description: This property is equivalent to theopenj pa. Connect i onUser Name property described in Section 2.5.22, “

openjpa.ConnectionUser Name ” [183], but applies to the alternate connection factory used for unmanaged connections. See
Section 4.2.1, “ Managed and XA DataSources” [204or details.

2.5.24. openjpa.ConnectionRetainMode

Property name: openj pa. Connect i onRet ai nivbde

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Connect i onRet ai nMbde
Resour ce adaptor config-property: Connect i onRet ai nMbde

Default: on- dermand

Description: Controls how OpenJPA uses datastore connections. This property can also be specified for individual sessions. See
Section 4.8, “ Configuring the Use of JDBC Connections” [217for details.

2.5.25. openjpa.DataCache

Property name: openj pa. Dat aCache

183

../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnection2URL()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionUserName()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnection2UserName()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionRetainMode()

Configuration

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Dat aCache
Resour ce adaptor config-property: Dat aCache

Default: f al se

Description: A plugin list string (see Section 2.4, “ Plugin Configuration ” [177]) describing the

or g. apache. openj pa. dat acache. Dat aCachesto use for data caching. See Section 10.1.1, “ Data Cache Configura-
tion” [30%Hor details.

2.5.26. openjpa.DataCacheManager

Property name: openj pa. Dat aCacheManager

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur at i on. get Dat aCacheManager
Resour ce adaptor config-property: Dat aCacheManager

Default: def aul t

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing the open-

j pa. dat acache. Dat aCacheManager that manages the system data caches. See Section 10.1, “ Data Cache” [301fjor de-
tails on data caching.

2.5.27. openjpa.DataCacheTimeout

Property name: openj pa. Dat aCacheTi neout

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Dat aCacheTi meout

Resour ce adaptor config-property: Dat aCacheTi nmeout

Default: - 1

Description: The number of milliseconds that data in the data cache isvalid. Set thisto -1 to indicate that data should not expire

from the cache. This property can also be specified for individual classes. See Section 10.1.1, “ Data Cache Configuration ”
[?] for details.

2.5.28. openjpa.DetachState

Property name: openj pa. Det achSt at e

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Det achSt at e
Resour ce adaptor config-property: Det achSt at e

Default: | oaded

Possible values: | oaded, f et ch- groups, al |

Description: Determines which fields are part of the detached graph and related options. For more details, see Section 11.1.3, “
Defining the Detached Object Graph ” [312]

2.5.29. openjpa.DynamicDataStructs

Property name: openj pa. Dynami cDat aStruct s

184

../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getDataCache()
../javadoc/org/apache/openjpa/datacache/DataCache.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getDataCacheManager()
../javadoc/org/apache/openjpa/datacache/DataCacheManager.html
../javadoc/org/apache/openjpa/datacache/DataCacheManager.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getDataCacheTimeout()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getDetachState()

Configuration

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Dynami cDat aStruct s
Resour ce adaptor config-property: Dynami cDat aSt r uct s
Default: f al se

Description: Whether to dynamically generate customized structs to hold persistent data. Both the OpenJPA data cache and the
remote framework rely on data structs to cache and transfer persistent state. With dynamic structs, OpenJPA can customize data
storage for each class, eliminating the need to generate primitive wrapper objects. This saves memory and speeds up certain
runtime operations. The priceis alonger warm-up time for the application - generating and loading custom classes into the VM
takes time. Therefore, only set this property tot r ue if you have along-running application where the initial cost of class genera-
tion is offset by memory and speed optimization over time.

2.5.30. openjpa.FetchBatchSize

Property name: openj pa. Fet chBat chSi ze

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Fet chBat chSi ze
Resour ce adaptor config-property: Fet chBat chSi ze
Default: - 1

Description: The number of rowsto fetch at once when scrolling through aresult set. The fetch size can also be set at runtime.
See Section 4.10, “ Large Result Sets” [21%or details.

2.5.31. openjpa.FetchGroups

Property name: openj pa. Fet chG oups

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Fet chGr oups
Resour ce adaptor config-property: Fet chGr oups

Default: -

Description: A comma-separated list of fetch group names that are to be loaded when retrieving objects from the datastore. Fetch
groups can also be set at runtime. See Section 5.7, “ Fetch Groups” [243or details.

2.5.32. openjpa.FlushBeforeQueries

Property name: openj pa. Fl ushBef or eQueri es

Property name: openj pa. Fl ushBef or eQueri es

Configuration API: or g. apache. openj pa. conf. QpenJPAConfi gur ati on. get Fl ushBef or eQueri es
Resour ce adaptor config-property: Fl ushBef or eQueri es

Default: t r ue

Description: Whether or not to flush any changes made in the current transaction to the datastore before executing a query. See
Section 4.8, “ Configuring the Use of JDBC Connections” [217/or details.

2.5.33. openjpa.lgnoreChanges

Property name: openj pa. | gnor eChanges

185

../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getDynamicDataStructs()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getFetchBatchSize()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getFetchGroups()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getFlushBeforeQueries()

Configuration

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get | gnor eChanges
Resour ce adaptor config-property: | gnor eChanges

Default: f al se

Description: Whether to consider modifications to persistent objects made in the current transaction when evaluating queries.
Setting thistot r ue allows OpenJPA to ignore changes and execute the query directly against the datastore. A value of f al se

forces OpenJPA to consider whether the changesin the current transaction affect the query, and if so to either evaluate the query
in-memory or flush before running it against the datastore.

2.5.34. openjpa.ld

Property name: openj pa. | d
Resour ce adaptor config-property: | d
Default: none

Description: An environment-specific identifier for this configuration. This might correspond to a JPA persistence-unit name, or
to some other more-unique value available in the current environment.

2.5.35. openjpa.lnverseManager

Property name: openj pa. | nver seManager

Configuration API: or g. apache. openj pa. conf. OQpenJPAConf i gur ati on. get | nver seManager
Resour ce adaptor config-property: | nver seManager

Default: f al se

Possiblevalues: f al se,true

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing a

or g. apache. openj pa. ker nel . | nver seManager to use for managing bidirectional relations upon a flush. See Sec-
tion 5.5, “ Managed Inverses” [235jor usage documentation.

2.5.36. openjpa.LockManager

Property name: openj pa. LockManager

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get LockManager
Resour ce adaptor config-property: LockManager

Default: ver si on

Possible values: none, sj vm pessi mi sti ¢, version

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing a

or g. apache. openj pa. ker nel . LockManager to usefor acquiring locks on persistent instances during transactions. See
Section 9.3.4, “ Lock Manager ” [293For more information.

2.5.37. openjpa.LockTimeout

Property name: openj pa. LockTi meout

186

../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getIgnoreChanges()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getInverseManager()
../javadoc/org/apache/openjpa/kernel/InverseManager.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getLockManager()
../javadoc/org/apache/openjpa/kernel/LockManager.html

Configuration

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get LockTi meout
Resour ce adaptor config-property: LockTi meout
Default: - 1

Description: The number of milliseconds to wait for an object lock before throwing an exception, or -1 for no limit. See Sec-
tion 9.3, “ Object Locking” [291for details.

2.5.38. openjpa.Log

Property name: openj pa. Log

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Log
Resour ce adaptor config-property: Log

Default: t r ue

Possible values: openj pa, conmons, | og4j , none

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing a
or g. apache. openj pa. lib. | og. LogFact ory to usefor logging. For details on logging, see Chapter 3, Logging [198]

2.5.39. openjpa.ManagedRuntime

Property name: openj pa. ManagedRunt i ne

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get ManagedRunt i ne
Resour ce adaptor config-property: ManagedRunt i e

Default: aut o

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing the

or g. apache. openj pa. ee. ManagedRunt i ne implementation to use for obtaining areference to the Tr ansact i on-
Manager inan enterprise environment.

2.5.40. openjpa.Mapping

Property name: openj pa. Mappi ng

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Mappi ng
Resour ce adaptor config-property: Mappi ng

Default: -

Description: The symbolic name of the object-to-datastore mapping to use.

2.5.41. openjpa.MaxFetchDepth

Property name: openj pa. MaxFet chDept h
Configuration API: or g. apache. openj pa. conf. OQpenJPAConf i gur ati on. get MaxFet chDept h

Resour ce adaptor config-property: MaxFet chDept h

187

../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getLockTimeout()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getLog()
../javadoc/org/apache/openjpa/lib/log/LogFactory.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getManagedRuntime()
../javadoc/org/apache/openjpa/ee/ManagedRuntime.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getMapping()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getMaxFetchDepth()

Configuration

Default: - 1

Description: The maximum depth of relations to traverse when eager fetching. Use -1 for no limit. Defaults to no limit. See Sec-
tion 5.8, “ Eager Fetching” [247for details on eager fetching.

2.5.42. openjpa.MetaDataFactory

Property name: openj pa. Met aDat aFact ory

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Met aDat aFact ory
Resour ce adaptor config-property: Met aDat aFact ory

Default: j pa

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing the open-

j pa. met a. Met aDat aFact or y to useto store and retrieve metadata for your persistent classes. See Section 6.1, “ M etadata
Factory " [25(for details.

2.5.43. openjpa.MetaDataRepository

Property name: openj pa. Met aDat aReposi tory

Configuration API: or g. apache. openj pa. conf. OQpenJPAConfi gur ati on. get Met aDat aReposi tory
Resour ce adaptor config-property: Met aDat aReposi t ory

Default:none

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing the open-

j pa. met a. Met aDat aReposi t or y to use to store and retrieve metadata for your persistent classes. See Section 6.2,
“M etadata Repository” [25Xor details.

2.5.44. openjpa.Multithreaded

Property name: openj pa. Mul ti t hr eaded

Configuration API: or g. apache. openj pa. conf. OQpenJPAConfi gurati on. get Mul tithreaded
Resour ce adaptor config-property: Mul ti t hr eaded
Default: f al se

Description: Whether persistent instances and OpenJPA components other than the Ent i t yManager Fact or y will be ac-
cessed by multiple threads at once.

2.5.45. openjpa.Optimistic

Property name: openj pa. Opti m stic

Configuration API: or g. apache. openj pa. conf. QpenJPAConfi guration.getOptinmistic
Resour ce adaptor config-property: Opti m stic

Default: t r ue

Description: Selects between optimistic and pessimistic (datastore) transactional modes.

188

../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getMetaDataFactory()
../javadoc/org/apache/openjpa/meta/MetaDataFactory.html
../javadoc/org/apache/openjpa/meta/MetaDataFactory.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getMetaDataRepository()
../javadoc/org/apache/openjpa/meta/MetaDataRepository.html
../javadoc/org/apache/openjpa/meta/MetaDataRepository.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getMultithreaded()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getOptimistic()

Configuration

2.5.46. openjpa.OrphanedKeyAction

Property name: openj pa. Or phanedKeyAct i on

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Or phanedKeyAct i on
Resour ce adaptor config-property: Or phanedKeyAct i on

Default: | og

Possiblevalues: | og, excepti on, none

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing a

or g. apache. openj pa. event . O phanedKeyAct i on to invoke when OpenJPA discovers an orphaned datastore key.
See Section 7.15, “ Orphaned Keys” [284or details.

2.5.47. openjpa.NontransactionalRead

Property name: openj pa. Nont r ansact i onal Read

Configuration API: or g. apache. openj pa. conf. QpenJPAConf i gurati on. get Nontransacti onal Read
Resour ce adaptor config-property: Nont r ansact i onal Read

Default: t r ue

Description: Whether the OpenJPA runtime will allow you to read data outside of a transaction.

2.5.48. openjpa.NontransactionalWrite

Property name: openj pa. Nontransacti onal Wite

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gurati on. get Nontransacti onal Wite
Resour ce adaptor config-property: Nont r ansacti onal Wite

Default: t rue

Description: Whether you can modify persistent objects and perform persistence operations outside of a transaction. Changes
will take effect on the next transaction.

2.5.49. openjpa.ProxyManager

Property name: openj pa. Pr oxyManager

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Pr oxyManager
Resour ce adaptor config-property: Pr oxyManager

Default: def aul t

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing a

or g. apache. openj pa. uti | . ProxyManager to usefor proxying mutable second class objects. See Section 5.6.4.3, “
Custom Proxies” [239or details.

2.5.50. openjpa.QueryCache

189

../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getOrphanedKeyAction()
../javadoc/org/apache/openjpa/event/OrphanedKeyAction.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getNontransactionalRead()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getNontransactionalWrite()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getProxyManager()
../javadoc/org/apache/openjpa/util/ProxyManager.html

Configuration

Property name: openj pa. Quer yCache

Configuration API: or g. apache. openj pa. conf. OQpenJPAConf i gur ati on. get Quer yCache

Resour ce adaptor config-property: Quer yCache

Default: t r ue, when the data cache (see Section 2.5.25, “ openjpa.DataCache” [183]) isalso enabled, f al se otherwise.
Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing the

or g. apache. openj pa. dat acache. Quer yCache implementation to use for caching of queriesloaded from the data
store. See Section 10.1.3, “ Query Cache” [305jor details.

2.5.51. openjpa.QueryCompilationCache

Property name: openj pa. Quer yConpi | ati onCache
Resour ce adaptor config-property: Quer yConpi | ati onCache
Default: t r ue.

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing thej ava. uti | . Map to usefor
caching of data used during query compilation. See Section 10.2, “ Query Compilation Cache” [309or details.

2.5.52. openjpa.ReadLockLevel

Property name: openj pa. ReadLockLevel

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get ReadLockLevel
Resour ce adaptor config-property: ReadLockLevel

Default: r ead

Possible values: none, r ead, wr i t e, numeric values for lock-manager specific lock levels

Description: The default level at which to lock objects retrieved during a non-optimistic transaction. Note that for the default JD-
BC lock manager, r ead andwr i t e lock levels are equivalent.

2.5.53. openjpa.RemoteCommitProvider

Property name: openj pa. Renot eCommi t Pr ovi der

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Renot eConmi t Pr ovi der
Resour ce adaptor config-property: Renot eCommi t Provi der

Default: -

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing the

or g. apache. openj pa. event . Renot eConmi t Provi der implementation to use for distributed event notification. See
Section 11.2.1, “ Remote Commit Provider Configuration ” [314jor more information.

2.5.54. openjpa.RestoreState

Property name: openj pa. RestoreStat e

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gurati on. get RestoreSt ate

190

../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getQueryCache()
../javadoc/org/apache/openjpa/datacache/QueryCache.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getReadLockLevel()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getRemoteCommitProvider()
../javadoc/org/apache/openjpa/event/RemoteCommitProvider.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getRestoreState()

Configuration

Resour ce adaptor config-property: Rest or eSt at e
Default: none
Possible values: none, i mmut abl e, al |

Description: Whether to restore managed fieldsto their pre-transaction values when arollback occurs.

2.5.55. openjpa.RetainState

Property name: openj pa. Ret ai nSt at e

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gurati on. get Retai nState
Resour ce adaptor config-property: Ret ai nSt at e

Default: t r ue

Description: Whether persistent fields retain their values on transaction commit.

2.5.56. openjpa.RetryClassRegistration

Property name: openj pa. RetryCd assRegi strati on

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gurati on. get RetryCl assRegi strati on
Resour ce adaptor config-property: Ret ryCl assRegi strati on

Default: f al se

Description: Controls whether to log awarning and defer registration instead of throwing an exception when a persistent class

cannot be fully processed. This property should only be used in complex classloader situations where security is preventing Open-
JPA from reading registered classes. Setting this to true unnecessarily may obscure more serious problems.

2.5.57. openjpa.RuntimeUnenhancedClasses

Property name: openj pa. Runt i mreUnenhancedCl asses

Configuration API: org.apache.openjpa.conf.OpenJPAConfigur ation.getRuntimeUnenhancedClasses

Resour ce adaptor config property: RuntimeUnenhancedClasses

Default: support ed

Possible values: support ed, unsupport ed, war n

Description: The RuntimeUnenhancedClasses property controls how OpenJPA handles classes that have not been enhanced byt
the PCEnhancer tool or automatically by ajavaagent. If RuntimeUnenhanced is set to suppor t ed OpenJPA will automatically
create subclasses for unenhanced entity classes. If set to unsuppor t edOpenJPA will not create subclasses for unenhanced en-

tity classes and will throw an exception when they are detected. If set to war n OpenJPA will not create subclasses for unen-
hanced entity classes but will log awarning message.

See the reference guide section on unenhanced types for more information Section 5.2.4, “ Omitting the OpenJPA enhancer ”

(7
2.5.58. openjpa.SavepointManager

191

../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getRetainState()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getRetryClassRegistration()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getRuntimeUnenhancedClasses()

Configuration

Property name: openj pa. Savepoi nt Manager

Configuration API: org.apache.openjpa.conf.OpenJPAConfiguration.getSavepointM anager
Resour ce adaptor config-property: SavepointManager

Default: i n- mem

Possiblevalues: i n- mem j dbc, or acl e

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing a

or g. apache. openj pa. ker nel . Savepoi nt Manager to use for managing transaction savepoints. See Section 9.4, “
Savepoints” [294or details.

2.5.59. openjpa.Sequence

Property name: openj pa. Sequence

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Sequence
Resour ce adaptor config-property: Sequence

Default: t abl e

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing the

or g. apache. openj pa. ker nel . Seq implementation to use for the system sequence. See Section 9.6, “ Generators” [297]
for more information.

2.5.60. openjpa.TransactionMode

Property name: openj pa. Tr ansact i onMbde

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Tr ansact i onMbde
Resour ce adaptor config-property: Tr ansact i onMode

Default: | ocal

Possible values: | ocal , managed

Description: The default transaction mode to use. Y ou can override this setting per-session.

2.5.61. openjpa.WriteLockLevel

Property name: openj pa. Wit eLockLevel

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gurati on. get WitelLockLevel
Resour ce adaptor config-property: Wit eLockLevel

Default: wite

Possible values: none, r ead, wri t e, numeric values for lock-manager specific lock levels

Description: The default level at which to lock objects changed during a non-optimistic transaction. Note that for the default JD-
BC lock manager, r ead and wr i t e lock levels are equivalent.

192

../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getSavepointManager()
../javadoc/org/apache/openjpa/kernel/SavepointManager.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getSequence()
../javadoc/org/apache/openjpa/kernel/Seq.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getTransactionMode()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getWriteLockLevel()

Configuration

2.6. OpenJPA JDBC Properties

2.6.1.

The following properties apply exclusively to the OpenJPA JDBC back-end.

openjpa.jdbc.ConnectionDecorators

2.6.2.

Property name: openj pa. j dbc. Connecti onDecor at or s

Configuration API: or g. apache. openj pa. j dbc. conf. JDBCConfi gur ati on. get Connecti onDecor at ors
Resour ce adaptor config-property: Connect i onDecor at or s

Default: -

Description: A comma-separated list of plugin strings (see Section 2.4, “ Plugin Configuration ” [177]) describing

or g. apache. openj pa. lib. jdbc. Connecti onDecor at or instancesto instal on the connection factory. These decor-
ators can wrap connections passed from the underlying Dat aSour ce to add functionality. OpenJPA will pass all connections

through the list of decorators before using them. Note that by default OpenJPA employs all of the built-in decoratorsin the
or g. apache. openj pa. | i b. j dbc package aready; you do not need to list them here.

openjpa.jdbc.DBDictionary

2.6.3.

Property name: openj pa. j dbc. DBDi cti onary

Configuration API: or g. apache. openj pa. j dbc. conf . JDBCConf i gur ati on. get DBDi cti onary

Resour ce adaptor config-property: DBDi cti onary

Default: Based on the openj pa. Connect i onURL openj pa. Connecti onDri ver Nane

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing the

or g. apache. openj pa. j dbc. sql . DBDi cti onary to use for database interaction. OpenJPA typically auto-configures
the dictionary based on the JIDBC URL, but you may have to set this property explicitly if you are using an unrecognized driver,

or to plug in your own dictionary for a database OpenJPA does not support out-of-the-box. See Section 4.4, “ Database Support
" [206or detalls.

openjpa.jdbc.DriverDataSource

2.6.4.

Property name: openj pa. j dbc. Dri ver Dat aSour ce

Configuration API: or g. apache. openj pa. j dbc. conf . JDBCConf i gurati on. get Dri ver Dat aSour ce
Resour ce adaptor config-property: Dri ver Dat aSour ce

Default: pool i ng

Description: Thealias or full class name of the or g. apache. openj pa. j dbc. schena. Dri ver Dat aSour ce imple-
mentation to use to wrap JDBC Driver classes with javax.sgl.DataSource instances.

openjpa.jdbc.EagerFetchMode

Property name: openj pa. j dbc. Eager Fet chMode
Configuration API: or g. apache. openj pa. j dbc. conf. JDBCConf i gur at i on. get Eager Fet chivbde

Resour ce adaptor config-property: Eager Fet chibde

193

../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getConnectionDecorators()
../javadoc/org/apache/openjpa/lib/jdbc/ConnectionDecorator.html
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getDBDictionary()
../javadoc/org/apache/openjpa/jdbc/sql/DBDictionary.html
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getDriverDataSource()
../javadoc/org/apache/openjpa/jdbc/schema/DriverDataSource.html
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getEagerFetchMode()

2.6.5.

Configuration

Default: paral | el
Possiblevalues: par al | el ,j oi n,none

Description: Optimizes how OpenJPA loads persistent relations. This setting can also be varied at runtime. See Section 5.8, “
Eager Fetching” [24or details.

openjpa.jdbc.FetchDirection

2.6.6.

Property name: openj pa. j dbc. Fet chDi recti on

Configuration API: or g. apache. openj pa. j dbc. conf. JDBCConf i gur ati on. get Fet chDi recti on
Resour ce adaptor config-property: Fet chDi recti on

Default: f or war d

Possible values: f or war d, r ever se, unknown

Description: The expected order in which query result lists will be accessed. This property can also be varied at runtime. See
Section 4.10, “ Large Result Sets” [21%or details.

openjpa.jdbc.JDBCListeners

2.6.7.

Property name: openj pa. j dbc. JDBCLi st eners

Configuration API: or g. apache. openj pa. j dbc. conf. JDBCConfi gur ati on. get JDBCLi st eners
Resour ce adaptor config-property: JDBCLI st ener s

Default: -

Description: A comma-separated list of plugin strings (see Section 2.4, “ Plugin Configuration ” [177]) describing

or g. apache. openj pa. li b. j dbc. JDBCLi st ener event listenersto install. These listeners will be notified on various
JDBC-related events.

openjpa.jdbc.LRSSize

2.6.8.

Property name: openj pa. j dbc. LRSSi ze

Configuration API: or g. apache. openj pa. j dbc. conf. JDBCConf i gur ati on. get LRSSi ze
Resour ce adaptor config-property: LRSSi ze

Default: query

Possiblevalues: query, | ast, unknown

Description: The strategy to use to calculate the size of aresult list. This property can also be varied at runtime. See Sec-
tion 4.10, “ Large Result Sets” [21%or details.

openjpa.jdbc.MappingDefaults

Property name: openj pa. j dbc. Mappi ngDef aul t s

Configuration API: or g. apache. openj pa. j dbc. conf . JDBCConf i gur ati on. get Mappi ngDef aul t s

194

../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getFetchDirection()
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getJDBCListeners()
../javadoc/org/apache/openjpa/lib/jdbc/JDBCListener.html
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getLRSSize()
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getMappingDefaults()

2.6.9.

Configuration

Resour ce adaptor config-property: Mappi ngDef aul t s
Default: jpa
Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing the

or g. apache. openj pa. j dbc. met a. Mappi ngDef aul t s to use to define default column names, table names, and con-
straints for your persistent classes. See Section 7.5, “ Mapping Factory ” [26@jor details.

openjpa.jdbc.MappingFactory

Property name: openj pa. j dbc. Mappi ngFact ory

Configuration API: or g. apache. openj pa. j dbc. conf . JDBCConf i gur ati on. get Mappi ngFact ory
Resour ce adaptor config-property: Mappi ngFact ory

Default: -

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing the

or g. apache. openj pa. net a. Met aDat aFact or y to useto store and retrieve object-relational mapping information for
your persistent classes. See Section 7.5, “ Mapping Factory ” [266jor details.

2.6.10. openjpa.jdbc.QuerySQLCache

Property name: openj pa. j dbc. Quer ySQLCache
Resour ce adaptor config-property: Quer ySQ.Cache
Default: t r ue.

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing thej ava. uti | . Map to usefor
caching of the SQL string used by the find operation. See Section 10.3, “ Query SQL Cache” [309or details.

2.6.11. openjpa.jdbc.ResultSetType

Property name: openj pa. j dbc. Resul t Set Type

Configuration API: or g. apache. openj pa. j dbc. conf. JDBCConf i gur ati on. get Resul t Set Type
Resour ce adaptor config-property: Resul t Set Type

Default: f or war d- onl y

Possiblevalues: f orward-only ,scrol | -sensitive,scroll-insensitive

Description: The JDBC result set type to use when fetching result lists. This property can aso be varied at runtime. See Sec-
tion 4.10, “ Large Result Sets” [21%or details.

2.6.12. openjpa.jdbc.Schema

Property name: openj pa. j dbc. Schema
Configuration API: or g. apache. openj pa. j dbc. conf. JDBCConf i gur ati on. get Schema
Resour ce adaptor config-property: Schema

Default: -

195

../javadoc/org/apache/openjpa/jdbc/meta/MappingDefaults.html
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getMappingFactory()
../javadoc/org/apache/openjpa/meta/MetaDataFactory.html
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getResultSetType()
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getSchema()

Configuration

Description: The default schema name to prepend to unqualified table names. Also, the schema in which OpenJPA will create
new tables. See Section 4.11, “ Default Schema™” [221fjor details.

2.6.13. openjpa.jdbc.SchemaFactory

Property name: openj pa. j dbc. SchemaFact ory

Configuration API: or g. apache. openj pa. j dbc. conf. JDBCConf i gur ati on. get SchermaFact ory
Resour ce adaptor config-property: SchermaFact ory

Default: dynami ¢

Possible values: dynani ¢, nati ve,fil e, tabl e, others

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing the

or g. apache. openj pa. j dbc. schena. SchemaFact or y to use to store and retrieve information about the database
schema. See Section 4.12.2, “ Schema Factory ” [22%or details.

2.6.14. openjpa.jdbc.Schemas

Property name: openj pa. j dbc. Schemas

Configuration API: or g. apache. openj pa. j dbc. conf. JDBCConfi gur ati on. get Schenas
Resour ce adaptor config-property: Schemas

Default: -

Description: A comma-separated list of the schemas and/or tables used for your persistent data. See Section 4.12.1, “ Schemas
List " [22or details.

2.6.15. openjpa.jdbc.SQLFactory

Property name: openj pa. j dbc. SQLFact ory

Configuration API: or g. apache. openj pa. j dbc. conf. JDBCConf i gur ati on. get SQLFact ory
Resour ce adaptor config-property: SQLFact ory

Default: def aul t

Description: A plugin string (see Section 2.4, * Plugin Configuration ” [177]) describing the
or g. apache. openj pa. j dbc. sql . SQLFact ory to use to abstract common SQL constructs.

2.6.16. openjpa.jdbc.SubclassFetchMode

Property name: openj pa. j dbc. Subcl assFet chMbde

Configuration API: or g. apache. openj pa. j dbc. conf . JDBCConf i gur ati on. get Subcl assFet chivbde
Resour ce adaptor config-property: Subcl assFet chMode

Default: par al | el

Possiblevalues: paral | el ,j oi n, none

196

../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getSchemaFactory()
../javadoc/org/apache/openjpa/jdbc/schema/SchemaFactory.html
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getSchemas()
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getSQLFactory()
../javadoc/org/apache/openjpa/jdbc/sql/SQLFactory.html
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getSubclassFetchMode()

Configuration

Description: How to select subclass datawhen it isin other tables. This setting can also be varied at runtime. See Section 5.8, “
Eager Fetching” [247]

2.6.17. openjpa.jdbc.SynchronizeMappings

Property name: openj pa. j dbc. Synchr oni zeMappi ngs

Configuration API: or g. apache. openj pa. j dbc. conf. JDBCConf i gur ati on. get Synchr oni zeMappi ngs
Resour ce adaptor config-property: Synchr oni zeMappi ngs

Default: -

Description: Controls whether OpenJPA will attempt to run the mapping tool on all persistent classes to synchronize their map-

pings and schema at runtime. Useful for rapid test/debug cycles. See Section 7.1.3, “ Runtime Forward Mapping " [25%or
more information.

2.6.18. openjpa.jdbc.Transactionlsolation

Property name: openj pa. j dbc. Transacti onl sol ati on

Configuration API: or g. apache. openj pa. j dbc. conf. JDBCConfi gur ati on. get Transacti onl sol ati on
Resour ce adaptor config-property: Tr ansacti onl sol ati on

Default: def aul t

Possible values: def aul t, none, read- comi tt ed, read-unconmi tted,repeat abl e-read, seri alizabl e

Description: The JDBC transaction isolation level to use. See Section 4.5, “ Setting the Transaction Isolation ” [215]or details.

2.6.19. openjpa.jdbc.UpdateManager

Property name: openj pa. j dbc. Updat eManager

Configuration API: or g. apache. openj pa. j dbc. conf . JDBCConf i gur ati on. get Updat eManager
Resour ce adaptor config-property: Updat eManager

Default: bat chi ng- constrai nt

Possiblevalues: def aul t , oper ati on- or der,constrai nt, bat chi ng- const rai nt, bat chi ng- oper a-
tion-order

Description: The full class name of the or g. apache. openj pa. j dbc. ker nel . Updat eManager to useto flush persist-
ent object changes to the datastore. The provided default implementation is
or g. apache. openj pa. j dbc. ker nel . Bat chi ngConst r ai nt Updat eManager .

197

../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getSynchronizeMappings()
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getTransactionIsolation()
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getUpdateManager()
../javadoc/org/apache/openjpa/jdbc/kernel/UpdateManager.html
../javadoc/org/apache/openjpa/jdbc/kernel/BatchingConstraintUpdateManager

Chapter 3. Logging

3.1.

Logging is an important means of gaining insight into your application's runtime behavior. OpenJPA provides aflexible logging
system that integrates with many existing runtime systems, such as application servers and servlet runners.

There are four built-in logging plugins: a default logging framework that covers most needs, a L og4J delegate, an Apache
Commons L ogging delegate, and a no-op implementation for disabling logging.

L ogging can have a negative impact on performance. Disable verbose logging (such as logging of SQL statements) be-
fore running any performance tests. It is advisable to limit or disable logging for a production system. Y ou can disable
logging altogether by setting the openj pa. Log property to none.

Logging Channels

Logging is done over a number of logging channels, each of which has alogging level which controls the verbosity of log mes-
sages recorded for the channel. OpenJPA uses the following logging channels:

* openj pa. Tool : Messages issued by the OpenJPA command line and Ant tools. Most messages are basic statements detail -
ing which classes or files the tools are running on. Detailed output is only available viathe logging category the tool belongs
to, such asopenj pa. Enhance for the enhancer (see Section 5.2, “ Enhancement ” [228Jor openj pa. Met aDat a for the
mapping tool (see Section 7.1, “ Forward Mapping” [25)] Thislogging category is provided so that you can get a general
idea of what atool is doing without having to manipulate logging settings that might also affect runtime behavior.

e openj pa. Enhance: Messages pertaining to enhancement and runtime class generation.

» openj pa. Met abDat a: Details about the generation of metadata and object-relational mappings.

e openj pa. Runt i me: General OpenJPA runtime messages.

» openj pa. Quer y: Messages about queries. Query strings and any parameter values, if applicable, will be logged to the
TRACE level at execution time. Information about possible performance concerns will be logged to the | NFOlevel.

» openj pa. Dat aCache: Messages from the L2 data cache plugins.

» openj pa. j dbc. JDBC: JDBC connection information. General JIDBC information will be logged to the TRACE level. In-
formation about possible performance concerns will be logged to the | NFO level.

» openj pa. j dbc. SQL: Thisisthe most common logging channel to use. Detailed information about the execution of SQL
statements will be sent to the TRACE level. It is useful to enable this channel if you are curious about the exact SQL that Open-
JPA issuesto the datastore.

When using the built-in OpenJPA logging facilities, you can enable SQL logging by adding SQL=TRACE to your open-

j pa. Log property.

OpenJPA can optionally reformat the logged SQL to make it easier to read. To enable pretty-printing, add Pr et t yP-
rint=truetotheopenj pa. Connecti onFact or yProperti es property. You can control how many columns wide
the pretty-printed SQL will bewiththe Pr et t yPri nt Li neLengt h property. The default line length is 60 columns.
While pretty printing makes things easier to read, it can make output harder to process with tools like grep.

Pretty-printing properties configuration might look like so:

<property nanme="openjpa.Log" val ue="SQ.=TRACE"/ >

198

3.2.

Logging

<property nanme="openj pa. Connecti onFact oryProperties"
val ue="PrettyPrint=true, PrettyPrintLineLength=72"/>

» openj pa. j dbc. Scherma: Details about operations on the database schema.

OpenJPA Logging

By default, OpenJPA uses a basic logging framework with the following output format:
mllis diagnostic context |evel [thread name] channel -nmessage

For example, when loading an application that uses OpenJPA, a message like the following will be sent to the open-
j pa. Runti me channel:

2107 INFO [main] openjpa.Runtime - Starting OpenJPA 0.9.7

The default logging system accepts the following parameters:
* Fi | e: Thename of thefileto log to, or st dout or st der r to send messages to standard out and standard error, respect-
ively. By default, OpenJPA sends log messages to standard error.

» Def aul t Level : The default logging level of unconfigured channels. Recognized values are TRACE, DEBUG, | NFO,
WARN, and ERROR. Defaultsto | NFO.

» Di agnosti cCont ext : A string that will be prepended to all log messages. If thisis not supplied and an openj pa. | d
property valueis available, that value will be used.

» <channel >: Using the last token of the logging channel name, you can configure the log level to use for that channel. See
the examples below.

Example 3.1. Standard OpenJPA Log Configuration

<property name="openj pa. Log" val ue="Def aul t Level =WARN, Runti nme=I NFO, Tool =I NFO'/ >

Example 3.2. Standard OpenJPA Log Configuration + All SQL Statements

<property name="openj pa. Log" val ue="Def aul t Level =WARN, Runti me=I NFO, Tool =I NFO, SQL=TRACE"/ >

199

Logging

Example 3.3. LoggingtoaFile

<property name="openj pa. Log" val ue="Fil e=/tnp/org. apache. openj pa.| og, Defaul tLevel =WARN, Runti me=I NFO, Tool =I NFO'/ >

3.3.

Disabling Logging

3.4.

Disabling logging can be useful to analyze performance without any 1/O overhead or to reduce verbosity at the console. To do
this, set theopenj pa. Log property tonone.

Disabling logging permanently, however, will cause all warnings to be consumed. We recommend using one of the more sophist-
icated mechanisms described in this chapter.

Log4J

When openj pa. Log issettol og4j , OpenJPA will delegate to Log4J for logging. In a standalone application, Log4J logging
levels are controlled by aresource named | og4j . properti es , which should be available as atop-level resource (either at
the top level of ajar file, or in the root of one of the CLASSPATH directories). When deploying to aweb or EJB application serv-
er, Logd4J configuration is often performed in al og4j . xm fileinstead of a propertiesfile. For further details on configuring
Log4), please see the Log4J Manual. We present an example| 0g4j . properti es file below.

Example 3.4. Standard Log4J Logging

| og4j . root Cat egor y=WARN, consol e

| 0og4j . cat egory. openj pa. Tool =I NFO

| 0g4j . cat egory. openj pa. Runt i me=l NFO

| 0g4j . cat egory. openj pa. Renbt e=WARN

| og4j . cat egory. openj pa. Dat aCache=WARN
| 0og4j . cat egory. openj pa. Met aDat a=\WARN

| 0g4j . cat egory. openj pa. Enhance=WARN

| 0g4j . cat egory. openj pa. Quer y=WWARN

| 0g4j . cat egory. openj pa. j dbc. SQL=WARN

| og4j . cat egory. openj pa.] dbc. JDBC=WARN
| 0g4j . cat egory. openj pa. j dbc. Schema=WARN

| 0g4j . appender . consol e=or g. apache. | og4j . Consol eAppender

3.5.

Apache Commons Logging

Set the openj pa. Log property to cormons to use the Apache Jakarta Commons L ogging thin library for issuing log mes-
sages. The Commons Logging libraries act as awrapper around a number of popular logging APIs, including the Jakarta L og4J
project, and the native java.util.logging package in JDK 1.4. If neither of these libraries are available, then logging will fall back
to using simple console logging.

When using the Commons Logging framework in conjunction with Log4J, configuration will be the same as was discussed in the
L og4J section above.

3.5.1. JDK 1.4 java.util.logging

200

http://jakarta.apache.org/log4j/docs/manual.html
http://jakarta.apache.org/commons/logging.html
http://jakarta.apache.org/log4j/docs/index.html
http://java.sun.com/j2se/1.4/docs/api/java/util/logging/package-summary.html

Logging

When using JDK 1.4 or higher in conjunction with OpenJPA's Commons Logging support, logging will proceed through Java's
built-in logging provided by the java.util.logging package. For details on configuring the built-in logging system, please see the
Java L ogging Overview.

By default, JDK 1.4'slogging package looksinthe JAVA HOVE/ | i b/ | oggi ng. properti es filefor logging configuration.
This can be overridden withthej ava. uti |l .l oggi ng. confi g. fi | e system property. For example:

java -Dava. util.logging.config.file=nylogging. properties com conpany. MyCl ass

Example 3.5. JDK 1.4 Log Properties

specify the handlers to create in the root |ogger

(all loggers are children of the root |ogger)
the following creates two handl ers
handl ers=j ava. util .| oggi ng. Consol eHandl er, java.util.logging.Fil eHandl er

set the default I ogging Ievel for the root |ogger
.l evel =ALL

set the default |ogging | evel for new Consol eHandl er instances
java. util.l oggi ng. Consol eHandl er. | evel =I NFO

set the default |ogging |level for new FileHandl er instances
java.util.logging. FileHandl er.|evel =ALL

set the default formatter for new Consol eHandl er instances
java.util .l ogging. Consol eHandl er. fornmatter=java. util .l oggi ng. Si npl eFor matter

set the default logging level for all OpenJPA I ogs
openj pa. Tool . | evel =I NFO

openj pa. Runti ne. | evel =I NFO
openj pa. Renot e. | evel =I NFO
openj pa. Dat aCache. | evel =I NFO
openj pa. Met aDat a. | evel =I NFO
openj pa. Enhance. | evel =I NFO
openj pa. Query. | evel =I NFO

openj pa. j dbc. SQL. | evel =I NFO
openj pa.] dbc. JDBC. | evel =I NFO
openj pa. j dbc. Schema. | evel =I NFO

Custom Log

If none of available logging systems meet your needs, you can configure the logging system with a custom logger. Y ou might use
custom logging to integrate with a proprietary logging framework used by some applications servers, or for logging to a graphical
component for GUI applications.

A custom logging framework must include an implementation of the or g. apache. openj pa. | i b. | og. LogFactory in-
terface. We present acustom LogFact or 'y below.

Example 3.6. Custom Logging Class

package com xyz;
i mport org.apache. openjpa.lib.log.*;

public class CustonlogFactory
i npl ements LogFactory {

private String _prefix = "CUSTOM LOG';

201

http://java.sun.com/j2se/1.4/docs/api/java/util/logging/package-summary.html
http://java.sun.com/j2se/1.4/docs/guide/util/logging/overview.html
../javadoc/org/apache/openjpa/lib/log/LogFactory.html

Logging

public void setPrefix (String prefix) {
_prefix = prefix;

public Log getLog(String channel) {
/'l Return a sinple extension of AbstractlLog that will |og
/1 everything to the Systemerr stream Note that this is
/'l roughly equivalent to OpenJPA's default |oggi ng behavi or.
return new AbstractLog() {

prot ected bool ean i sEnabl ed(short |ogLevel) {
/1 log all levels
return true;

protected void |og (short type, String nmessage, Throwable t) {
/ just send everything to Systemerr
Systemerr.printin(_prefix + ": " + type +
+ nmessage + ": "+ t);

n.om

To make OpenJPA use your custom log factory, set the openj pa. Log configuration property to your factory's full class name.
Because this property is aplugin property (see Section 2.4, “ Plugin Configuration ” [177]), you can also pass parameters to
your factory. For example, to use the example factory above and set its prefix to "LOG MSG", you would set the openj pa. Log
property to the following string:

com xyz. Cust onmLogFact ory(Prefi x="LOG MSG')

202

Chapter 4. JDBC

4.1.

OpenJPA uses arelational database for object persistence. It communicates with the database using the Java DataBase Connectiv-
ity (JDBC) APIs. This chapter describes how to configure OpenJPA to work with the JDBC driver for your database, and how to
access JDBC functionality at runtime.

Using the OpenJPA DataSource

OpenJPA includesitsown simplej avax. sql . Dat aSour ce implementation. If you choose to use OpenJPA's Dat aSour ce
, then you must specify the following properties:

» openj pa. Connect i onUser Nane: The JDBC user name for connecting to the database.

» openj pa. Connect i onPasswor d: The JDBC password for the above user.

» openj pa. Connecti onURL: The JDBC URL for the database.

» openj pa. Connecti onDri ver Nane: The JDBC driver class.

To configure advanced features, use the following optional properties. The syntax of these property strings follows the syntax of
OpenJPA plugin parameters described in Section 2.4, “ Plugin Configuration” [177].

» openj pa. Connecti onProperti es: If thelisted driver isaninstance of j ava. sql . Dri ver, thisstring will be parsed
into aPr oper ti es instance, which will then be used to obtain database connections through the
Driver.connect(String url, Properties props) method. If, on the other hand, the listed driver isa
j avax. sql . Dat aSour ce, the string will be treated as a plugin properties string, and matched to the bean setter methods of
the Dat aSour ce instance.

» openj pa. Connecti onFact or yProperti es: OpenJPA's built-in Dat aSour ce alows you to set the following op-
tions viathis plugin string:

e Quer yTi neout : The maximum number of seconds the JDBC driver will wait for a statement to execute.
e PrettyPrint: Boolean indicating whether to pretty-print logged SQL statements.

e PrettyPrintLi neLengt h: The maximum number of charactersin each pretty-printed SQL line.

Example 4.1. Propertiesfor the OpenJPA DataSource

<property name="openj pa. Connecti onUser Name" val ue="user"/>
<property name="openj pa. Connecti onPassword" val ue="pass"/>
<property name="openj pa. Connecti onURL" val ue="j dbc: hsql db: db- hyper soni c"/ >
<property name="openj pa. Connecti onDri ver Nanme" val ue="org. hsql db. j dbcDri ver"/>
<property name="openj pa. Connecti onFact oryProperties"

val ue="PrettyPrint=true, PrettyPrintLineLength=80"/>

4.2.

Using a Third-Party DataSource

203

JDBC

Y ou can use OpenJPA with any third-party j avax. sql . Dat aSour ce . There are multiple ways of telling OpenJPA about a
Dat aSour ce:

» Set the Dat aSour ce into the map passed to Per si st ence. cr eat eEnt i t yManager Fact or y under the open-
j pa. Connecti onFactory key.

» Bind the Dat aSour ce into JNDI, and then specify itslocationinthej t a- dat a- sour ce or non- j t a- dat a- source
element of the JPA XML format (depending on whether the Dat aSour ce is managed by JTA), or in the open-
j pa. Connecti onFact or yNane property.

 Specify the full class name of the Dat aSour ce implementation in the openj pa. Connect i onDr i ver Nane property in
place of aJDBC driver. In this configuration OpenJPA will instantiate an instance of the named class viareflection. It will then
configure the Dat aSour ce with the propertiesin the openj pa. Connecti onPr operti es setting.

The features of OpenJPA's own Dat aSour ce can also be used with third-party implementations. OpenJPA layers on top of the
third-party Dat aSour ce to provide the extra functionality. To configure these features use the open-
j pa. Connecti onFact or yProperti es property described in the previous section.

Example 4.2. PropertiesFilefor a Third-Party DataSource

<property name="openj pa. Connecti onDri ver Name" val ue="oracl e.j dbc. pool . Or acl eDat aSour ce"/ >
<property name="openj pa. Connecti onProperties"

val ue="Por t Nunber =1521, Server Nane=sat urn, Dat abaseNane=sol arsi d, Driver Type=thin"/>
<property name="openj pa. Connecti onFact oryProperti es" val ue="QueryTi meout =5000"/ >

4.2.1.

Managed and XA DataSources

Certain application servers automatically enlist their Dat aSour ce sin global transactions. When thisis the case, OpenJPA
should not attempt to commit the underlying connection, leaving JDBC transaction completion to the application server. To noti-
fy OpenJPA that your third-party Dat aSour ce is managed by the application server, usethej t a- dat a- sour ce element of
your per si st ence. xnm fileor set theopenj pa. Connect i onFact or yMode property to managed.

Note that OpenJPA can only use managed Dat aSour ceswhen it is also integrating with the application server's managed trans-
actions. Also note that all XA Dat aSour cesare enlisted, and you must set this property when using any XA Dat aSour ce.

When using amanaged Dat aSour ce, you should also configure a second unmanaged Dat aSour ce that OpenJPA can useto
perform tasks that are independent of the global transaction. The most common of these tasks is updating the sequence table
OpenJPA uses to generate unique primary key values for your datastore identity objects. Configure the second Dat aSour ce us-
ingthenon-j t a- dat a- sour ce persi st ence. xm element, or OpenJPA's various"2" connection properties, such as
openj pa. Connect i onFact or y2Nane or openj pa. Connecti on2Dr i ver Nanme. These properties are outlined in
Chapter 2, Configuration [175].

Example 4.3. Managed DataSource Configuration

<!-- managed DataSource -->
<j t a- dat a- sour ce>j ava: / O acl eXASour ce</ j t a- dat a- sour ce>
<properties>
<I-- use penJPA's built-in DataSource for unmanaged connections -->
<property name="openj pa. Connecti on2User Name" val ue="scott"/>
<property name="openj pa. Connecti on2Password" val ue="tiger"/>
<property name="openj pa. Connecti on2URL" val ue="j dbc: oracl e: t hi n: @ROM 1521: OpenJPADB"/ >
<property name="openj pa. Connecti on2Dri ver Name" val ue="oracl e.j dbc.driver. O acl eDriver"/>

204

JDBC

</ properties>

4.3.

Runtime Access to DataSource

The JPA standard defines how to access JDBC connections from enterprise beans. OpenJPA also provides APIsto access an En-
ti t yManager 'sconnection, or to retrieve a connection directly from the Ent i t yManager Fact or y's Dat aSour ce.

The OpenJPAENt i t yManager . get Connect i on method returnsan Ent i t yManager 's connection. If the Ent i t yMan-
ager does not aready have a connection, it will obtain one. The returned connection is only guaranteed to be transactionally
consistent with other Ent i t yManager operationsif the Ent i t yManager isin amanaged or non-optimistic transaction, if the
Enti t yManager hasflushed in the current transaction, or if you have used the OpenJPAENt i t yManager . begi nSt or e
method to ensure that a datastore transaction isin progress. Always close the returned connection before attempting any other
Enti t yManager operations. OpenJPA will ensure that the underlying native connection is not released if a datastore transac-
tionisin progress.

Example 4.4. Using the EntityManager's Connection

i mport java.sql.*;
i mport org. apache. openj pa. persi stence. *;

OpenJPAENt i t yManager kem = QpenJPAPer si st ence. cast (en) ;
Connection conn = (Connecti on) kem get Connection();

/1 do JDBC stuff

conn. cl ose();

The example below shows how to use a connection directly from the Dat aSour ce, rather than using an Ent i t yManager
connection.

S

Example 4.5. Using the EntityManagerFactory's DataSource

import java.sql.*;

i mport javax.sql.*;

i nport org.apache. openj pa. conf. *;

i mport org. apache. openj pa. persi stence. *;

OpenJPAENt i t yManager Fact ory kenf = OpenJPAPersi st ence. cast (enf);
OpenJPAConfi guration conf = kenf.getConfiguration();

Dat aSour ce dat aSource = (Dat aSource) conf.get ConnectionFactory();
Connection conn = dat aSource. get Connection();

/1 do JDBC stuff

conn. cl ose();

205

../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html

4.4.

JDBC

Database Support

OpenJPA can take advantage of any JDBC 2.x compliant driver, making almost any major database a candidate for use. See our
officially supported database list in Appendix 2, Supported Databases [333or more information. Typically, OpenJPA auto-
configuresits JDBC behavior and SQL dialect for your database, based on the values of your connection-related configuration
properties.

If OpenJPA cannot detect what type of database you are using, or if you are using an unsupported database, you will have to tell
OpenJPA what or g. apache. openj pa. j dbc. sql . DBDi cti onary touse. The DBDi ct i onary abstracts away the dif-
ferences between databases. Y ou can plug a dictionary into OpenJPA using theopenj pa. j dbc. DBDi cti onary configura
tion property. The built-in dictionaries are listed below. If you are using an unsupported database, you may have to write your
own DBDi ct i onary subclass, asimple process.

» access: Dictionary for Microsoft Access. Thisisan aliasfor the
or g. apache. openj pa. j dbc. sql . AccessDi cti onary class.

» db2: Dictionary for IBM's DB2 database. Thisisan diasfor theor g. apache. openj pa. j dbc. sql . DB2Di cti onary
class.

» der by: Dictionary for the Apache Derby database. Thisis an alias for the
or g. apache. openj pa. j dbc. sql . Der byDi cti onary class.

» enpr ess: Dictionary for Empress database Thisis an alias for the
or g. apache. openj pa. j dbc. sql . EnpressDi cti onary class.

» f oxpr o: Dictionary for Microsoft Visual FoxPro. Thisisan alias for the
or g. apache. openj pa. j dbc. sql . FoxProDi cti onary class.

* hsql : Dictionary for the Hypersonic SQL database. Thisis an alias for the
or g. apache. openj pa. j dbc. sql . HSQLDi cti onary class.

* i nf orm x: Dictionary for the Informix database. Thisis an alias for the
or g. apache. openj pa. j dbc. sql . I nform xDi cti onary class.

» j dat ast or e: Dictionary for Borland JDataStore. Thisisan alias for the
or g. apache. openj pa. j dbc. sql . JDat aSt or eDi cti onary class.

* nysql : Dictionary for the MySQL database. Thisisan aliasfor the
or g. apache. openj pa. j dbc. sql . MySQLDi cti onary class.

» oracl e: Dictionary for Oracle. Thisisan aliasfor theor g. apache. openj pa. j dbc. sql . Oracl eDi cti onary
class.

» poi nt base: Dictionary for Pointbase Embedded database. Thisis an alias for the
or g. apache. openj pa. j dbc. sql . Poi nt baseDi cti onary class.

» post gr es: Dictionary for PostgreSQL. Thisis an alias for the
or g. apache. openj pa. j dbc. sql . Post gresDi cti onary class.

» sgl server: Dictionary for Microsoft's SQL Server database. Thisis an diasfor the
or g. apache. openj pa. j dbc. sql . SQLSer ver Di cti onary class.

» sybase: Dictionary for Sybase. Thisisan dliasfor the or g. apache. openj pa. j dbc. sql . SybaseDi cti onary
class.

The example below demonstrates how to set a dictionary and configure its propertiesin your configuration file. The DBDi c-
t i onary property uses OpenJPA's plugin syntax .

206

../javadoc/org/apache/openjpa/jdbc/sql/DBDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/AccessDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/DB2Dictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/DerbyDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/EmpressDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/FoxProDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/HSQLDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/InformixDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/JDataStoreDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/MySQLDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/OracleDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/PointbaseDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/PostgresDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/SQLServerDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/SybaseDictionary.html

JDBC

Example 4.6. Specifying a DBDictionary

<property name="openj pa.j dbc. DBDi cti onary" val ue="hsql (Si mul at eLocki ng=true)"/>

4.4.1.

DBDictionary Properties

The standard dictionaries all recognize the following properties. These properties will usually not need to be overridden, since the
dictionary implementation should use the appropriate default values for your database. Y ou typically won't use these properties
unless you are designing your own DBDi ct i onary for an unsupported database.

* All owsAl i asl nBul kCl ause: When true, SQL delete and update statements may use table aliases.

* ArrayTypeNane: The overridden default column typefor j ava. sql . Types. ARRAY. Thisis used only when the schema
is generated by the mappi ngt ool .

» Aut 0Assi gnC ause: The column definition clause to append to a creation statement. For example, " AUTO | NCREMENT"
for MySQL. This property is set automatically in the dictionary, and should not need to be overridden, and is only used when
the schemais generated using the mappi ngt ool .

* Aut 0Assi gnTypeNane: The column type name for auto-increment columns. For example, " Bl GSERI AL" for Postgr-
eSQL. This property is set automatically in the dictionary and should not need to be overridden. It is used only when the
schemais generated using the mappi ngt ool .

» Bat chLi m t : The default batch limit for sending multiple SQL statements at once to the database. A value of -1 indicates
unlimited batching, and any positive integer indicates the maximum number of SQL statements to batch together. Defaultsto O
which disables batching.

* Bi gi nt TypeNamne: The overridden default column typefor j ava. sqgl . Types. Bl G NT. Thisisused only when the
schema s generated by the mappi ngt ool .

» Bi nar yTypeNane: The overridden default column typefor j ava. sql . Types. Bl NARY. Thisis used only when the
schema s generated by the mappi ngt ool .

» Bi t TypeNane: The overridden default column typefor j ava. sqgl . Types. Bl T. Thisis used only when the schemais
generated by the mappi ngt ool .

» Bl obBuf f er Si ze: This property establishes the buffer sizein the | NSERT/ UPDATE operations with an
java.io. | nput St reanthisisonly used with OpenJPA's Section 7.7.11, “ Stream LOB Support " [279Defaults to
50000.

» Bl obTypeNane: The overridden default column typefor j ava. sql . Types. BLOB. Thisisused only when the schemais
generated by the mappi ngt ool .

» Bool eanTypeNane: The overridden default column typefor j ava. sqgl . Types. BOOLEAN. Thisis used only when the
schemais generated by the mappi ngt ool .

» Cast Funct i on: The SQL function call to cast avalue to another SQL type. Use thetokens{ 0} and{ 1} to represent the
two arguments. The result of the function is convert the { 0} valuetoa{ 1} type. Thedefaultis™ CAST({0} AS {1})".

» Cat al ogSepar at or : The string the database uses to delimit between the schema name and the table name. Thisistypically
". " ,whichisthe default.

207

JDBC

Char TypeNane: The overridden default column typefor j ava. sql . Types. CHAR Thisisused only when the schemais
generated by the mappi ngt ool .

Char act er Col umSi ze: Thedefault size of var char and char columns. Typically 255.

Cl obBuf f er Si ze: This property establish the buffer sizein the | NSERT/ UPDATE operations with a
j ava. i 0. Reader Thisisonly used with OpenJPA's Section 7.7.11, “ Stream L OB Support ” [279Defaults to 50000.

Cl obTypeNane: The overridden default column typefor j ava. sql . Types. CLOB. Thisisused only when the schemais
generated by the mappi ngt ool .

Cl osePool SQL: A special command to issue to the database when shutting down the pool. Usually the pool of connections
to the database is closed when the application is ending. For embedded databases, whose lifecycle is coterminous with the ap-
plication, there may be a special command, usually " SHUTDOWN" , that will cause the embedded database to close cleanly. De-
faultstonul I .

Concat enat eFunct i on: The SQL function call or operation to concatenate two strings. Use the tokens{ 0} and { 1} to
represent the two arguments. The result of the function or operation isto concatenate the { 1} string to the end of the { 0}
string. Defaultsto " ({0} | | {1}) ".

Const r ai nt NaneMbde: When creating constraints, whether to put the constraint name before the definition (" bef or e"),
just after the constraint type name (" mi d"), or after the constraint definition (" af t er *). Defaultsto " bef or e” .

Creat ePri mar yKeys: When fase, do not create database primary keys for identifiers. Defaultstot r ue .
Cr ossJoi nd ause: The clauseto usefor acrossjoin (cartesian product). Defaultsto " CROSS JO N'.

Cur r ent Dat eFunct i on: The SQL function call to obtain the current date from the database. Defaultsto " CUR-
RENT DATE".

Current Ti meFunct i on: The SQL function call to obtain the current time from the database. Defaultsto " CUR-
RENT_TI ME".

Cur rent Ti mest anpFunct i on: The SQL function call to obtain the current timestamp from the database. Defaults to
" CURRENT_TI MESTAMP" .

Dat ePr eci si on: The database is able to store time values to this degree of precision, which is expressed in nanoseconds.
Thisvalueis usually one million, meaning that the database is able to store time values with a precision of one millisecond.
Particular databases may have more or less precision. OpenJPA will round all time valuesto this degree of precision before
storing them in the database. Defaults to 1000000.

Dat eTypeNane: The overridden default column typefor j ava. sql . Types. DATE. Thisisused only when the schemais
generated by the mappi ngt ool .

Deci mal TypeNane: The overridden default column typefor j ava. sql . Types. DECI MAL. Thisis used only when the
schemais generated by the mappi ngt ool .

Di sti nct Count Col utmSepar at or : The string the database uses to delimit between column expressionsin a SELECT
COUNT(DI STI NCT col um-1i st) clause. Defaultsto nul | for most databases, meaning that multiple columnsin a dis-
tinct COUNT clause are not supported.

Di st i nct TypeName: The overridden default column typefor j ava. sql . Types. DI STI NCT. Thisis used only when
the schema is generated by the mappi ngt ool .

Doubl eTypeNarne: The overridden default column typefor j ava. sql . Types. DOUBLE. Thisis used only when the
schema s generated by the mappi ngt ool .

Dr i ver Vendor : The vendor of the particular JDBC driver you are using. Some dictionaries must alter their behavior de-
pending on the driver vendor. Dictionaries usually detect the driver vendor and set this property themselves. See the
VENDOR_XXX constants defined in the DBDI ct i onar y Javadoc for available options.

208

JDBC

Dr opTabl eSQL: The SQL statement used to drop atable. Use thetoken { 0} asthe argument for the table name. Defaults to
"DROP TABLE {0}".

Fi xedSi zeTypeNanes: A comma separated list of additional database types that have a size defined by the database. In
other words, when a column of afixed size typeis declared, its size cannot be defined by the user. Common examples would
be DATE, FLQAT, and | NTECER. Each database dictionary hasits own internal set of fixed size type names that include the
names mentioned here and many others. Names added to this property are added to the dictionary's internal set. Defaults to
nul | .

Fl oat TypeNamne: The overridden default column typefor j ava. sql . Types. FLOAT. Thisis used only when the schema
is generated by the mappi ngt ool .

For Updat e ause: The clauseto append to SELECT statements to issue queries that obtain pessimistic locks. Defaults to
"FOR UPDATE".

Get St ri ngVal : A special function to return the value of an XML column in a select statement. For example, Oracle uses
".getStringVal ()",asin,"select t0.xm col.getStringVal () fromxmtab t0".Defaultsto the empty
string.

I nC auseLi m t : The maximum number of elementsin an | N clause. OpenJPA works around cases where the limit is ex-
ceeded. Defaults to -1 meaning no limit.

Initializati onSQL: A pieceof SQL to issue against the database whenever a connection isretrieved from the Dat a-
Sour ce .

I nner Joi nCl ause: The clauseto usefor an inner join. Defaultsto” | NNER JO N'.

I nt eger TypeNane: The overridden default column typefor j ava. sql . Types. | NTEGER. Thisis used only when the
schemais generated by the mappi ngt ool .

Javahj ect TypeNane: The overridden default column typefor j ava. sqgl . Types. JAVAOBJECT. Thisis used only
when the schema is generated by the mappi ngt ool .

Joi nSynt ax: The SQL join syntax to use in select statements. See Section 4.6, “ Setting the SQL Join Syntax " [216]

Last Gener at edKeyQuer y: The query to issue to obtain the last automatically generated key for an auto-increment
column. For example, " SELECT LAST | NSERT I D() " for MySQL. This property is set automatically in the dictionary,
and should not need to be overridden.

LongVar bi nar yTypeName: The overridden default column typefor j ava. sql . Types. LONGVARBI NARY. Thisis
used only when the schema is generated by the mappi ngt ool .

LongVar char TypeName: The overridden default column typefor j ava. sql . Types. LONGVARCHAR. Thisisused only
when the schema is generated by the mappi ngt ool .

MaxAut oAssi gnNaneLengt h: Set this property to the maximum length of the sequence name used for auto-increment
columns. Names longer than this value are truncated. Defaults to 31.

Max Col utmNaneLengt h: The maximum number of charactersin a column name. Defaultsto 128.
MaxConst r ai nt NaneLengt h: The maximum number of charactersin a constraint name. Defaults to 128.

MaxEnbeddedBl obSi ze: When greater than -1, the maximum size of a BLOB value that can be sent directly to the database
within an insert or update statement. Values whose size is greater than MaxEnbeddedBl obSi ze force OpenJPA to work
around thislimitation. A value of -1 means that there is no limitation. Defaults to -1.

MaxEnmbeddedC obSi ze: When greater than -1, the maximum size of a CLOB value that can be sent directly to the database
within an insert or update statement. Values whose size is greater than MaxEnbeddedC obSi ze force OpenJPA to work
around this limitation. A value of -1 means that there is no limitation. Defaults to -1.

209

JDBC

Max| ndexNameLengt h: The maximum number of charactersin an index name. Defaults to 128.

Max| ndexesPer Tabl e: The maximum number of indexes that can be placed on asingle table. Defaultsto no limit.
MaxTabl eNaneLengt h: The maximum number of charactersin atable name. Defaultsto 128.

Next SequenceQuer y: A SQL string for obtaining a native sequence value. May use a placeholder of { 0} for the variable
iﬁ:ence name. Defaults to a database-appropriate value. For example, " SELECT {0} . NEXTVAL FROM DUAL" for Or-

Nul I TypeNane: The overridden default column typefor j ava. sql . Types. NULL. Thisisused only when the schemais
generated by the mappi ngt ool .

Nuner i cTypeNane: The overridden default column typefor j ava. sqgl . Types. NUMERI C. Thisis used only when the
schema s generated by the mappi ngt ool .

O her TypeNane: The overridden default column typefor j ava. sql . Types. OTHER. Thisis used only when the schema
is generated by the mappi ngt ool .

Qut er Joi nd ause: The clauseto use for an left outer join. Defaultsto " LEFT OUTER JO N'.

Pl at f or m The name of the database that this dictionary targets. Defaultsto " Gener i ¢", but al dictionaries override this
value.

RangePosi t i on: Indicates where to specify in the SQL select statement the range, if any, of the result rows to be returned.
When limiting the number of returned result rows to a subset of all those that satisfy the query's conditions, the position of the
range clause varies by database. Defaults to 0, meaning that the range is expressed at the end of the select statement but before
any locking clause. See the RANGE_XXX constants defined in DBDi ct i onary.

Real TypeNane: The overridden default column typefor j ava. sql . Types. REAL. Thisisused only when the schemais
generated by the mappi ngt ool .

Ref TypeName: The overridden default column typefor j ava. sql . Types. REF. Thisisused only when the schemais
generated by the mappi ngt ool .

Requi r esAl i asFor Subsel ect : When true, the database requires that subselectsin a FROM clause be assigned an dias.

Requi r esAut oCommi t For Met adat a: When true, the JIDBC driver requires that autocommit be enabled before any
schema interrogation operations can take place.

Requi r esCast For Conpar i sons: When true, comparisons of two values of different types or of two literalsrequires a
cast in the generated SQL. Defaultstof al se.

Requi r esCast For Mat hFunct i ons: When true, math operations on two values of different types or on two literals re-
quires acast in the generated SQL. Defaultstof al se.

Requi r esCondi t i onFor Cr ossJoi n: Some databases require that there always be a conditional statement for a cross
join. If set, this parameter ensures that there will always be some condition to the join clause.

Requi r esTar get For Del et e: When true, the database requires atarget for delete statements. Defaultsto f al se.
Reser vedWr ds: A comma-separated list of reserved words for this database, beyond the standard SQL 92 keywords.

SchenmaCase: The case to use when querying the database metadata about schema components. Defaults to making al names
upper case. Availablevaluesare: upper, | ower, preserve.

Sear chSt ri ngEscape: The default escape character used when generating SQL LI KE clauses. The escape character is
used to escape the wildcard meaning of the _ and %characters. Note: since JPQL provides the ability to define the escape char-
acter in the query, this setting is primarily used when tranglating other query languages, such as JDOQL . Defaultsto "\ \ " (a
single backslash in Java speak).

210

JDBC

Requi resSear chSt ri ngEscapeFor Li ke: When true, the database requires an escape string for queriesthat use L1 KE.
The escape string can be specified using sear chSt ri ngEscape. Defaultstot r ue.

Sel ect Wor ds: A comma-separated list of keywords which may be used to start a SELECT statement for this database. If an
application executes a native SQL statement which begins with SelectWords OpenJPA will treat the statement asa SELECT
statement rather than an UPDATE statement.

SequenceNaneSQL: Additional phrasing to use with SequenceSQL. Defaultstonul | .

SequenceSQL: Genera structure of the SQL query to use when interrogating the database for sequence names. Asthereisno
standard way to obtain sequence names, it defaultsto nul | .

SequenceSchemaSQL: Additional phrasing to use with SequenceSQL. Defaultstonul | .

Si mul at eLocki ng: Some databases do not support pessimistic locking, which will result in an exception when you attempt
atransaction while using the pessimistic lock manager. Setting this property tot r ue suppresses the locking of rowsin the
database, thereby allowing pessimistic transactions even on databases that do not support locking. At the same time, setting this
property to t r ue means that you do not obtain the semantics of a pessimistic transaction with the database. Defaults to

fal se.

Smal | i nt TypeName: The overridden default column typefor j ava. sql . Types. SMALLI NT. Thisisused only when
the schema is generated by the mappi ngt ool .

St or ageLi ni t ati onsFat al : When true, any data truncation/rounding that is performed by the dictionary in order to
store avalue in the database will be treated as afatal error, rather than just issuing awarning.

St or eChar sAsNunber s: Set this property to f al se to store Javachar fieldsas CHAR values rather than numbers. De-
faultstot r ue.

St or eLar geNunber sAsSt ri ngs: When true, the dictionary prefers to store Javafields of type Bi gl nt eger and Bi g-
Deci mal) asstring values in the database. Likewise, the dictionary will instruct the mapping tool to map these Javatypesto
character columns. Because some databases have limitations on the number of digits that can be stored in a numeric column
(for example, Oracle can only store 38 digits), this option may be necessary for some applications. Note that this option may
prevent OpenJPA from executing meaningful numeric queries against the columns. Defaultstof al se.

Stri ngLengt hFunct i on: Name of the SQL function for getting the length of a string. Use the token { 0} to represent the
argument.

St ruct TypeNane: The overridden default column typefor j ava. sql . Types. STRUCT. Thisis used only when the
schema s generated by the mappi ngt ool .

Subst ri ngFunct i onNare: Name of the SQL function for getting the substring of a string.

Support sAl t er Tabl eW t hAddCol um: When true, the database supports adding a new column in an ALTER TABLE
statement. Defaultstot r ue.

Suppor t sAl t er Tabl eW t hDr opCol urm: When true, the database supports dropping acolumnin an ALTER TABLE
statement. Defaultstot r ue.

Suppor t sAut 0Assi gn: When true, the database supports auto-assign columns, where the value of column is assigned upon
insertion of the row into the database. Defaultstof al se.

Support sCascadeDel et eAct i on: When true, the database supports the CASCADE del ete action on foreign keys. De-
faultstot r ue.

Support sCascadeUpdat eAct i on: When true, the database supports the CASCADE update action on foreign keys. De-
faultstot r ue.

Suppor t sConmrent s: When true, comments can be associated with the table in the table creation statement. Defaultsto
fal se.

211

JDBC

Support sCorrel at edSubsel ect : When true, the database supports correlated subsel ects. Correlated subsel ects are se-
lect statements nested within select statements that refers to a column in the outer select statement. For performance reasons,
correlated subselects are generally alast resort. Defaultstot r ue.

Support sDef aul t Del et eAct i on: When true, the database supportsthe SET DEFAULT delete action on foreign keys.
Defaultstot r ue.

Suppor t sDef aul t Updat eAct i on: When true, the database supportsthe SET DEFAULT update action on foreign keys.
Defaultstot r ue.

Support sDef er r edConst r ai nt s: When true, the database supports deferred constraints. The database supports de-
ferred constraints by checking for constraint violations when the transaction commits, rather than checking for violations im-
mediately after receiving each SQL statement within the transaction. Defaultstot r ue.

Support sFor ei gnKeys: When true, the database supports foreign keys. Defaultstot r ue.
Suppor t sHavi ng: When true, the database supports HAVING clausesin selects.

SupportsLocki ngWt hDi sti nct C ause: When true, the database supports FOR UPDATE select clauses with DI S-
TI NCT clauses.

Support sLocki ngW t hl nner Joi n: When true, the database supports FOR UPDATE select clauses with inner join quer-
ies.

SupportsLocki ngW t hMul ti pl eTabl es: When true, the database supports FOR UPDATE select clauses that select
from multiple tables.

Support sLocki ngW t hOr der O ause: When true, the database supports FOR UPDATE select clauses with ORDER BY
clauses.

Support sLocki ngW t hQut er Joi n: When true, the database supports FOR UPDATE select clauses with outer join quer-
ies.

Support sLocki ngW t hSel ect Range: When true, the database supports FOR UPDATE select clauses with queries that
select arange of datausing LI M T, TOP or the database equivalent. Defaultstot r ue.

Suppor t sModQper at or : When true, the database supports the modulus operator (%9 instead of the MOD function. Defaults
tof al se.

SupportsMuil ti pl eNontransacti onal Resul t Set s: When true, a nontransactional connection is capable of having
multiple open Resul t Set instances.

Support sNul | Del et eAct i on: When true, the database supportsthe SET NULL delete action on foreign keys. Defaults
totrue.

Support sNul | Tabl eFor Get Col urms: When true, the database supports passing anul | parameter to Dat abase-
Met aDat a. get Col unms as an optimization to get information about all the tables. Defaultstot r ue.

Support sNul | Tabl eFor Get | npor t edKeys: When true, the database supports passing anul | parameter to Dat a-
baseMet aDat a. get | nport edKeys as an optimization to get information about all the tables. Defaultsto f al se.

Support sNul | Tabl eFor Get | ndex| nf o: When true, the database supports passing anul | parameter to Dat abase-
Met aDat a. get | ndex| nf o as an optimization to get information about all the tables. Defaultsto f al se.

Support sNul | Tabl eFor Get Pri mar yKeys: When true, the database supports passing anul | parameter to Dat a-
baseMet aDat a. get Pri mar yKeys asan optimization to get information about all the tables. Defaultstof al se.

Support sNul | Updat eAct i on: When true, the database supportsthe SET NULL update action on foreign keys. Defaults
totrue.

212

JDBC

Suppor t sQuer yTi neout : When true, the JDBC driver supports calls to
java. sgl . Stat ement . set Quer yTi neout .

SupportsRestri ct Del et eActi on: When true, the database supports the RESTRI CT delete action on foreign keys. De-
faultstot r ue.

SupportsRestri ct Updat eAct i on: When true, the database supports the RESTRI CT update action on foreign keys.
Defaultstot r ue.

Support sSchemaFor Get Col urms: When false, the database driver does not support using the schema name for schema
reflection on column names.

Support sSchemaFor Get Tabl es: If false, then the database driver does not support using the schema name for schema
reflection on table names.

Support sSel ect Endl ndex: When true, the database can create a select that islimited to the first N results.

Support sSel ect For Updat e: When true, the database supports SELECT statements with a pessimistic locking (FOR
UPDATE) clause. Defaultstot r ue.

SupportsSel ect St art | ndex: When true, the database can create a select that skipsthe first N results.
Support sSubsel ect : When true, the database supports subselectsin queries.

Support sTi nest anpNanos: When true, the database supports nanoseconds with TIMESTAMP columns. Defaults to
true.

Support sUni queConst r ai nt s: When true, the database supports unique constraints. Defaultstot r ue.

Suppor t sXM.Col unm: When true, the database supports an XML column type. See Section 7.7.10, “ XML Column Map-
ping” [275or information on using this capability. Defaultstof al se.

Syst enSchemas: A comma-separated list of schema names that should be ignored.
Syst enirabl es: A comma-separated list of table names that should be ignored.

Tabl eFor Updat eC ause: The clause to append to the end of each table alias in queries that obtain pessimistic locks. De-
faultstonul | .

Tabl eTypes: Comma-separated list of table types to use when looking for tables during schema reflection, as defined in the
j ava. sql . Dat abaseMet aDat a. get Tabl el nf o JIDBC method. An exampleis: " TABLE, VI EW ALI AS" . Defaults
to" TABLE".

Ti meTypeNane: The overridden default column typefor j ava. sql . Types. Tl ME. Thisis used only when the schemais
generated by the mappi ngt ool .

Ti mest anpTypeName: The overridden default column typefor j ava. sql . Types. TI MESTAMP. Thisis used only when
the schemaiis generated by the mappi ngt ool .

Ti nyi nt TypeNane: The overridden default column typefor j ava. sqgl . Types. TI NYI NT. Thisis used only when the
schema s generated by the mappi ngt ool .

ToLower CaseFunct i on: Name of the SQL function for converting a string to lower case. Use the token { 0} to represent
the argument.

ToUpper CaseFunct i on: SQL function call for for converting a string to upper case. Use the token { 0} to represent the ar-
gument.

Tri mBot hFunct i on: The SQL function call to trim any number of a particular character from both the start and end of a
string. Note: some databases do not support specifying the character in which case only spaces or whitespace can be trimmed.

213

4.4.2.

JDBC

Usethetoken { 1} when possible to represent the character, and the token { 0} to represent the string. Defaultsto
"TRIM BOTH {1} FROM {0})".

Tri mLeadi ngFuncti on: The SQL function call to trim any number of a particular character from the start of a string.
Note: some databases do not support specifying the character in which case only spaces or whitespace can be trimmed. Use the
token { 1} when possible to represent the character, and the token { 0} to represent the string. Defaultsto " TRI M LEADI NG
{1} FROM {0})".

TrimlrailingFuncti on: The SQL function call to trim any number of aparticular character from the end of a string.
Note: some databases do not support specifying the character in which case only spaces or whitespace can be trimmed. Use the
token { 1} when possible to represent the character, and the token { 0} to represent the string. Defaultsto " TRI M TRAI LI NG
{1} FROM {0})".

UseGet Best Rowi dent i fi er For Pri mar yKeys: When true, metadata queries will use Dat abase-
Met aDat a. get Best Rowl dent i fi er toobtaininformation about primary keys, rather than Dat abase-
Met aDat a. get Pri mar yKeys.

UseCet Byt esFor Bl obs: When true, Resul t Set . get Byt es will be used to obtain blob data rather than Resul t -
Set . get Bi naryStream

UseGet Ohj ect For Bl obs: When true, Resul t Set . get Obj ect will be used to obtain blob data rather than Resul t -
Set . get Bi naryStream

UseGet Stri ngFor O obs: Whentrue, Resul t Set . get St ri ng will be used to obtain clob data rather than Resul t -
Set . get Char act er St ream

UseSchemaNane: If f al se, then avoid including the schema name in table name references. Defaultstot r ue .

UseSet Byt esFor Bl obs: Whentrue, Pr epar edSt at enent . set Byt es will be used to set blob data, rather than
Prepar edSt at ement . set Bi narySt ream

UseSet St ri ngFor O obs: Whentrue, Pr epar edSt at enent . set St ri ng will be used to set clob data, rather than
Pr epar edSt at enent . set Char act er St r eam

Val i dat i onSQL: The SQL used to validate that a connection is still in avalid state. For example, " SELECT SYSDATE
FROM DUAL" for Oracle.

Var bi nar yTypeNane: The overridden default column typefor j ava. sql . Types. VARBI NARY. Thisis used only when
the schemais generated by the mappi ngt ool .

Var char TypeNane: The overridden default column typefor j ava. sql . Types. VARCHAR. Thisis used only when the
schemais generated by the mappi ngt ool .

Xm TypeNane: The column type name for XML columns. This property is set automatically in the dictionary and should not
need to be overridden. It is used only when the schemais generated using the mappi ngt ool . Defaultsto " XM." .

MySQLDictionary Properties

Thenysql dictionary aso understands the following properties:

* DriverDeserializesBl obs: Many MySQL drivers automatically deserialize BLOBs on callsto Resul t -

Set . get Obj ect . TheMySQLDI cti onary overridesthe standard DBDi ct i onary. get Bl obCbj ect method to take
thisinto account. If your driver does not deserialize automatically, set this property tof al se.

» Tabl eType: The MySQL table type to use when creating tables. Defaultsto " i nnodb" .

» UseCl obs: Some older versions of MySQL do not handle clobs correctly. To enable clob functionality, set thistot r ue. De-

214

JDBC

faultstof al se.

* OptimzeMulti Tabl eDel et es: MySQL as of version 4.0.0 supports multiple tables in DELETE statements. When this
option is set, OpenJPA will use that syntax when doing bulk deletes from multiple tables. This can happen when the de-
| et eTabl eCont ent s SchenaTool actionisused. (See Section 4.13,“ Schema Tool " [223or more info about de-
| et eTabl eCont ent s.) Defaultsto f al se, since the statement may fail if using InnoDB tables and del ete constraints.

4.4.3. OracleDictionary Properties

4.5.

Theor acl e dictionary understands the following additional properties:

» UseTri gger sFor Aut 0Assi gn: When true, OpenJPA will allow simulation of auto-increment columns by the use of Or-
acle triggers. OpenJPA will assume that the current sequence value from the sequence specified in the
Aut 0Assi gnSequenceNane parameter will hold the value of the new primary key for rows that have been inserted. For
more details on auto-increment support, see Section 5.4.4, “ Autoassign / I dentity Strategy Caveats” [235]

» Aut 0Assi gnSequenceNane: The global name of the sequence that OpenJPA will assume to hold the value of primary key
value for rows that use auto-increment. If left unset, OpenJPA will use athe sequence named " SEQ <t abl e nanme>".

» MaxEnmbeddedBl obSi ze: Oracle is unable to persist BLOBs using the embedded update method when BLOBS get over a
certain size. The size depends on database configuration, e.g. encoding. This property defines the maximum size BLOB to per-
sist with the embedded method. Defaults to 4000 bytes.

» MaxEnmbeddedC obSi ze: Oracleis unable to persist CLOBs using the embedded update method when Clobs get over a cer-
tain size. The size depends on database configuration, e.g. encoding. This property defines the maximum size CLOB to persist
with the embedded method. Defaults to 4000 characters.

* UseSet For nOf UseFor Uni code: Prior to Oracle 10i, statements executed against unicode capable columns (the NCHAR,
NVARCHAR, NCL OB Oracle types) required special handling to be able to store unicode values. Setting this property tot r ue
(the default) will cause OpenJPA to attempt to detect when the column of one of these types, and if so, will attempt to correctly
configure the statement using the Or acl ePr epar edSt at enent . set For nX Use. For more details, see the Oracle
Readme For NChar. Note that this can only work if OpenJPA is able to access the underlying Or acl ePr epar edSt at e-
ment instance, which may not be possible when using some third-party datasources. If OpenJPA detects that thisisthe case, a
warning will be logged.

Setting the Transaction Isolation

OpenJPA typically retains the default transaction isolation level of the JDBC driver. However, you can specify atransaction isol-
ation level to use through the openj pa. j dbc. Transact i onl sol at i on configuration property. The following isalist of
standard isolation levels. Note that not all databases support all isolation levels.

» def aul t: Usethe JDBC driver's default isolation level. OpenJPA uses this option if you do not explicitly specify any other.
» none: No transaction isolation.

» read- comi tt ed: Dirty reads are prevented; non-repeatable reads and phantom reads can occur.

e read-unconm tt ed: Dirty reads, non-repeatable reads and phantom reads can occur.

» repeat abl e-r ead: Dirty reads and non-repeatable reads are prevented; phantom reads can occur.

e seri al i zabl e: Dirty reads, non-repeatabl e reads, and phantom reads are prevented.

215

http://www.oracle.com/technology/sample_code/tech/java/codesnippet/jdbc/nchar/readme.html

JDBC

Example 4.7. Specifying a Transaction | solation

<property name="openj pa.j dbc. Transacti onl sol ati on" val ue="repeat abl e-read"/ >

4.6.

Setting the SQL Join Syntax

Object queries often involve using SQL joins behind the scenes. Y ou can configure OpenJPA to use either SQL 92-style join syn-
tax, in which joins are placed in the SQL FROM clause, the traditional join syntax, in which join criteria are part of the WHERE
clause, or a database-specific join syntax mandated by the DBDi ct i onar y. OpenJPA only supports outer joins when using
SQL 92 syntax or a database-specific syntax with outer join support.

Theopenj pa. j dbc. DBDi cti onary plugin acceptsthe Joi nSynt ax property to set the system's default syntax. The
available values are:
» traditional : Traditional SQL join syntax; outer joins are not supported.

» dat abase: The database's native join syntax. Databases that do not have a native syntax will default to one of the other op-
tions.

* sgl 92: ANSI SQL92 join syntax. Outer joins are supported. Not all databases support this syntax.

Y ou can change the join syntax at runtime through the OpenJPA fetch configuration API, which is described in Chapter 9,
Runtime Extensions [288]

Example 4.8. Specifying the Join Syntax Default

<property name="openj pa.j dbc. DBDi cti onary" val ue="Joi nSynt ax=sql 92"/ >

Example 4.9. Specifying the Join Syntax at Runtime

i mport org. apache. openj pa. persi stence. j dbc. *;

Query q = emcreateQuery("sel ect mfrom Magazine mwhere mtitle = 'JDJ'");
OpenJPAQuery kg = OpenJPAPersi stence. cast(q);

JDBCFet chPl an fetch = (JDBCFetchPl an) kg. getFetchPlan ();

fetch. set Joi nSynt ax(Joi nSynt ax. SQL92) ;

List results = g.getResultList();

216

4.7.

JDBC

Accessing Multiple Databases

4.8.

Through the properties we've covered thus far, you can configure each Ent i t yManager Fact or y to access a different data-
base. If your application accesses multiple databases, we recommend that you maintain a separate persistence unit for each one.
Thiswill allow you to easily load the appropriate resource for each database at runtime, and to give the correct configuration file
to OpenJPA's command-line tools during development.

Configuring the Use of JDBC Connections

In its default configuration, OpenJPA obtains JDBC connections on an as-needed basis. OpenJPA Ent i t yManager sdo not re-
tain a connection to the database unless they are in a datastore transaction or there are open Quer y resultsthat are using alive
JDBC result set. At all other times, including during optimistic transactions, Ent i t yManager srequest a connection for each
guery, then immediately release the connection back to the pool.

In some cases, it may be more efficient to retain connections for longer periods of time. Y ou can configure OpenJPA's use of JD-
BC connections through the openj pa. Connect i onRet ai nMode configuration property. The property accepts the following
values:

» al ways: EachEnti t yManager obtainsasingle connection and usesit until the Ent i t yManager closes. Great care
should be taken when using this property if the application cannot close the EntityManager (ie container-managed EntityMan-
agersin a JEE Application Server). In this case the connection will remain open for an undefined time and the application may
not be able to recover from aterminated connection(ie if a TCP/IP timeout severs the connection to the database). For this reas-
ontheal ways option should not be used with container managed EntityM anagers.

» transacti on: A connection is obtained when each transaction begins (optimistic or datastore), and is released when the
transaction completes. Non-transactional connections are obtained on-demand.

« on- demand: Connections are obtained only when needed. Thisoption is equivalent tothet r ansact i on option when data-
store transactions are used. For optimistic transactions, though, it means that a connection will be retained only for the duration
of the datastore flush and commit process.

Y ou can a so specify the connection retain mode of individual Ent i t yManager swhen you retrieve them from the Ent i t y-
Manager Fact ory. See Section 9.2.1, “ OpenJPAEnNtityM anager Factory ” [28%or details.

Theopenj pa. Fl ushBef or eQuer i es configuration property controls another aspect of connection usage: whether to flush
transactional changes before executing object queries. This setting only appliesto queries that would otherwise have to be ex-
ecuted in-memory becausethe | gnor eChanges property is set to false and the query may involve objects that have been
changed in the current transaction. Legal values are:

 true: Alwaysflush rather than executing the query in-memory. If the current transaction is optimistic, OpenJPA will begin a
non-locking datastore transaction. Thisisthe default.

» f al se: Never flush before aquery.

* Wi t h-connecti on: Flushonly if theEnt i t yManager hasalready established a dedicated connection to the datastore,
otherwise execute the query in-memory. This option is useful if you use long-running optimistic transactions and want to en-
sure that these transactions do not consume database resources until commit. OpenJPA's behavior with this option is dependent
on the transaction status and mode, as well as the configured connection retain mode described earlier in this section.

The flush mode can also be varied at runtime using the OpenJPA fetch configuration API, discussed in Chapter 9, Runtime Ex-
tensions [288]

The table below describes the behavior of automatic flushing in various situations. In all cases, flushing will only occur if Open-
JPA detects that you have made modificationsin the current transaction that may affect the query's results.

217

JDBC

Table4.1. OpenJPA Automatic Flush Behavior

FlushBeforeQueries= |FlushBeforeQueries= |FlushBeforeQueries= [FlushBeforeQueries=
false true with-connection; Con- |with-connection; Con-
nectionRetainMode = |nectionRetainM ode =
on-demand transaction or always
IgnoreChanges=true [no flush no flush no flush no flush
IgnoreChanges = false; |no flush no flush no flush no flush
no tx active
IgnoreChanges = false; [no flush flush flush flush
datastoretx active
IgnoreChanges = false; |no flush flush no flush unlessf | ush |flush
optimistic tx active has already beenin-
voked

Example 4.10. Specifying Connection Usage Defaults

<property name="openj pa. Connecti onRet ai nMbde" val ue="on-demand"/>
<property name="openj pa. Fl ushBef oreQueri es" val ue="true"/>

Example 4.11. Specifying Connection Usage at Runtime

i mport org. apache. openj pa. per si stence. *;

// obtaining an emwi th a certain connection retain node
Map props = new HashMap();

props. put ("openj pa. Connect i onRet ai nMbde", "al ways");
EntityManager em = enf.createEntityManager (props);

4.9.

Statement Batching

In addition to connection pooling and prepared statement caching, OpenJPA employs statement batching to speed up JDBC up-
dates. Statement batching is enabled by default for any JDBC driver that supportsit. When batching is on, OpenJPA automatic-
ally ordersits SQL statements to maximize the size of each batch. This can result in large performance gains for transactions that

modify alot of data.

Y ou configure statement batching through the system DBDictionary, which is controlled by the openjpa.jdbc.DBDictionary con-
figuration property. Y ou can enable the statement batching by setting the batchLimit in the value. The batch limit is the maximum
number of statements OpenJPA will ever batch together. A value has the following meaning:

e - 1: Unlimited number of statements for a batch.

» 0: Disable batch support. Thisisthe default for most dictionaries.

218

JDBC

e any positive nunber: Maximum number of statementsfor abatch.

By default, the batch support is based on each Dictionary to define the default batch limit. Currently only DB2 and Or-
acle dictionaries are set the default batch limit to 100. The default batch limit for the rest of the dictionaries is set to zero
(disabled).

The example below shows how to enable and disable statement batching via your configuration properties.

Example 4.12. Enable SQL statement batching

<property nanme="openj pa.j dbc. DBDi cti onary" val ue="db2(batchLi m t=25)"/>
<property name="openj pa.j dbc. DBDi cti onary" val ue="oracl e(batchLimt=-1)"/>
(0}

<property name="openj pa.j dbc. DBDi cti onary" val ue="bat chLi m t =25"/>
<property nanme="openj pa.] dbc. DBDi cti onary" val ue="batchLimt=-1"/>

Example 4.13. Disable SQL statement batching

<property name="openj pa.j dbc. DBDi cti onary" val ue="db2(batchLi nmt=0)"/>
(o]

<property name="openj pa.j dbc. DBDi cti onary" val ue="bat chLi m t=0"/>

<par> By default, org.apache.openjpa.jdbc.kernel .BatchingConstraintUpdateM anager is the default statement batching imple-
mentation. OPENJPA also provides another update manager

org.apache.openjpa.jdbc.kernel.BatchingOperationOrderUpdateM anager for the statements that required ordering. Y ou can plug-
in this update manager through the "openjpa.jdbc.UpdateManager” property. Or you can plug-in your own statement batching im-
plementation by providing the implementation that extends from AbstractUpdateM anager, ConstraitUpdateM anager or Opera-
tionOrderUpdateManager. Add thisimplementation class as a property in the persistence.xml file. For example, a custom state-
ment batching implementation mycomp.MyUpdateM anager extends ConstraitUpdateManager. Y ou specify this implementation
in the persistence.xml file as the following example: </par>

Example 4.14. Plug-in custom statement batching implementation

<property name="openj pa.j dbc. Updat eManager" val ue="nyconp. MyUpdat eManager "/ >

4.10. Large Result Sets

By default, OpenJPA uses standard forward-only JDBC result sets, and compl etely instantiates the results of database queries on

219

JDBC

execution. When using a JIDBC driver that supports version 2.0 or higher of the JDBC specification, however, you can configure
OpenJPA to use scrolling result sets that may not bring all results into memory at once. Y ou can also configure the number of res-
ult objects OpenJPA keeps references to, allowing you to traverse potentially enormous amounts of data without exhausting VM
memory.

Y ou can a'so configure on-demand loading for individual collection and map fields vialarge result set proxies. See Sec-
tion 5.6.4.2, “ Large Result Set Proxies” [238]

Use the following properties to configure OpenJPA's handling of result sets:

» openj pa. Fet chBat chSi ze : The number of objects to instantiate at once when traversing aresult set. This number will
be set asthe fetch size on IDBC St at enent objects used to obtain result sets. It aso factorsin to the number of objects
OpenJPA will maintain a hard reference to when traversing a query result.

The fetch size defaultsto -1, meaning al results will be instantiated immediately on query execution. A value of 0 meansto
use the IDBC driver's default batch size. Thusto enable large result set handling, you must set this property to O or to a positive
number.

e openj pa. j dbc. Resul t Set Type : Thetype of result set to use when executing database queries. This property accepts
the following values, each of which corresponds exactly to the same-named j ava. sql . Resul t Set constant:

« forward-onl y: Thisisthe default.

e scroll-sensitive

e scroll-insensitive

Different JDBC drivers treat the different result set types differently. Not all drivers support all types.

» openj pa. j dbc. Fet chDi r ect i on: The expected order in which you will access the query results. This property affects
the type of datastructure OpenJPA will useto hold the results, and is aso given to the JIDBC driver in case it can optimize for
certain access patterns. This property accepts the following values, each of which corresponds exactly to the same-named
j ava. sql . Resul t Set FETCH constant:

o forwar d: Thisisthe default.

* reverse

e unknown

Not al drivers support all fetch directions.

» openj pa. j dbc. LRSSi ze : The strategy OpenJPA will use to determine the size of result sets. This property isonly used if
you change the fetch batch size from its default of -1, so that OpenJPA begins to use on-demand result loading. Available val-
ues are:

e query: Thisisthe default. Thefirst time you ask for the size of aquery result, OpenJPA will perform a SELECT
COUNT(*) query to determine the number of expected results. Note that depending on transaction status and settings, this
can mean that the reported size is dlightly different than the actual number of results available.

e | ast : If you have chosen a scrollable result set type, this setting will usethe Resul t Set . | ast method to moveto the
last element in the result set and get itsindex. Unfortunately, some JDBC driverswill bring all resultsinto memory in order
to access the last one. Note that if you do not choose a scrollable result set type, then this will behave exactly like unknown.

The default result set typeisf or war d- onl y, so you must change the result set type in order for this property to have an
effect.

220

JDBC

e unknown: Under this setting OpenJPA will return | nt eger . MAX_VALUE asthe size for any query result that uses on-
demand loading.

Example 4.15. Specifying Result Set Defaults

<property name="openj pa. Fet chBat chSi ze" val ue="20"/>

<property name="openj pa.j dbc. Resul t Set Type" val ue="scroll-insensitive"/>
<property name="openj pa.] dbc. FetchDirection" val ue="forward"/>

<property name="openj pa.] dbc. LRSSi ze" val ue="l ast"/>

Many OpenJPA runtime components also have methods to configure these properties on a case-by-case basis through their
fetch configuration. See Chapter 9, Runtime Extensions [288]

Example 4.16. Specifying Result Set Behavior at Runtime

i mport java.sql.*;
i mport org. apache. openj pa. persi stence. j dbc. *;

Query q = emcreateQuery("select mfrom Magazine mwhere mtitle = 'JDJ'");
CpenJPAQJer kg = OpenJPAPer si st ence. cast(q);

JDBCFet chPl an fetch = (JDBCFetchPl an) kq. get Fet chPl an();

fetch. set Fet chBat chSi ze(20) ;

fetch. set Resul t Set Type(Resul t Set Type. SCROLL_I NSENSI TI VE) ;
fetch.setFetchDirection(FetchDirection.F) 5

fetch. set LRSSl zeAl gorithm(LRSS zeAl gorithm LAST)

List results = g.getResultList();

4.11

Default Schema

It is common to duplicate a database model in multiple schemas. Y ou may have one schema for development and another for pro-
duction, or different database users may access different schemas. OpenJPA facilitates these patterns with the open-

j pa.j dbc. Schenma configuration property. This property establishes a default schema for any unqualified table names, allow-
ing you to leave schema names out of your mapping definitions.

The Schena property also establishes the default schemafor new tables created through OpenJPA tools, such as the mapping
tool covered in Section 7.1, “ Forward Mapping” [257]

If the entities are mapped to the same table name but with different schema name within one Per si st enceUni t intentionally,
and the strategy of Gener at edType. AUTOis used to generate the ID for each entity, a schemaname for each entity must be
explicitly declared either through the annotation or the mapping.xml file. Otherwise, the mapping tool only creates the tables for
those entities with the schema names under each schema. In addition, there will be only one OPENJ PA_SEQUENCE_TABLE cre-
ated for al the entities within the Per si st enceUni t if the entities are not identified with the schema name. Read Section 9.6,
“ Generators” [297n the Reference Guide.

4.12. Schema Reflection

221

JDBC

OpenJPA needs information about your database schema for two reasons. First, it can use schemainformation at runtime to valid-
ate that your schemais compatible with your persistent class definitions. Second, OpenJPA requires schema information during
development so that it can manipulate the schema to match your object model. OpenJPA usesthe SchenmaFact or y interface to
provide runtime mapping information, and the SchermaTool for development-time data. Each is presented below.

4.12.1. Schemas List

By default, schemareflection acts on all the schemas your JDBC driver can "see". Y ou can limit the schemas and tables OpenJPA
actson withtheopenj pa. j dbc. Schemas configuration property. This property accepts a comma-separated list of schemas
and tables. To list aschema, list its name. To list atable, list its full namein theform <schenma- nane>. <t abl e- nane>. If a
table does not have a schema or you do not know its schema, list itsname as. <t abl e- nanme> (notice the preceding '."). For ex-
ample, to list the BUSOBJ S schema, the ADDRESS table in the GENERAL schema, and the SYSTEM | NFOtable, regardless of
what schemait isin, use the string:

BUSOBJ'S, GENERAL. ADDRESS, . SYSTEM | NFO

Some databases are case-sensitive with respect to schema and table names. Oracle, for example, requires namesin all
upper case.

4.12.2. Schema Factory

OpenJPA reliesonthe openj pa. j dbc. SchenaFact or y interface for runtime schemainformation. Y ou can control the
schema factory OpenJPA uses through the openj pa. j dbc. SchenmaFact or y property. There are several built-in options to
choose from:

e dynami c: Thisisthe default setting. It isan alias for the
or g. apache. openj pa. j dbc. schema. Dynam cSchemaFact ory. The Dynani cSchenmaFact ory isthe most
performant schema factory, because it does not validate mapping information against the database. Instead, it assumes all ob-
ject-relational mapping information is correct, and dynamically builds an in-memory representation of the schemafrom your
mapping metadata. When using this factory, it is important that your mapping metadata correctly represent your database's for-
eign key constraints so that OpenJPA can order its SQL statements to meet them.

* native: Thisisandiasfortheor g. apache. openj pa. j dbc. schema. LazySchenmaFact ory . As persistent classes
are loaded by the application, OpenJPA reads their metadata and object-relational mapping information. This factory usesthe
j ava. sql . Dat abaseMet aDat a interface to reflect on the schema and ensure that it is consistent with the mapping data
being read. Use thisfactory if you want up-front validation that your mapping metadata is consistent with the database during
development. This factory accepts the following important properties:

* Forei gnKeys: Settot r ue to automatically read foreign key information during schema validation.

» tabl e: Thisisandiasfortheor g. apache. openj pa. j dbc. schema. Tabl eSchenaFact or y . This schemafactory
stores schema information as an XML document in a database table it creates for this purpose. If your JDBC driver doesn't sup-
port thej ava. sqgl . Dat abaseMet aDat a standard interface, but you still want some schema validation to occur at
runtime, you might use this factory. It is not recommended for most users, though, because it is easy for the stored XML
schema definition to get out-of-synch with the actual database. This factory accepts the following properties:

e Tabl e: The name of the table to create to store schemainformation. Defaults to OPENJ PA_SCHENA.

e Pri mar yKeyCol urm: The name of the table's numeric primary key column. Defaultsto | D.

222

../javadoc/org/apache/openjpa/jdbc/schema/SchemaFactory.html
../javadoc/org/apache/openjpa/jdbc/schema/DynamicSchemaFactory.html
../javadoc/org/apache/openjpa/jdbc/schema/LazySchemaFactory.html
../javadoc/org/apache/openjpa/jdbc/schema/TableSchemaFactory.html

4.13.

JDBC

¢ SchemaCol unm: The name of the table's string column for holding the schema definition as an XML string. Defaults to
SCHEVA_DEF .

o fil e:Thisisanadliasfortheor g. apache. openj pa. j dbc. schema. Fi | eSchenaFact ory . Thisfactory isalot
likethe Tabl eSchenaFact or y, and has the same advantages and disadvantages. Instead of storing its XML schema defini-
tion in adatabase table, though, it storesit in afile. This factory accepts the following properties:

e Fi | e: The resource name of the XML schemafile. By default, the factory looks for aresource called package. schens,
located in any top-level directory of the CLASSPATH or in the top level of any jar in your CLASSPATH.

Y ou can switch freely between schema factories at any time. The XML file format used by some factoriesis detailed in Sec-
tion 4.14, “ XML Schema Format " [226]As with any OpenJPA plugin, you can can aso implement your own schema factory
if you have needs not met by the existing options.

Schema Tool

Most users will only access the schematool indirectly, through the interfaces provided by other tools. Y ou may find, however,
that the schematool is a powerful utility in its own right. The schematool has two functions:

1. To reflect on the current database schema, optionally trandating it to an XML representation for further manipulation.

2. Totakeinan XML schema definition, calculate the differences between the XML and the existing database schema, and apply
the necessary changes to make the database match the XML.

The XML format used by the schematool abstracts away the differences between SQL dialects used by different database
vendors. Thetool also automatically adapts its SQL to meet foreign key dependencies. Thus the schematool is useful as a general
way to manipulate schemas.

Y ou can invoke the schematool through its Javaclass, or g. apache. openj pa. j dbc. schenma. SchenmaTool . In addition
to the universal flags of the configur ation framework, the schematool accepts the following command line arguments:

o -ignoreErrors/-i <true/t | false/f>:Iffal se ,anexceptionwill bethrown if the tool encounters any data-
base errors. Defaultstof al se.

o -file/-f <stdout | output file>:UsethisoptiontowriteaSQL script for the planned schema modifications,
rather them committing them to the database. When used in conjunction with theexport orrefl ect actions, the named
file will be used to write the exported schema XML. If the file names aresource in the CLASSPATH, datawill be written to
that resource. Use st dout to writeto standard output. Defaultsto st dout .

» -openj paTabl es/-ot <true/t | falsel/f>:Whenreflecting onthe schema, whether to reflect on tables and se-
guences whose names start with OPENJ PA . Certain OpenJPA components may use such tables - for example, thet abl e
schema factory option covered in Section 4.12.2, “ Schema Factory ” [222]. When using other actions, openj paTabl es
controls whether these tables can be dropped. Defaultsto f al se.

e -dropTables/-dt <true/t | false/f>:Setthisoptiontotr ue to drop tablesthat appear to be unused during r e-
tai nandrefresh actions. Defaultstot r ue.

e -dropSequences/-dsq <true/t | fal se/f>:Setthisoptiontotrue todrop sequences that appear to be unused
duringr et ai n andr ef r esh actions. Defaultstot r ue.

» -sequences/-sq <true/t | false/f>:Whetherto manipulate sequences. Defaultstot r ue.

* -indexes/-ix <true/t | falsel/f>:Whetherto manipulate indexes on existing tables. Defaultstot r ue.

223

../javadoc/org/apache/openjpa/jdbc/schema/FileSchemaFactory.html
../javadoc/org/apache/openjpa/jdbc/schema/SchemaTool.html

JDBC

o -primaryKeys/-pk <true/t | fal se/f>:Whether to manipulate primary keys on existing tables. Defaults to
true.

o -foreignKeys/-fk <true/t | fal se/f>:Whetherto manipulate foreign keys on existing tables. Defaultstot r ue.

» -record/-r <true/t | false/f>: Usefal se topreventwriting the schema changes made by the tool to the cur-
rentschema fact ory. Defaultstot r ue.

» -schenas/-s <schenm |i st>: A list of schemaand table names that OpenJPA should access during this run of the
schematool. Thisis equivalent to setting the openjpa.jdbc.Schemas property for asingle run.

The schematool also acceptsan-acti on or-a flag. Multiple actions can be composed in a comma-separated list. The avail-
able actions are;

» add: Thisisthe default action if you do not specify one. It brings the schema up-to-date with the given XML document by
adding tables, columns, indexes, etc. This action never drops any schema components.

» retai n: Keep al schemacomponentsin the given XML definition, but drop the rest from the database. This action never
adds any schema components.

» drop: Drop all schema componentsin the schema XML. Tableswill only be dropped if they would have O columns after
dropping al columnslisted in the XML.

» refresh: Equivaenttor et ai n, then add.

* bui | d: Generate SQL to build a schema matching the one in the given XML file. Unlike add, this option does not take into
account the fact that part of the schema defined in the XML file might already exist in the database. Therefore, this action is
typically used in conjunction with the- f i | e flag to write a SQL script. This script can later be used to recreate the schemain
the XML.

» refl ect: Generate an XML representation of the current database schema.

» cr eat eDB: Generate SQL to re-create the current database. This action istypically used in conjunction with the-f i | e flag
to write a SQL script that can be used to recreate the current schema on afresh database.

» dr opDB: Generate SQL to drop the current database. Like cr eat eDB, this action can be used with the-fi | e flagto script
adatabase drop rather than performit.

* i nport : Import the given XML schema definition into the current schema factory. Does nothing if the factory does not store
arecord of the schema.

» export : Export the current schema factory's stored schema definition to XML. May produce an empty file if the factory does
not store arecord of the schema.

» del et eTabl eCont ent s: Execute SQL to delete all rows from all tables that OpenJPA knows about.

The schema tool manipulates tables, columns, indexes, constraints, and sequences. It cannot create or drop the database
schema objects in which the tables reside, however. If your XML documents refer to named database schemas, those
schemas must exist.

We present some examples of schematool usage below.

224

JDBC

Example 4.17. Schema Creation

Add the necessary schema components to the database to match the given XML document, but don't drop any data:

java org. apache. openj pa. j dbc. schema. SchemaTool target Schema. xn

Example 4.18. SQL Scripting

Repeat the same action as the first example, but thistime don't change the database. Instead, write any planned changesto a SQL
script:

java org. apache. openj pa. j dbc. schema. SchemaTool -f script.sql targetSchema. xn

Write a SQL script that will re-create the current database:

java org. apache. openj pa. j dbc. schema. SchemaTool -a createDB -f script.sq

Example 4.19. Table Cleanup

Refresh the schema and delete all contents of al tables that OpenJPA knows about:

java org. apache. openj pa. j dbc. schema. SchemaTool -a refresh, del et eTabl eCont ent s

Example 4.20. Schema Drop

Drop the current database:

java org. apache. openj pa. j dbc. schema. SchemaTool -a dropDB

Example 4.21. Schema Reflection

225

JDBC

Write an XML representation of the current schemato fileschema. xmi

java org. apache. openj pa. j dbc. schema. SchemaTool -a reflect -f schema. xm

4.14. XML Schema Format

The schema tool and schema factories all use the same XML format to represent database schema. The Document Type Defini-
tion (DTD) for schema information is presented below, followed by examples of schema definitionsin XML.

<! ELEMENT schemas (schemm) +>
<! ELEMENT schema (tabl e| sequence) +>
<! ATTLI ST schema name CDATA #| MPLI ED>

<! ELEMENT sequence EMPTY>

<! ATTLI ST sequence name CDATA #REQUI RED>

<! ATTLI ST sequence initial-val ue CDATA #| MPLI ED>
<! ATTLI ST sequence increnment CDATA #| MPLI ED>

<! ATTLI ST sequence al |l ocate CDATA #| MPLI ED>

<! ELEMENT tabl e (col um|i ndex| pk| f k| uni que) +>
<! ATTLI ST tabl e name CDATA #REQUI RED>

<! ELEMENT col um EMPTY>
<I ATTLI ST col umm nane CDATA #REQUI RED>
<! ATTLI ST columm type (array | bigint | binary | bit | blob | char | clob

| date | decimal | distinct | double | float | integer | java_object

| longvarbinary | longvarchar | null | nuneric | other | real | ref

| smallint | struct | tine | tinestanp | tinyint | varbinary | varchar)
#REQUI RED>

<! ATTLI ST colum not-null (true|false) "fal se">

<! ATTLI ST col um auto-assign (true|false) "false">
<I ATTLI ST col uim def aul t CDATA #| MPLI ED>

<! ATTLI ST col um si ze CDATA #| MPLI ED>

<! ATTLI ST col um deci nal - di gi ts CDATA #| MPLI ED>

<l-- the type-nanme attribute can be used when you want OpenJPA to -->
<!-- use a particular SQL type declaration when creating the -->
<l-- colum. It is up to you to ensure that this type is -->
<l-- conpatible with the JDBC type used in the type attribute. -->

<I ATTLI ST col umm type- name CDATA #| MPLI ED>

<l-- the 'colum' attribute of indexes, pks, and fks can be used -->
<l-- when the el ement has only one colum (or for foreign keys, -->
<l-- only one local colum); in these cases the on/join child -->
<!-- elenents can be onitted -->

<! ELEMENT i ndex (on)*>

<! ATTLI ST i ndex name CDATA #REQUI RED>

<! ATTLI ST i ndex col uimm CDATA #| MPLI ED>

<I ATTLI ST i ndex uni que (true|false) "fal se">

<l-- the 'logical' attribute of pks should be set to "true' if -->
<l-- the primary key does not actually exist in the database, -->
<I-- but the given colum should be used as a primary key for -->
<I-- O R purposes -->

<! ELEMENT pk (on)*>

<I ATTLI ST pk name CDATA #| MPLI ED>

<I ATTLI ST pk col uimm CDATA #| MPLI ED>

<! ATTLI ST pk |l ogical (true|false) "false">

<I'ELEMENT on EMPTY>
<! ATTLI ST on col utm CDATA #REQUI RED>

<l-- fks with a delete-action of 'none' are simlar to |ogical -->
<!-- pks; they do not actually exist in the database, but -->
<I-- represent a logical relation between tables (or their -->
<!-- correspondi ng Java cl asses) -->
<IELEMENT fk (join)*>

<I ATTLI ST fk name CDATA #| MPLI ED>

<I ATTLI ST fk deferred (true|false) "fal se">

<I' ATTLI ST fk to-tabl e CDATA #REQUI RED>

<! ATTLI ST fk col unm CDATA #| MPLI ED>

<I ATTLI ST fk del ete-action (cascade| defaul t|excepti on|none|null) "none">

<I ELEMENT |
<I ATTLI ST |
<I ATTLI ST |
<I ATTLI ST |

n to-col um CDATA #REQUI RED>
n val ue CDATA #l MPLI ED>

<!-- unique constraint -->

226

JDBC

<! ELEMENT uni que (on)*>

<! ATTLI ST uni que name CDATA #| MPL| ED>

<! ATTLI ST uni que col unmm CDATA #l MPLI ED>

<I ATTLI ST uni que deferred (true|false) "fal se">

Example 4.22. Basic Schema

A very basic schema definition.

<schemas>
<schema>

<sequence nanme="S_ARTS"/>

<t abl e name="ARTI CLE" >
<col utm nanme="TI TLE" type="varchar" size="255" not-null="true"/>
<col umm nane="AUTHOR_FNAME" type="varchar" size="28">
<col utm nanme="AUTHOR LNAME" type="varchar" size="28">
<col utm nanme=" CONTENT" type="cl ob">

</t abl e>
<t abl e nane=" AUTHOR' >
<col utm nane="FI RST_NAME" type="varchar" size="28" not-null="true">
<col utm nane="LAST_NAME" type="varchar" size="28" not-null="true">
</t abl e>
</ schema>

</ schemas>

Example 4.23. Full Schema

Expansion of the above schema with primary keys, constraints, and indexes, some of which span multiple columns.

<schemas>
<schema>
<sequence nanme="S_ARTS"/>
<t abl e nane="ARTI CLE" >
<col utm nanme="TI TLE" type="varchar" size="255" not-null="true"/>
<col um nane="AUTHOR_FNAME" type="varchar" size="28">
<col utm nanme="AUTHOR LNAME" type="varchar" size="28">
<col utmm nanme=" CONTENT" type="cl ob">
<pk col um="TI TLE"/ >
<fk to-tabl e="AUTHOR' del ete-acti on="exception">
<j oi n col um="AUTHOR_FNAME" t 0-col utmm="FI RST_NAME"/ >
/fk<j oi n col um="AUTHOR_LNAME" t o-col umm="LAST_NAME"/ >
< >
<i ndex nanme="ARTI CLE_AUTHOR" >
<on col um="AUTHOR_FNAME"/ >
<on col um="AUTHOR_LNAME"/ >

</ i ndex>

</tabl e>

<t abl e name=" AUTHOR'>
<col utm nane="FI RST_NAME" type="varchar" size="28" not-null="true">
<C(l2| um nane="LAST_NAME" type="varchar" size="28" not-null="true">
<p >

<on col um="FI RST_NAME"/ >
<on col um="LAST_NAME"/ >
</ pk>
</tabl e>
</ schema>
</ schemas>

227

Chapter 5. Persistent Classes

5.1.

Persistent class basics are covered in Chapter 4, Entity [15] of the JPA Overview. This chapter details the persistent class fea-
tures OpenJPA offers beyond the core JPA specification.

Persistent Class List

5.2.

Unlike many ORM products, OpenJPA does not need to know about all of your persistent classes at startup. OpenJPA discovers
new persistent classes automatically as they are loaded into the JVM; in fact you can introduce new persistent classes into run-
ning applications under OpenJPA. However, there are certain situations in which providing OpenJPA with a persistent classlist is
helpful:

» OpenJPA must be able to match entity namesin JPQL queries to persistent classes. OpenJPA automatically knows the entity
names of any persistent classes already |oaded into the VM. To match entity names to classes that have not been loaded,
however, you must supply a persistent classlist.

* When OpenJPA manipulates classes in a persistent inheritance hierarchy, OpenJPA must be aware of al the classesin the hier-
archy. If some of the classes have not been loaded into the VM yet, OpenJPA may not know about them, and queries may re-
turn incorrect results.

« If you configure OpenJPA to create the needed database schema on startup (see Section 7.1.3, “ Runtime Forward Mapping
” [259] OpenJPA must know all of your persistent classes up-front.
When any of these conditions are afactor in your JPA application, usethecl ass, mappi ng-fil e,andj ar-fil e elements

of JPA's standard XML format to list your persistent classes. See Section 6.1, “ persistencexml ” [60] for details.

Alternately, you can tell OpenJPA to search through your classpath for persistent types. Thisis described in more detail in Sec-
tion 6.1, Metadata Factory " [250]

Note

Listing persistent classes (or their metadata or jar files) is an all-or-nothing endeavor. If your persistent classlist is non-
empty, OpenJPA will assume that any unlisted class is not persistent.

Enhancement

In order to provide optimal runtime performance, flexible lazy loading, and efficient, immediate dirty tracking, OpenJPA can use
an enhancer . An enhancer isatool that automatically adds code to your persistent classes after you have written them. The en-
hancer post-processes the bytecode generated by your Java compiler, adding the necessary fields and methods to implement the
required persistence features. This bytecode modification perfectly preserves the line numbersin stack traces and is compatible
with Java debuggers. In fact, the only change to debugging is that the persistent setter and getter methods of entity classes using
property access will be prefixed with pc in stack traces and step-throughs. For example, if your entity hasaget | d method for
persistent property i d, and that method throws an exception, the stack trace will report the exception from method pcget | d.
The line numbers, however, will correctly correspond to the get | d method in your source file.

javac/ Magazine.class | »{ enhancer

jikes
Mf—

Magazine.java

228

5.2.1.

Persistent Classes

The diagram above illustrates the compilation of a persistent class.

Y ou can add the OpenJPA enhancer to your build process, or use Java 1.5's instrumentation features to transparently enhance per-
sistent classes when they are loaded into the VM. The following sections describe each option.

Enhancing at Build Time

The enhancer can be invoked at build time viaits Javaclass, or g. apache. openj pa. enhance. PCEnhancer .

Y ou can aso enhance via Ant; see Section 13.1.2, “ Enhancer Ant Task ” [325]

Example 5.1. Using the OpenJPA Enhancer

java org. apache. openj pa. enhance. PCEnhancer Magazi ne.java

The enhancer accepts the standard set of command-line arguments defined by the configuration framework (see Section 2.3, “
Command Line Configuration ” [175]), along with the following flags:

 -directory/-d <output directory>: Pathtotheoutput directory. If the directory does not match the enhanced
class package, the package structure will be created beneath the directory. By default, the enhancer overwrites the original
. cl ass file.

« -enforcePropertyRestrictions/-epr <true/t | false/f>:Whethertothrow an exception when it appears
that a property access entity is not obeying the restrictions placed on property access. Defaults to false.

» -addDefaul t Constructor/-adc <true/t | fal se/f>:Thespecrequiresthat al persistent classes define a no-
arg constructor. This flag tells the enhancer whether to add a protected no-arg constructor to any persistent classes that don't
aready have one. Defaultstot r ue.

 -tnpC assLoader/-tcl <true/t | false/f>:Whethertoload persistent classes with atemporary class loader.

This allows other code to then load the enhanced version of the class within the same JVM. Defaultsto t r ue. Try setting this
flagtof al se asadebugging step if you run into class loading problems when running the enhancer.

Each additional argument to the enhancer must be one of the following:

» Thefull name of aclass.

» The javafilefor aclass.

* The. cl ass fileof aclass.

If you do not supply any arguments to the enhancer, it will run on the classesin your persistent class list (see Section 5.1, “ Per-
sistent ClassList " [228]).

Y ou can run the enhancer over classes that have already been enhanced, in which case it will not further modify the class. You
can also run it over classes that are not persistence-capable, in which case it will treat the class as persistence-aware. Persistence-

229

5.2.2.

Persistent Classes

aware classes can directly manipulate the persistent fields of persistence-capable classes.
Note that the enhancement process for subclasses introduces dependencies on the persistent parent class being enhanced. Thisis

normally not problematic; however, when running the enhancer multiple times over a subclass whose parent classis not yet en-
hanced, class loading errors can occur. In the event of aclass load error, simply re-compile and re-enhance the offending classes.

Enhancing JPA Entities on Deployment

5.2.3.

The Java EE 5 specification includes hooks to automatically enhance JPA entities when they are deployed into a container. Thus,
if you are using a Java EE 5-compliant application server, OpenJPA will enhance your entities automatically at runtime. Note that
if you prefer build-time enhancement, OpenJPA's runtime enhancer will correctly recognize and skip pre-enhanced classes.

If your application server does not support the Java EE 5 enhancement hooks, consider using the build-time enhancement de-
scribed above, or the more general runtime enhancement described in the next section.

Enhancing at Runtime

OpenJPA includes a Java agent for automatically enhancing persistent classes as they are loaded into the JVM. Java agents are
classes that are invoked prior to your application's mai n method. OpenJPA's agent uses VM hooks to intercept all class loading
to enhance classes that have persistence metadata before the VM |oads them.

Searching for metadata for every class loaded by the VM can slow application initialization. One way to speed things up isto
take advantage of the optional persistent classlist described in Section 5.1, “ Persistent ClassList ” [228]. If you declare a per-
sistent classlist, OpenJPA will only search for metadata for classesin that list.

To employ the OpenJPA agent, invokej ava with the - j avaagent set to the path to your OpenJPA jar file.

Example5.2. Using the OpenJPA Agent for Runtime Enhancement

java -javaagent:/home/ dev/ openj pa/li b/ openjpa.jar comxyz. Main

Y ou can pass settings to the agent using OpenJPA's plugin syntax (see Section 2.4, “ Plugin Configuration ” [177]). The agent
accepts the long form of any of the standard configuration options (Section 2.3, “ Command Line Configuration ” [175]). It
also accepts the following options, the first three of which correspond exactly to to the same-named options of the enhancer tool
described in Section 5.2.1, “ Enhancing at Build Time” [229]:

» addDef aul t Const ruct or

» enforcePropertyRestrictions

» scanDevPat h: Boolean indicating whether to scan the classpath for persistent types if none have been configured. If you do
not specify a persistent types list and do not set this option to true, OpenJPA will check whether each class |oaded into the

JVM is persistent, and enhance it accordingly. This may slow down class load times significantly.

» cl assLoadEnhancenent : Boolean controlling whether OpenJPA load-time class enhancement should be available in this
JVM execution. Default: t r ue

* runti nmeRedefi ni ti on: Boolean controlling whether OpenJPA class redefinition should be available in this VM execu-
tion. Default: t r ue

230

Persistent Classes

Example 5.3. Passing Optionsto the OpenJPA Agent

java -javaagent:/home/ dev/ openj pa/li b/ openj pa.j ar =addDef aul t Const r uct or =f al se com xyz. Mai n

5.2.4.

Omitting the OpenJPA enhancer

OpenJPA does not require that the enhancer be run. If you do not run the enhancer, OpenJPA will fall back to one of several pos-
sible aternatives for state tracking, depending on the execution environment.

» Deploy-time enhancement: if you are running your application inside a Java EE 5 container, or another environment that sup-
ports the JPA container contract, then OpenJPA will automatically perform class transformation at deploy time.

» Java 6 classretransformation: if you are running your application in a Java 6 environment, OpenJPA will attempt to dynamic-
aly register aCl assTr ansf or ner that will redefine your persistent classes on the fly to track accessto persistent data. Ad-
ditionally, OpenJPA will create a subclass for each of your persistent classes. When you execute a query or traverse arelation,
OpenJPA will return an instance of the subclass. This means that thei nst anceof operator will work as expected, but
0. get A ass() will return the subclass instead of the class that you wrote.

Y ou do not need to do anything at all to get this behavior. OpenJPA will automatically detect whether or not the execution en-
vironment is capable of Java 6 class retransformation.

» Java5 classredefinition: if you are running your application in a Java 5 environment, and you specify the OpenJPA javaagent,
OpenJPA will use Java 5 class redefinition to redefine any persistent classes that are not enhanced by the OpenJPA javaagent.
Aside from the requirement that you specify ajavaagent on the command line, this behavior is exactly the same as the Java 6
class retransformation behavior. Of course, since the OpenJPA javaagent performs enhancement by default, thiswill only be
available if you set the cl assLoadEnhancenent javaagent flagtof al se, or on any classes that are skipped by the Open-
JPA runtime enhancement process for some reason.

* Runtime Unenhanced Classes; AKA statte comparison and subclassing. If you are running in a Java 5 environment without a
javaagent, or in a Java 6 environment that does not support class retransformation, OpenJPA will till create subclasses as out-
lined above. However, in some cases, OpenJPA may not be able to receive notifications when you read or write persistent data.

Runtime Unenhanced Classes has some known limitations which are discussed below and documented in J RA issues on
the OpenJPA website. Support for this method of automatic enhancement may be enabled or disabled via the Sec-
tion 2.5.57, “ openjpa.RuntimeUnenhancedClasses’ [191]option.

If you are using property access for your persistent data, then OpenJPA will be able to track all accesses for instances that you
load from the database, but not for instances that you create. Thisis because OpenJPA will create new instances of its dynam-
ically-generated subclass when it loads data from the database. The dynamically-generated subclass has code in the setters and
getters that notify OpenJPA about persistent data access. This means that new instances that you create will be subject to state-
comparison checks (see discussion below) to compute which fields to write to the database, and that OpenJPA will ignore re-
queststo evict persistent data from such instances. In practice, thisis not a particularly bad limitation, since OpenJPA aready
knows that it must insert al field values for new instances. So, thisisonly really an issueif you flush changes to the database
while inserting new records; after such aflush, OpenJPA will need to hold potentially-unneeded hard references to the new-
flushed instances.

If you are using field access for your persistent data, then OpenJPA will not be able to track accesses for any instances, includ-
ing ones that you load from the database. So, OpenJPA will perform state-comparison checks to determine which fields are

231

Persistent Classes

dirty. These state comparison checks are costly in two ways. Firgt, there is a performance penalty at flush / commit time, since
OpenJPA must walk through every field of every instance to determine which fields of which records are dirty. Second, there
isamemory penalty, since OpenJPA must hold hard referencesto all instances that were |oaded at any time in a given transac-
tion, and since OpenJPA must keep a copy of al theinitial values of the loaded data for later comparison. Additionally, Open-
JPA will ignore requests to evict persistent state for these types of instances. Finally, the default lazy |oading configuration will
be ignored for single-valued fields (one-to-one, many-to-one, and any other non-collection or non-map field that has alazy
loading configuration). If you use fetch groups or programmatically configure your fetch plan, OpenJPA will obey these direct-
ives, but will be unable to lazily load any data that you exclude from loading. As aresult of these limitations, it is not recom-
mended that you use field access if you are not either running the enhancer or using OpenJPA with ajavaagent or in a Java 6
environment.

5.3. Managed Interfaces

OpenJPA's managed interface feature allows you to define your object model entirely in terms of interfaces, instead of concrete
classes. To use this feature, you must annotate your managed interfaces with the Managed| nt er f ace annotation, and use the
OpenJPAENt i t yManager . cr eat el nst ance(Cl ass) method to create new records. Note that cr eat el nst ance()
returns unmanaged instances; you must passthemto Ent i t yManager . per si st () to storethem in the database.

@mnagedl| nterface
public interface Personlface {
d @=ener at edVal ue
int getld();
void setld(int id);

Il inplicitly persistent per JPA property rules
String getNane();
voi d set Nane(String nane);

OpenJPAENt i t yManager em = .

Per sonl f ace person = em cr eat eI nst ance(Personl f ace. cl ass);
person. set Name(" Honer Si npson");

em get Transaction(). begin();

em persi st (person);

em get Transaction().commit();

5.4.

Object Identity

5.4.1.

OpenJPA makes several enhancements to JPA's standard entity identity.

Datastore Identity

The JPA specification requires you to declare one or moreidentity fieldsin your persistent classes. OpenJPA fully supports this
form of object identity, called application identity. OpenJPA, however, also supports datastore identity. In datastore identity, you
do not declare any primary key fields. OpenJPA manages the identity of your persistent objects for you through a surrogate key in
the database.

Y ou can control how your JPA datastore identity value is generated through OpenJPA's

or g. apache. openj pa. per si st ence. Dat aSt or el d class annotation. This annotation has st r at egy and gener at -
or propertiesthat mirror the same-named properties on the standard j avax. per si st ence. Gener at edVal ue annotation
described in Section 5.2.2, “ 1d " [31] of the JPA Overview.

232

../javadoc/org/apache/openjpa/persistence/DataStoreId.html

Persistent Classes

To retrieve the identity value of a datastore identity entity, use the OpenJPAENt i t yManager . get Qbj ect | d(Obj ect
entity) method. See Section 9.2.2, “ OpenJPAEnNtityManager " [28%or more information on the OpenJPAENt i t yMan-
ager.

Example 5.4. JPA Datastore | dentity Metadata

i nport org.apache. openj pa. per si st ence. *;

@ntity
@at aStorel d
public class Lineltem{

. no @d fields declared ...
}

5.4.2.

Internally, OpenJPA usesthe public or g. apache. openj pa. uti | . | d classfor datastore identity objects. When writing
OpenJPA plugins, you can manipulate datastore identity objects by casting them to this class. Y ou can aso create your own | d
instances and pass them to any internal OpenJPA method that expects an identity object.

In JPA, you will never see | d instances directly. Instead, calling OpenJPAENt i t yManager . get Obj ect | d on adatastore

identity object will return the Long surrogate primary key value for that object. Y ou can then usethisvalueincalstoEnt it y-
Manager . f i nd for subsequent lookups of the same record.

Entities as ldentity Fields

The JPA specification limits identity fields to simple types. OpenJPA, however, also allows Many ToOne and OneToOne rela
tionsto be identity fields. To identify arelation field as an identity field, simply annotate it with both the @/any ToOne or
@neToOne relation annotation and the @ d identity annotation.

When finding an entity identified by arelation, passthe id of therelationto the Ent i t yManager . f i nd method:

Example 5.5. Finding an Entity with an Entity | dentity Field

public Delivery createDelivery(Order order) {
Delivery delivery = new Delivery();
del i very.setld(order);
delivery.setDelivered(new Date());
return delivery;

public Delivery findDelivery(EntityManager em Order order) {
/'l use the identity of the related Instance
return emfind(Delivery.class, order.getld());

When your entity has multiple identity fields, at least one of which is arelation to another entity, you must use an identity class
(see Section 4.2.1, “ Identity Class” [19] in the JPA Overview). Y ou cannot use an embedded identity object. Identity class
fields corresponding to entity identity fields should be of the same type as the related entity's identity.

Example 5.6. 1d Classfor Entity | dentity Fields

233

../javadoc/org/apache/openjpa/util/Id.html

Persistent Classes

@ntity
public class Order {

@d
private long id;

}
@ntity
@ dd ass(Linelten d. cl ass)
public class Lineltem {
@d
private int index;

@d
@manyToOne
private Order order;

}
public class Lineltemd {

public int index;
public long order; // same type as order's identity

5.4.3.

In the example above, if Or der had used an identity class Or der | d in place of asimplel ong value, then the
Li nel t em d. or der field would have been of type Or der | d.

Application ldentity Tool

If you choose to use application identity, you may want to take advantage of OpenJPA's application identity tool. The application
identity tool generates Java code implementing the identity class for any persistent type using application identity. The code satis-
fies all the requirements the specification places on identity classes. Y ou can useit as-is, or simply use it as a starting point, edit-
ing it to meet your needs.

Before you can run the application identity tool on a persistent class, the class must be compiled and must have complete
metadata. All primary key fields must be marked as such in the metadata.

In JPA metadata, do not attempt to specify the @ dCl ass annotation unless you are using the application identity tool to over-
write an existing identity class. Attempting to set the value of the @ dC ass to anon-existent class will prevent your persistent
class from compiling. Instead, use the - nane or - suf f i x options described below to tell OpenJPA what name to give your
generated identity class. Once the application identity tool has generated the class code, you can set the @ dCl ass annotation.

The application identity tool can be invoked viaits Javaclass, or g. apache. openj pa. enhance. Appl i cati onl dTool .

Section 13.1.3, “ Application Identity Tool Ant Task ” [325flescribes the application identity tool's Ant task.

Example 5.7. Using the Application | dentity Tool

java org. apache. openj pa. enhance. Appl i cati onl dTool -s |d Magazine.java

234

../javadoc/org/apache/openjpa/enhance/ApplicationIdTool

5.4.4.

Persistent Classes

The application identity tool accepts the standard set of command-line arguments defined by the configuration framework (see
Section 2.3, “ Command Line Configuration ” [175]), including code formatting flags described in Section 2.3.1, “ Code
Formatting” [176]. It also accepts the following arguments:

 -directory/-d <output directory>:Pathto the output directory. If the directory does not match the generated oid
class package, the package structure will be created beneath the directory. If not specified, the tool will first try to find the dir-
ectory of the. j ava filefor the persistence-capable class, and failing that will use the current directory.

e -ignoreErrors/-i <true/t | false/f>:Iffal se ,anexceptionwill bethrown if thetool isrun on any class
that does not use application identity, or is not the base class in the inheritance hierarchy (recall that subclasses never define the
application identity class; they inherit it from their persistent superclass).

» -token/ -t <token>: Thetoken to useto separate stringified primary key valuesin the string form of the object id. This
optionisonly used if you have multiple primary key fields. It defaultsto "::".

 -nane/-n <id class nane>: The name of theidentity class to generate. If this option is specified, you must run the
tool on exactly one class. If the class metadata already names an object id class, this option isignored. If the nameis not fully
qualified, the persistent class package is prepended to form the qualified name.

o« -suffix/-s <id class suffix>:A string to suffix each persistent class name with to form the identity class name.
Thisoption is overridden by - nane or by any object id class specified in metadata.

Each additional argument to the tool must be one of the following:

» The full name of apersistent class.
e The .javafilefor apersistent class.

» The. cl ass fileof apersistent class.

If you do not supply any arguments to the tool, it will act on the classesin your persistent classes list (see Section 5.1, “ Persist-
ent ClassList " [228]).

Autoassign / Identity Strategy Caveats

5.5.

Section 5.2.3, “ Generated Value” [31] explains how to use JPA's | DENTI TY generation type to automatically assign field val-
ues. However, here are some additional caveats you should be aware of when using | DENTI TY generation:

1. Your database must support auto-increment / identity columns, or some equivalent (see Section 4.4.3, “ OracleDictionary
Properties” [215] for how to configure a combination of triggers and sequences to fake auto-increment support in Oracle).

2. Auto-increment / identity columns must be an integer or long integer type.

3. Databases support auto-increment / identity columnsto varying degrees. Some do not support them at all. Others only alow a

single such column per table, and require that it be the primary key column. More lenient databases may allow non-primary
key auto-increment columns, and may allow more than one per table. See your database documentation for details.

Managed Inverses

Bidirectiona relations are an essentia part of data modeling. Chapter 12, Mapping Metadata [117] in the JPA Overview ex-
plains how to use the mappedBy annotation attribute to form bidirectional relations that also share datastore storage in JPA.

235

Persistent Classes

OpenJPA also alows you to define purely logical bidirectional relations. The
or g. apache. openj pa. persi stence. | nver seLogi cal annotation namesalogical inversein JPA metadata.

Example 5.8. Specifying Logical | nverses

Magazi ne. cover Phot o and Phot ogr aph. nmag are each mapped to different foreign keysin their respective tables, but
form alogical bidirectional relation. Only one of the fields needs to declare the other asitslogica inverse, though it is not an er-
ror to set the logical inverse of both fields.

i mport org. apache. openj pa. per si stence. *;

@ntity
public class Magazine {

@neToOne
private Phot ograph cover Phot o;

}

@ntity
public class Photograph {

@neToOne
@ nver seLogi cal ("cover Phot 0")
private Magazi ne nmag;

Java does not provide any native facilities to ensure that both sides of a bidirectional relation remain consistent. Whenever you set
one side of the relation, you must manually set the other side as well.

By default, OpenJPA behaves the same way. OpenJPA does not automatically propagate changes from one field in bidirectional
relation to the other field. Thisisin keeping with the philosophy of transparency, and also provides higher performance, as Open-
JPA does not need to analyze your object graph to correct inconsistent relations.

If convenience is more important to you than strict transparency, however, you can enable inverse relation management in Open-
JPA. Setthe openj pa. | nver seManager plugin property tot r ue for standard management. Under this setting, OpenJPA
detects changes to either side of a bidirectional relation (logical or physical), and automatically sets the other side appropriately
on flush.

Example 5.9. Enabling Managed I nverses

<property nanme="openj pa. | nver seManager" val ue="true"/>

The inverse manager has options to log awarning or throw an exception when it detects an inconsistent bidirectional relation,
rather than correcting it. To use these modes, set the manager's Act i on property to war n or except i on, respectively.

By default, OpenJPA excludes largeresult set fields from management. Y ou can force large result set fields to be included by
setting the ManageL RS plugin property tot r ue.

236

../javadoc/org/apache/openjpa/persistence/InverseLogical.html

Persistent Classes

Example 5.10. Log Inconsistencies

<property name="openj pa.|nverseManager" val ue="true(Acti on=warn)"/>

5.6.

Persistent Fields

5.6.1.

OpenJPA enhances the specification's support for persistent fields in many ways. This section documents aspects of OpenJPA's
persistent field handling that may affect the way you design your persistent classes.

Restoring State

5.6.2.

While the JPA specification says that you should not use rolled back objects, such objects are perfectly valid in OpenJPA. You
can control whether the objects managed stateis rolled back to its pre-transaction values with the openj pa. Rest or eSt at e
configuration property. none does not roll back state (the object becomes hollow, and will re-load its state the next timeit is ac-
cessed), i mut abl e restoresimmutable values (primitives, primitive wrappers, strings) and clears mutable values so that they
are reloaded on next access, and al | restores all managed values to their pre-transaction state.

Typing and Ordering

When loading datainto afield, OpenJPA examines the value you assign the field in your declaration code or in your no-args con-
structor. If the field value's type is more specific than the field's declared type, OpenJPA uses the value type to hold the loaded
data. OpenJPA also uses the comparator you've initialized the field with, if any. Therefore, you can use custom comparators on
your persistent field simply by setting up the comparator and using it in your field'sinitial value.

Example5.11. Using Initial Field Values

Though the annotations are left out for simplicity, assume enpl oyeesBySal and depart nent s are persistent fieldsin the
class below.

public class Conpany {

/1 OpenJPA will detect the custom conparator in the initial field value
/1 and use it whenever |oading data fromthe database into this field
private Collection enpl oyeesBySal = new TreeSet (new Sal aryConparator());
private Map departnents;

public Conpany {
/1 or we can initialize fields in our no-args constructor; even though
/1 this field is declared type Map, OpenJPA will detect that it's
/] actually a TreeMap and use natural ordering for |oaded data
departnments = new TreeMap();

/1 rest of class definition...

5.6.3.

Calendar Fields and TimeZones

OpenJPA's support for thej ava. uti | . Cal endar typewill store only the Dat e part of the field, not the Ti meZone associ-

237

Persistent Classes

ated with the field. When loading the date into the Cal endar field, OpenJPA will usethe Ti neZone that was used to initialize
thefield.

OpendPA will automatically track changes made via modification methods in fields of type Cal endar , with one excep-
tion: when using Javaversion 1.3, the set () method cannot be overridden, so when altering the calendar using that
method, the field must be explicitly marked as dirty. This limitation does not apply when running with Java version 1.4
and higer.

5.6.4. Proxies

At runtime, the values of all mutable second class object fields in persistent and transactional objects are replaced with imple-
mentation-specific proxies. On modification, these proxies notify their owning instance that they have been changed, so that the
appropriate updates can be made on the datastore.

5.6.4.1. Smart Proxies

Most proxies only track whether or not they have been modified. Smart proxies for collection and map fields, however, keep are-
cord of which elements have been added, removed, and changed. This record enables the OpenJPA runtime to make more effi-
cient database updates on these fields.

When designing your persistent classes, keep in mind that you can optimize for OpenJPA smart proxies by using fields of type
java.util.Set ,java.util.TreeSet,andjava. util.HashSet for your collectionswhenever possible. Smart
proxies for these types are more efficient than proxiesfor Li st s. Y ou can also design your own smart proxies to further optimize
OpenJPA for your usage patterns. See the section on custom proxies for details.

5.6.4.2. Large Result Set Proxies

Under standard ORM behavior, traversing a persistent collection or map field brings the entire contents of that field into memory.
Some persistent fields, however, might represent huge amounts of data, to the point that attempting to fully instantiate them can
overwhelm the VM or seriously degrade performance.

OpenJPA uses specia proxy types to represent these "large result set" fields. OpenJPA's large result set proxies do not cache any
datain memory. Instead, each operation on the proxy offloads the work to the database and returns the proper result. For ex-
ample, the cont ai ns method of alarge result set collection will perform a SELECT COUNT(*) query with the proper WHERE
conditions to find out if the given element exists in the database's record of the collection. Similarly, each time you obtain an iter-
ator OpenJPA performs the proper query using the current large result set settings, as discussed in the JDBC chapter. Asyou in-
vokel t er at or . next , OpenJPA instantiates the result objects on-demand.

Y ou can free the resources used by alarge result set iterator by passing it to the static OpenJPAPer si st ence. cl ose meth-
od.

Example 5.12. Using a Large Result Set I terator

i mport org. apache. openj pa. persi stence. *;

Col | ection enpl oyees = conpany. get Enpl oyees(); // enployees is a |Irs collection
Iterator itr = enployees.iterator()
while (itr.hasNext())
process((Enpl oyee) itr.next());
OpenJPAPer si stence. cl ose(itr);

238

Persistent Classes

Y ou can aso add and remove from large result set proxies, just as with standard fields. OpenJPA keeps arecord of all changesto
the elements of the proxy, which it uses to make sure the proper results are always returned from collection and map methods,
and to update the field's database record on commit.

In order to use large result set proxiesin JPA, add the or g. apache. openj pa. per si st ence. LRS annotation to the per-
sistent field.

The following restrictions apply to large result set fields:

» Thefield must be declared aseither aj ava. uti | . Col | ecti on orjava. util. Map. It cannot be declared as any other
type, including any sub-interface of collection or map, or any concrete collection or map class.

» Thefield cannot have an externalizer (see Section 5.6.5, “ Externalization ” [240)]

» Becausethey rely on their owning object for context, large result set proxies cannot be transferred from one persistent field to
another. The following code would result in an error on commit;

Col | ecti on enpl oyees = conpany. get Enpl oyees() // enployees is a Irs collection
conpany. set Enpl oyees(nul) ;
anot her Conpany. set Enpl oyees(enpl oyees) ;

Example 5.13. Marking a Large Result Set Field

i nport org. apache. openj pa. per si st ence. *;

@ntity
public class Conpany {

@manyToMany
@RS private Collecti on<Enpl oyee> enpl oyees;

5.6.4.3. Custom Proxies

OpenJPA manages proxies through the or g. apache. openj pa. uti | . ProxyManager interface. OpenJPA includes a de-
fault proxy manager, the or g. apache. openj pa. uti | . ProxyManager | npl (with aplugin aias name of def aul t),
that will meet the needs of most users. The default proxy manager understands the following configuration properties:

» TrackChanges: Whether to use smart proxies. Defaultstot r ue.
* Assert Al | owedType: Whether to immediately throw an exception if you attempt to add an element to a collection or map

that is not assignable to the element type declared in metadata. Defaultsto f al se.

The default proxy manager can proxy the standard methods of any Col | ect i on, Li st, Map, Queue, Dat e, or Cal endar
class, including custom implementations. It can also proxy custom classes whose accessor and mutator methods follow JavaBean
naming conventions. Y our custom types must, however, meet the following criteria

239

../javadoc/org/apache/openjpa/persistence/LRS.html
../javadoc/org/apache/openjpa/util/ProxyManager.html

Persistent Classes

» Custom container types must have a public no-arg constructor or a public constructor that takes asingle Conpar at or para
meter.

» Custom date types must have a public no-arg constructor or a public constructor that takes asingle| ong parameter represent-
ing the current time.

 Other custom types must have a public no-arg constructor or a public copy constructor. If a custom types does not have a copy
constructor, it must be possible to fully copy an instance A by creating a new instance B and calling each of B's setters with the
value from the corresponding getter on A.

If you have custom classes that must be proxied and do not meet these requirements, OpenJPA allows you to define your own
proxy classes and your own proxy manager. Seetheopenj pa. uti | package Javadoc for details on the interfaces involved,
and the utility classes OpenJPA providesto assist you.

Y ou can plug your custom proxy manager into the OpenJPA runtime through the openj pa. Pr oxyManager configuration
property.

Example 5.14. Configuring the Proxy Manager

<property name="openj pa. ProxyManager" val ue="TrackChanges=fal se"/>

5.6.5.

Externalization

OpenJPA offers the ability to write custom field mappingsin order to have complete control over the mechanism with which
fields are stored, queried, and loaded from the datastore. Often, however, a custom mapping is overkill. Thereis often asimple
transformation from a Javafield value to its database representation. Thus, OpenJPA provides the externalization service. Extern-
alization allows you to specify methods that will externalize afield value to its database equivalent on store and then rebuild the
value from its externalized form on load.

Fields of embeddable classes used for @nmbeddedl d valuesin JPA cannot have externalizers.

The OpenJPA or g. apache. openj pa. per si st ence. Ext er nal i zer annotation sets the name of a method that will be
invoked to convert the field into its external form for database storage. Y ou can specify either the name of a non-static method,
which will be invoked on the field value, or a static method, which will be invoked with the field value as a parameter. Each
method can aso take an optional St or eCont ext parameter for access to a persistence context. The return value of the method
isthe field's external form. By default, OpenJPA assumes that all named methods belong to the field value's class (or its super-
classes). You can, however, specify static methods of other classes using the format <cl ass- nane>. <net hod- name>.

Given afield of type Cust onTType that externalizes to a string, the table below demonstrates several possible externalizer meth-
ods and their corresponding metadata extensions.

Table5.1. Externalizer Options

Method Extension
public String CustonType.toString() @xternalizer("toString")
public String Custom @xternalizer("toString")

240

../javadoc/
../javadoc/org/apache/openjpa/persistence/Externalizer.html
../javadoc/org/apache/openjpa/kernel/StoreContext.html

Persistent Classes

Method Extension

Type.toString(StoreContext ctx)

public static String AnyCG @xternalizer("Anyd ass.toString")
| ass.toString(Custonilype ct)

public static String AnyCG @xternalizer("Anyd ass.toString")
| ass.toString(Custonflype ct, StoreContext

ct x)

The OpenJPA or g. apache. openj pa. per si st ence. Fact or y annotation contains the name of a method that will be in-
voked to instantiate the field from the external form stored in the database. Specify a static method name. The method will be in-
voked with the externalized value and must return an instance of the field type. The method can also take an optional St or e-
Cont ext parameter for access to a persistence context. If afactory is not specified, OpenJPA will use the constructor of the
field type that takes a single argument of the external type, or will throw an exception if no constructor with that signature exists.

Given afield of type Cust onType that externalizes to a string, the table below demonstrates several possible factory methods
and their corresponding metadata extensions.

Table5.2. Factory Options

Method Extension

public CustonType(String str) none

public static Custonilype Custom @-actory("frontstring")
Type.fronString(String str)

public static Custonflype Custom @-actory("fronttring")
Type.fronString(String str, StoreContext

ctx)

public static Custonilype AnyC @-actory("Anyd ass. fronString")
lass.fronBtring(String str)

public static Custonilype AnyC @-actory("Anyd ass. fronString")
lass.fronBtring(String str, StoreContext

ct x)

If your externalized field is not a standard persistent type, you must explicitly mark it persistent. In OpenJPA, you can force a
persistent field by annotating it with or g. apache. openj pa. per si st ence. Per si st ent annotation.

If your custom field type is mutable and is not a standard collection, map, or date class, OpenJPA will not be able to de-
tect changesto the field. Y ou must mark the field dirty manually, or create a custom field proxy. See Open-

JPAEnt i t yManager . di rty for how to mark afield dirty manually in JPA. See Section 5.6.4, “ Proxies” [238] for
adiscussion of proxies.

Y ou can externalize afield to virtually any value that is supported by OpenJPA's field mappings (embedded relations are the ex-
ception; you must declare your field to be a persistence-capable type in order to embed it). This means that a field can externalize
to something as ssimple as a primitive, something as complex as a collection or map of entities, or anything in between. If you do
choose to externalize to a collection or map, OpenJPA recognizes a family of metadata extensions for specying type information
for the externalized form of your fields - see Section 6.4.2.6, “ Type” [255]f the external form of your field is an entity object or
contains entities, OpenJPA will correctly include the objects in its persistence-by-reachability algorithms and its del ete-dependent
algorithms.

The example below demonstrates afew forms of externalization.

241

../javadoc/org/apache/openjpa/persistence/Factory.html
../javadoc/org/apache/openjpa/kernel/StoreContext.html
../javadoc/org/apache/openjpa/kernel/StoreContext.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html

Persistent Classes

Example 5.15. Using Externalization

i mport org. apache. openj pa. persi stence. *;

@ntity
public class Magazine {

/] use O ass.getNane and C ass.forNane to go to/from strings
@per si st ent

@Externalizer("get Nane")

@actory("forNane")

private C ass cls;

/'l use URL.getExternal Form for externalization. no factory;
/1 we can rely on the URL string constructor

@per si st ent

@xternal i zer ("t oExt ernal Forni')

private URL url;

/] use our custom nethods

@per si st ent

@Ext ernal i zer (" Magazi ne. aut hor sFr onCust onilype")
@ act ory("Magazi ne. aut hor sToCust onilype")

@l ement Type(Aut hor . cl ass)

private Custoniype customlype;

public static Collection authorsFronCustoniType(Custonilype custonilype) {
logic to pack customtype into a list of authors ...
}

public static CustonType authorsToCustonflype (Collection authors) {
logic to create customtype froma collection of authors ...
}

Y ou can query externalized fields using parameters. Passin avalue of the field type when executing the query. OpenJPA will ex-
ternalize the parameter using the externalizer method named in your metadata, and compare the externalized parameter with the
value stored in the database. As a shortcut, OpenJPA also allows you to use parameters or literals of the field's externalized type
in queries, as demonstrated in the example below.

Currently, queries are limited to fields that externalize to a primitive, primitive wrapper, string, or date types, due to con-
straints on query syntax.

Example 5.16. Querying Externalization Fields

Assume the Magazi ne class has the same fields as in the previous example.

/'l you can query using paraneters

Query g = emcreateQuery("select mfrom Magazine mwhere murl = :u");
q.set Paranmeter ("u", new URL("http://wmv sol armetric.cont'));

List results = g.getResultList();

/1 or as a shortcut, you can use the externalized formdirectly
q = emcreateQuery("sel ect mfrom Magazine mwhere murl = "http://ww.sol armetric.com");
results = g.getResultList();

242

Persistent Classes

5.6.5.1. External Values

Externalization often takes simple constant values and transforms them to constant values of a different type. An example would
be storing abool ean fieldasachar , wheret r ue andf al se would be stored inthedatabaseas' T' and' F' respectively.

OpenJPA allows you to define these simple trandlations in metadata, so that the field behaves asin full-fledged exter nalization
without requiring externalizer and factory methods. External values supports translation of pre-defined simple types (primitives,
primitive wrappers, and Strings), to other pre-defined simple values.

Usethe OpenJPA or g. apache. openj pa. per si st ence. Ext er nal Val ues annotation to define external value transla-
tions. The values are defined in aformat similar to that of configuration plugins, except that the value pairs represent Java and
datastore values. To convert the Java boolean values of t r ue and f al se to the character values T and F, for example, you
would usethe extension value: t r ue=T, f al se=F.

If the type of the datastore value is different from the field'stype, usethe or g. apache. openj pa. per si st ence. Type an-
notation to define the datastore type.

Example 5.17. Using External Values

This example uses external value trandation to transform a string field to an integer in the database.

public class Magazine {

@Ext ernal Val ues({"SVALL=5", "MEDI UM=8", "LARCGE=10"})
@ype(int.class)
private String sizeWdth;

S.7.

Fetch Groups

5.7.1.

Fetch groups are sets of fields that |oad together. They can be used to to pool together associated fields in order to provide per-
formance improvements over standard data fetching. Specifying fetch groups allows for tuning of lazy loading and eager fetching
behavior.

The JPA Overview's Section 5.2.6.1, “ Fetch Type” [33] describes how to use JPA metadata annotations to control whether a

field isfetched eagerly or lazily. Fetch groups add a dynamic aspect to this standard ability. Asyou will see, OpenJPA's JPA ex-
tensions allow you can add and remove fetch groups at runtime to vary the sets of fields that are eagerly loaded.

Custom Fetch Groups

OpenJPA places any field that is eagerly loaded according to the JPA metadata rules into the built-in default fetch group. Asits
name implies, the default fetch group is active by default. Y ou may also define your own named fetch groups and activate or de-
activate them at runtime, as described later in this chapter. OpenJPA will eagerly-load the fieldsin all active fetch groups when
loading objects from the datastore.

Y ou create fetch groups with the or g. apache. openj pa. per si st ence. Fet chG oup annotation. If your class only has
one custom fetch group, you can place this annotation directly on the class declaration. Otherwise, use the

or g. apache. openj pa. per si st ence. Fet chG oups annotation to declare an array of individual Fet chG oup values.
The Fet chGr oup annotation has the following properties:

243

../javadoc/org/apache/openjpa/persistence/ExternalValues.html
../javadoc/org/apache/openjpa/persistence/Type.html
../javadoc/org/apache/openjpa/persistence/FetchGroup.html
../javadoc/org/apache/openjpa/persistence/FetchGroups.html

Persistent Classes

» String name: The name of the fetch group. Fetch group names are global, and are expected to be shared among classes. For
example, a shopping website may use adetail fetch group in each product classto efficiently load all the data needed to display
aproduct's "detail" page. The website might also define a sparse list fetch group containing only the fields needed to display a
table of products, asin a search result.

The following names are reserved for use by OpenJPA: def aul t , val ues, al | , none, and any name beginning with j do,
j pa, oropenj pa.

e FetchAttribute[] attributes: Theset of persistent fields or propertiesin the fetch group.

 String[] fetchG oups: Other fetch groups whose fields to include in this group.

Asyou might expect, listingaor g. apache. openj pa. persi stence. Fet chAttri but e withinaFet chG oup in-

cludes the corresponding persistent field or property in the fetch group. Each Fet chAt t ri but e hasthe following properties:

e String nane: The name of the persistent field or property to include in the fetch group.

» recursi onDept h: If the attribute represents a relation, the maximum number of same-typed relations to eager-fetch from
thisfield. Defaults to 1. For example, consider an Enpl oyee classwith anmanager field, also of type Enpl oyee. When we
load an Enpl oyee and the manager fieldisin an active fetch group, the recursion depth (along with the max fetch depth

setting, described below) determines whether we only retrieve the target Enpl oyee and his manager (depth 1), or whether we
also retrieve the manager's manager (depth 2), or the manager's manager's manager (depth 3), etc. Use -1 for unlimited depth.

Example 5.18. Custom Fetch Group Metadata

Creates adetail fetch group consisting of the publ i sher andarti cl es relations.

i mport org. apache. openj pa. per si stence. *;

@ntity
@-et chG oups({
@et chG oup(nanme="detail", attributes={
@etchAttribute(nane="publisher"),
@etchAttribute(name="articles")

.
noo ,
public class Magazi ne {

}

A field can be amember of any number of fetch groups. A field can also declare aload fetch group. When you access a lazy-
loaded field for the first time, OpenJPA makes a datastore trip to fetch that field's data. Sometimes, however, you know that
whenever you access alazy field A, you're likely to access lazy fields B and C as well. Therefore, it would be more efficient to
fetch the datafor A, B, and C in the same datastore trip. By setting A's load fetch group to the name of afetch group containing
B and C, you can tell OpenJPA to load all of these fields together when A isfirst accessed.

Use OpenJPA'sor g. apache. openj pa. per si st ence. LoadFet chGr oup annotation to specify the load fetch group of

any persistent field. The value of the annotation is the name of a declared fetch group whose members should be loaded aong
with the annotated field.

Example 5.19. Load Fetch Group Metadata

244

../javadoc/org/apache/openjpa/persistence/FetchAttribute.html
../javadoc/org/apache/openjpa/persistence/LoadFetchGroup.html

Persistent Classes

i nport org.apache. openj pa. per si st ence. *;

@ntity
@ et chG oups({
@etchG oup(nane="detail", attributes={
@etchAttribute(nanme="publisher"),
@-etchAttribute(name="articles")

b,

I :

public class Magazi ne {
@manyToOne(f et ch=Fet chType. LAZY)

@oadFet chG oup("detail™)
private Publisher publisher;

5.7.2.

Custom Fetch Group Configuration

Y ou can control the default set of fetch groups with the openj pa. Fet chGr oups configuration property. Set this property to a

comma-separated list of fetch group names.

Y ou can also set the system's default maximum fetch depth with the openj pa. MaxFet chDept h configuration property. The
maximum fetch depth determines how "deep” into the object graph to traverse when loading an instance. For example, with a
MaxFet chDept h of 1, OpenJPA will load at most the target instance and itsimmediate relations. With a MaxFet chDept h of
2, OpenJPA may load the target instance, itsimmediate relations, and the relations of those relations. This worksto arbitrary
depth. In fact, the default MaxFet chDept h valueis-1, which symbolizes infinite depth. Under this setting, OpenJPA will fetch
configured relations until it reaches the edges of the object graph. Of course, which relation fields are loaded depends on whether
the fields are eager or lazy, and on the active fetch groups. A fetch group member's recursion depth may also limit the fetch depth

to something |ess than the configured maximum.

OpenJPA's OpenJPAENt i t yManager and QpenJPAQuer y extensionsto the standard Ent i t yManager and Query in-
terfaces provide accessto aor g. apache. openj pa. per si st ence. Fet chPl an object. The Fet chPl an maintains the
set of active fetch groups and the maximum fetch depth. It begins with the groups and depth defined in the open-

j pa. Fet chGr oups and openj pa. MaxFet chDept h properties, but allows you to add or remove groups and change the
maximum fetch depth for anindividual Ent i t yManager or Quer y through the methods below.

public FetchPl an addFet chG oup(String group);

public FetchPl an addFet chGroups(String... groups);
publ i c FetchPl an addFet chG oups(Col | ecti on groups);
public FetchPl an renmpbveFet chG op(String group);
public FetchPlan renpveFetchG oups(String... groups);
public FetchPl an renmpveFet chG oups(Col | ecti on groups);
public FetchPl an reset Fet chG oups();

public Collection<String> getFetchG oups();

public void clearFetchG oups();

public FetchPl an set MaxFet chDept h(i nt depth);

public int getMaxFetchDepth();

Chapter 9, Runtime Extensions [288]etails the OpenJPAENt i t yManager , OpenJPAQuer y, and Fet chPl an interfaces.

Example 5.20. Using the FetchPlan

i mport org. apache. openj pa. per si stence. *;

OpenJPAQuery kg = OpenJPAPersi st ence. cast (em createQuery(...));

245

../javadoc/org/apache/openjpa/persistence/FetchPlan.html

Persistent Classes

kq. get Fet chPl an() . set MaxFet chDept h(3) . addFet chG oup(“detail ");
List results = kqg.getResultList();

5.7.3. Per-field Fetch Configuration

In addition to controlling fetch configuration on a per-fetch-group basis, you can configure OpenJPA to include particular fields
in the current fetch plan. This allows you to add individual fields that are not in the default fetch group or in any other active fetch
groups to the set of fields that will be eagerly loaded from the database.

JPA Fet chPl an methods:

public FetchPlan addField(String field);

public FetchPlan addFields(String... fields);

public FetchPlan addFields(Class cls, String... fields);
public FetchPl an addFi el ds(Coll ection fields);

public FetchPl an addFi el ds(Cl ass cls, Collection fields);
public FetchPlan renoveField(String field);

public FetchPlan renoveFi el ds(String... fields);

public FetchPlan renoveFields(Cass cls, String... fields);
public FetchPl an renpveFi el ds(Col | ection fields);

public FetchPlan renpveFi el ds(C ass cls, Collection fields);
public Collection<String> getFields();

public void clearFields();

The methods that take only string arguments use the fully-qualified field name, such asor g. mag. Magazi ne. publ i sher.
Similarly, get Fi el ds returnsthe set of fully-qualified field names. In all methods, the named field must be defined in the class
specified in the invocation, not a superclass. So, if thefield publ i sher isdefined in base class Publ i cat i on rather than sub-
classMagazi ne, you must invokeaddFi el d (Publication. class, "publisher") andnotaddFi el d

(Magazi ne. cl ass, "publisher"). Thisisstricter than Java's default field-masking algorithms, which would allow the
latter method behavior if Magazi ne did not also define afield called publ i sher .

In order to avoid the cost of reflection, OpenJPA does not perform any validation of the field name/ class name pairs that you put

into the fetch configuration. If you specify non-existent class/ field pairs, nothing adverse will happen, but you will receive no
notification of the fact that the specified configuration is not being used.

Example 5.21. Adding an Eager Field

i mport org. apache. openj pa. persi stence. *;

OpenJPAENt i t yManager kem = OpenJPAPer si st ence. cast (en) ;
kem get Fet chPl an() . addFi el d(Magazi ne. cl ass, "publisher");
Magazi ne mag = em find(Magazi ne. cl ass, magld);

5.7.4. Implementation Notes

» Evenwhen adirect relation is not eagerly fetched, OpenJPA selects the foreign key columns and caches the values. This way
when you do traverse the relation, OpenJPA can often find the related object in its cache, or at least avoid joins when loading
the related object from the database.

246

5.8.

Persistent Classes

» The above implicit foreign key-selecting behavior does not always apply when the relation isin a subclass table. If the subclass
table would not otherwise be joined into the select, OpenJPA avoids the extrajoin just to select the foreign key values.

Eager Fetching

Eager fetching is the ability to efficiently load subclass data and related objects along with the base instances being queried. Typ-
ically, OpenJPA has to make a trip to the database whenever arelation isloaded, or when you first access data that is mapped to a
table other than the least-derived superclasstable. If you perform a query that returns 100 Per son objects, and then you have to
retrieve the Addr ess for each person, OpenJPA may make as many as 101 queries (theinitial query, plus one for the address of
each person returned). Or if some of the Per son instances turn out to be Enpl oyees, where Enpl oyee has additional datain
its own joined table, OpenJPA once again might need to make extra database trips to access the additional employee data. With
eager fetching, OpenJPA can reduce these cases to a single query.

Eager fetching only affects relations in the active fetch groups, and is limited by the declared maximum fetch depth and field re-
cursion depth (see Section 5.7, “ Fetch Groups” [243]). In other words, relations that would not normally be loaded immedi-
ately when retrieving an object or accessing afield are not affected by eager fetching. In our example above, the address of each
person would only be eagerly fetched if the query were configured to include the address field or its fetch group, or if the address
were in the default fetch group. This allows you to control exactly which fields are eagerly fetched in different situations. Simil-
arly, queries that exclude subclasses aren't affected by eager subclass fetching, described below.

Eager fetching has three modes:

» none: No eager fetching is performed. Related objects are always loaded in an independent select statement. No joined sub-
class dataisloaded unlessit isin the table(s) for the base type being queried. Unjoined subclass datais loaded using separate
select statements rather than a SQL UNION operation.

* j oi n: Inthis mode, OpenJPA joins to to-one relations in the configured fetch groups. If OpenJPA isloading datafor asingle
instance, then OpenJPA will also join to any collection field in the configured fetch groups. When loading data for multiple in-
stances, though, (such as when executing a Quer y) OpenJPA will not join to collections by default. Instead, OpenJPA defaults
toparal | el modefor collections, as described below. Y ou can force OpenJPA use ajoin rather than parallel mode for a col-
lection field using the metadata extension described in Section 7.13.2.1, “ Eager Fetch Mode” [282]

Under j oi n mode, OpenJPA uses aleft outer join (or inner join, if the relations field metadata declares the relation non-
nullable) to select the related data along with the data for the target objects. This process works recursively for to-onejoins, so
that if Per son hasan Addr ess, and Addr ess hasaTel ephoneNunber , and the fetch groups are configured correctly,
OpenJPA might issue asingle select that joins across the tables for all three classes. To-many joins can not recursively spawn
other to-many joins, but they can spawn recursive to-one joins.

Under thej oi n subclass fetch mode, subclass datain joined tablesis selected by outer joining to all possible subclass tables
of the type being queried. Asyou'll see below, subclass data fetching is configured separately from relation fetching, and can
be disabled for specific classes.

Some databases may not support outer joins. Also, OpenJPA can not use outer joinsif you have set the DBDi ct i on-
ary'sJoi nSynt ax totradi ti onal . See Section 4.6, “ Setting the SQL Join Syntax ” [216].

» paral | el : Under this mode, OpenJPA selects to-one relations and joined collections as outlined in thej oi n mode descrip-
tion above. Unjoined collection fields, however, are eagerly fetched using a separate select statement for each collection, ex-
ecuted in parallel with the select statement for the target objects. The parallel selects use the WHERE conditions from the
primary select, but add their own joins to reach the related data. Thus, if you perform a query that returns 100 Conrpany ob-
jects, where each company has alist of Enpl oyee objects and Depar t ment objects, OpenJPA will make 3 queries. The
first will select the company objects, the second will select the employees for those companies, and the third will select the de-
partments for the same companies. Just as for joins, this process can be recursively applied to the objectsin the relations being
eagerly fetched. Continuing our example, if the Enpl oyee class had alist of Pr oj ect s in one of the fetch groups being

247

Persistent Classes

loaded, OpenJPA would execute a single additional select in parallel to load the projects of all employees of the matching com-
panies.

Using an additional select to load each collection avoids transferring more data than necessary from the database to the applica-
tion. If eager joins were used instead of parallel select statements, each collection added to the configured fetch groups would
cause the amount of data being transferred to rise dangerously, to the point that you could easily overwhelm the network.

Polymorphic to-one relations to table-per-class mappings use parallel eager fetching because proper joins areimpossible. You
can force other to-one relations to use parallel rather than join mode eager fetching using the metadata extension described in
Section 7.13.2.1, “ Eager Fetch Mode” [282]

Parallel subclass fetch mode only applies to queries on joined inheritance hierarchies. Rather than outer-joining to subclass
tables, OpenJPA will issue the query separately for each subclass. In all other situations, parallel subclass fetch mode acts just
like join mode in regards to vertically-mapped subclasses.

When OpenJPA knows that it is selecting for asingle object only, it never uses par al | el mode, because the additional se-

lects can be made lazily just as efficiently. This mode only increases efficiency over j oi n mode when multiple objects with
eager relations are being loaded, or when multiple selects might be faster than joining to all possible subclasses.

5.8.1. Configuring Eager Fetching

Y ou can control OpenJPA's default eager fetch mode through the openj pa. j dbc. Eager Fet chibde and open-

j pa.j dbc. Subcl assFet chMbde configuration properties. Set each of these properties to one of the mode names described
in the previous section: none, joi n, parall el . If left unset, the eager fetch mode defaultsto par al | el and the subclass
fetch mode defaultsto j oi n These are generally the most robust and performant strategies.

Y ou can easily override the default fetch modes at runtime for any lookup or query through OpenJPA's fetch configuration APIs.
See Chapter 9, Runtime Extensions [28]or details.

Example 5.22. Setting the Default Eager Fetch Mode

<property name="openj pa.j dbc. Eager Fet chMbde" val ue="parallel"/>
<property name="openj pa.] dbc. Subcl assFet chMbde" val ue="joi n"/>

Example 5.23. Setting the Eager Fetch Mode at Runtime

i nport org.apache. openj pa. per si st ence. *;
i nport org.apache. openj pa. per si st ence. j dbc. *;

Query q = emcreateQuery("select p fromPerson p where p.address.state = 'TX' ");
CpenJPAQJer kg = CpenJPAPer5| stence. cast(q);

JDBCFet chPl an fetch = (JDBCFet chPl an) kq. get Fet chPl an();

f et ch. set Eager Fet chvbde(Fet chvbde. PARALLEL) ;

f et ch. set Subcl assFet chMbde(Fet chMbde. JON) ;

List results = g.getResultList();

Y ou can specify a default subclass fetch mode for an individual class with the metadata extension described in Section 7.13.1.1, “

248

5.8.2.

Persistent Classes

Subclass Fetch Mode” [281Note, however, that you cannot "upgrade” the runtime fetch mode with your class setting. If the
runtime fetch mode isnone, no eager subclass data fetching will take place, regardless of your metadata setting.

This appliesto the eager fetch mode metadata extension as well (see Section 7.13.2.1, “ Eager Fetch Mode” [282] Y ou can use

this extension to disable eager fetching on afield or to declare that a collection would rather use joins than parallel selects or vice
versa. But an extension value of j oi n won't cause any eager joining if the fetch configuration's setting isnone.

Eager Fetching Considerations and Limitations

There are several important points that you should consider when using eager fetching:

* Whenyou areusing par al | el eager fetch mode and you have large result sets enabled (see Section 4.10, “ Large Result
Sets” [219]) or you place arange on a query, OpenJPA performs the needed parallel selects on one page of results at atime.
For example, suppose your Fet chBat chSi ze isset to 20, and you perform alarge result set query on aclass that has collec-
tion fields in the configured fetch groups. OpenJPA will immediately cache the first 20 results of the query using j oi n mode
eager fetching only. Then, it will issue the extra selects needed to eager fetch your collection fields according to par al | el
mode. Each select will useaSQL | N clause (or multiple OR clauses if your class has a compound primary key) to limit the se-
lected collection elements to those owned by the 20 cached results.

Once you iterate past the first 20 results, OpenJPA will cache the next 20 and again issue any needed extra selects for collec-
tion fields, and so on. This pattern ensures that you get the benefits of eager fetching without bringing more datainto memory
than anticipated.

» Once OpenJPA eager-joinsinto aclass, it cannot issue any further eager to-many joins or parallel selects from that classin the
same query. To-one joins, however, can recurse to any level.

» Using ato-many join makes it impossible to determine the number of instances the result set contains without traversing the
entire set. Thisis because each result object might be represented by multiple rows. Thus, queries with a range specification or
queries configured for lazy result set traversal automatically turn off eager to-many joining.

» OpenJPA cannot eagerly join to polymorphic relations to non-leaf classes in atable-per-class inheritance hierarchy. You can
work around this restriction using the mapping extensions described in Section 7.13.2.2, “ Nonpolymorphic” [282]

249

Chapter 6. Metadata

6.1.

The JPA Overview covers JPA metadatain Chapter 5, Metadata [25]. This chapter discusses OpenJPA's extensions to standard
JPA metadata.

Metadata Factory

Theopenj pa. Met aDat aFact ory configuration property controls metadata loading and storing. This property takes a plu-
gin string (see Section 2.4, “ Plugin Configuration ” [177]) describing a concrete

or g. apache. openj pa. net a. Met aDat aFact or y implementation. A metadata factory can load mapping information as
well as persistence metadata, or it can leave mapping information to a separate mapping factory (see Section 7.5, “ Mapping
Factory " [268] OpenJPA recognizes the following built-in metadata factories:

* | pa: Standard JPA metadata. Thisis an alias for the
or g. apache. openj pa. per si st ence. Per si st enceMet aDat aFact ory.

JPA has built-in settings for listing your persistent classes, which the JPA Overview describes. OpenJPA supports these JPA
standard settings by trandating them into its own internal metadata factory properties. Each internal property represents a differ-
ent mechanism for locating persistent types; you can choose the mechanism or combination of mechanisms that are most con-
venient. See Section 5.1, “ Persistent ClassList ” [228] for adiscussion of when it is necessary to list your persistent classes.

» Types: A semicolon-separated list of fully-qualified persistent class names.

* Resour ces: A semicolon-separated list of resource paths to metadata files or jar archives. Each jar archive will be scanned
for annotated JPA entities.

* URLs: A semicolon-separated list of URLs of metadatafiles or jar archives. Each jar archive will be scanned for annotated
JPA entities.

» Cl asspat hScan: A semicolon-separated list of directories or jar archiveslisted in your classpath. Each directory and jar
archive will be scanned for annotated JPA entities.

Example 6.1. Setting a Standard Metadata Factory

<property name="openj pa. Met aDat aFact ory" val ue="j pa(d asspat hScan=build;lib.jar)"/>

Example 6.2. Setting a Custom Metadata Factory

<property name="openj pa. Met aDat aFact ory" val ue="com xyz. Cust om\et aDat aFact ory"/ >

250

../javadoc/org/apache/openjpa/meta/MetaDataFactory.html
../javadoc/org/apache/openjpa/persistence/PersistenceMetaDataFactory.html

Metadata

6.2. Metadata Repository

The openjpa.MetaDataRepository configuration property controls the configuration of the MetaDataRepository. The following
arevalid properties:

e Pr el oad: A boolean property. If true, OpenJPA will eagerly load the repository on EntityManagerFactory creation. Asares-
ult, all Entity classes will be eagerly loaded by the VM. Once MetaData prel oading completes, all locking is removed from the
MetaDataRepository and thiswill result in amuch more scalable repository. If false, the repository will be lazily loaded as En-
tity classes are loaded by the VM. The default value is false.

Example 6.3.

<property name="openj pa. Met aDat aReposi tory" val ue="Prel oad=true"/>

6.3.

Additional JPA Metadata

6.3.1.

This section describes OpenJPA's core additions to standard entity metadata. We present the object-relational mapping syntax to
support these additions in Section 7.7, “ Additional JPA Mappings” [269Finally, Section 6.4, “ Metadata Extensions” [253]
covers additional extensions to JPA metadata that allow you to access auxiliary OpenJPA features.

Datastore ldentity

6.3.2.

JPA typically requires you to declare one or more | d fieldsto act as primary keys. OpenJPA, however, can create and maintain a
surrogate primary key value when you do not declare any | d fields. Thisform of persistent identity is called datastore identity.
Section 5.4, “ Object Identity ” [232] discusses OpenJPA's support for datastore identity in JPA. We cover how to map your
datastore identity primary key columnin Section 7.7.1, “ Datastore | dentity Mapping " [269]

Surrogate Version

6.3.3.

Just as OpenJPA can maintain your entity's identity without any | d fields, OpenJPA can maintain your entity's optimistic ver-
sion without any Ver si on fields. Section 7.7.2,* Surrogate Version Mapping ” [269%hows you how to map surrogate version
columns.

Persistent Field Values

JPA definesBasi c, Lob, Enbedded , ManyToOne, and OneToOne persistence strategies for direct field values. OpenJPA
supports all of these standard strategies, but adds one of its own: Per si st ent . The

or g. apache. openj pa. per si st ence. Per si st ent metadata annotation can represent any direct field value, including
custom types. It has the following properties:

» FetchType f et ch: Whether to load the field eagerly or lazily. Corresponds exactly to the same-named property of stand-
ard JPA annotations such asBasi ¢ . Defaultsto Fet chType. EAGER

» CascadeType[] cascade: Array of enum values defining cascade behavior for thisfield. Corresponds exactly to the
same-named property of standard JPA annotations such as Many ToOne. Defaultsto empty array.

251

../javadoc/org/apache/openjpa/persistence/Persistent.html

6.3.4.

Metadata

* String mappedBy: Namesthefield in the related entity that maps this bidirectional relation. Corresponds to the same-
named property of standard JPA annotations such asOneToOne.

e bool ean opti onal : Whether the value can be null. Corresponds to the same-named property of standard JPA annotations
such as Many ToOne , but can apply to non-entity object values aswell. Defaultstot r ue.

* bool ean enbedded: Set thisproperty tot r ue if thefield valueis stored as an embedded object.
Though you can use the Per si st ent annotation in place of most of the standard direct field annotations mentioned above, we
recommend primarily using it for non-standard and custom types for which no standard JPA annotation exists. For example, Sec-

tion 7.7.3,“ Multi-Column Mappings” [27G§emonstrates the use of the Per si st ent annotation to denote a persistent
j ava. awt . Poi nt field.

Persistent Collection Fields

6.3.5.

JPA standardizes support for collections of entities with the OneToMany and Many ToMany persistence strategies. OpenJPA
supports these strategies, and may be extended for other strategies as well. For extended strategies, use the

or g. apache. openj pa. per si st ence. Per si st ent Col | ect i on metadata annotation to represents any persistent col-
lection field. It has the following properties:

e Class el enent Type: Theclass of the collection elements. Thisinformation is usually taken from the parameterized col-
lection element type. Y ou must supply it explicitly, however, if your field isn't a parameterized type.

» FetchType f et ch: Whether to load the collection eagerly or lazily. Corresponds exactly to the same-named property of
standard JPA annotations such as Basi c. Defaultsto Fet chType. LAZY.

* String mappedBy: Namesthefield in the related entity that maps this bidirectional relation. Corresponds to the same-
named property of standard JPA annotations such as Many ToMany.

e CascadeType[] el enent Cascade: Array of enum values defining cascade behavior for the collection elements. Cor-
responds exactly to the cascade property of standard JPA annotations such as Many ToMany. Defaults to empty array.

* bool ean el ement Enbedded: Set thisproperty tot r ue if the elements are stored as embedded objects.

Persistent Map Fields

JPA has limited support for maps. If you extend JPA's standard map support to encompass new mappings, use the
or g. apache. openj pa. persi st ence. Per si st ent Map metadata annotation to represent your custom persistent map
fields. It has the following properties:

* O ass keyType: Theclassof the map keys. Thisinformation is usually taken from the parameterized map key type. You
must supply it explicitly, however, if your field isn't a parameterized type.

* Cl ass el ement Type: The class of the map values. Thisinformation is usually taken from the parameterized map value
type. You must supply it explicitly, however, if your field isn't a parameterized type.

» FetchType f et ch: Whether to load the collection eagerly or lazily. Corresponds exactly to the same-named property of
standard JPA annotations such asBasi c. Defaultsto Fet chType. LAZY.

» CascadeType[] keyCascade: Array of enum values defining cascade behavior for the map keys. Corresponds exactly to
thecascade property of standard JPA annotations such as Many ToOne. Defaults to empty array.

» CascadeType[] el ement Cascade: Array of enum values defining cascade behavior for the map values. Corresponds
exactly to the cascade property of standard JPA annotations such as Many ToOne. Defaultsto empty array.

252

../javadoc/org/apache/openjpa/persistence/PersistentCollection.html
../javadoc/org/apache/openjpa/persistence/PersistentMap.html

6.4.

Metadata

* bool ean keyEnmbedded: Set thisproperty tot r ue if the map keys are stored as embedded objects.

* bool ean el ement Enbedded: Set this property tot r ue if the map values are stored as embedded objects.

Metadata Extensions

OpenJPA extends standard metadata to allow you to access advanced OpenJPA functionality. This section covers persistence
metadata extensions; we discuss mapping metadata extensionsin Section 7.13, “ Mapping Extensions” [281All metadata ex-
tensions are optional; OpenJPA will rely on its defaults when no explicit datais provided.

6.4.1. Class Extensions

OpenJPA recognizes the following class extensions:

6.4.1.1. Fetch Groups

Theor g. apache. openj pa. persi st ence. Fet chG oups and

or g. apache. openj pa. per si st ence. Fet chG oup annotations allow you to define fetch groups in your JPA entities.
Section 5.7, “ Fetch Groups” [243] discusses OpenJPA's support for fetch groups in general; see Section 5.7.1, “ Custom
Fetch Groups” [243] for how to use these annotationsin particular.

6.4.1.2. Data Cache

Section 10.1, “ Data Cache” [302dxamines caching in OpenJPA. Metadata extensions alow individual classesto override sys-
tem caching defaults.

OpenJPA definesthe or g. apache. openj pa. per si st ence. Dat aCache annotation for caching information. This an-
notation has the following properties:
* bool ean enabl ed: Whether to cache data for instances of the class. Defaultsto t r ue for base classes, or the superclass

value for subclasses. If you set this property to f al se, al other properties are ignored.

e int timeout: Thenumber of milliseconds datafor the class remains valid. Use -1 for no timeout. Defaults to the open-
j pa. Dat aCacheTi neout property value.

6.4.1.3. Detached State

The OpenJPA enhancer may add a synthetic field to detachable classes to hold detached state (see Section 11.1.3, “ Defining
the Detached Object Graph ” [31%or details). Y ou can instead declare your own detached state field or supress the creation of a
detached state field altogether. In the latter case, your class must not use datastor e identity, and should declare aversion field to
detect optimistic concurrency errors during detached modifications.

OpenJPA definestheor g. apache. openj pa. per si st ence. Det achedSt at e annotation for controlling detached state.
When used to annotate a class, Det achedSt at e recognizes the following properties:

* bool ean enabl ed: Set to false to suppress the use of detached state.

« String fiel dNane: Usethisproperty to declare your own detached state field. The field must be of type Cbj ect . Typic-

ally this property is only used if the field isinherited from a non-persisted superclass. If the field is declared in your entity
class, you will typically annotate the field directly, as described below.

253

../javadoc/org/apache/openjpa/persistence/FetchGroups.html
../javadoc/org/apache/openjpa/persistence/FetchGroup.html
../javadoc/org/apache/openjpa/persistence/DataCache.html
../javadoc/org/apache/openjpa/persistence/DetachedState.html

Metadata

If you declare your own detached state field, you can annotate that field with Det achedSt at e directly, rather than placing the
annotation at the classlevel and using thef i el dNanme property. When placed on afield, Det achedSt at e acts as a marker
annotation; it does not recognize any properties. Y our annotated field must be of type Obj ect .

6.4.2. Field Extensions

OpenJPA recognizes the following field extensions:

6.4.2.1. Dependent

In a dependent relation, the referenced object is deleted whenever the owning object is deleted, or whenever therelationis
severed by nulling or resetting the owning field. For example, if the Magazi ne. cover Arti cl e field is marked dependent,
then setting Magazi ne. cover Arti cl etoanew Arti cl e instance will automatically deletetheold Art i cl e stored in the
field. Similarly, deleting aMagazi ne object will automatically deleteits current cover Arti cl e. (Thislatter processing is ana-
logous to using JPA's CascadeType.REMOVE functionality as described in Section 5.2.8.1, “ Cascade Type” [34].) You can
prevent an orphaned dependent object from being automatically deleted by assigning it to another relation in the same transaction.

OpenJPA offers afamily of marker annotations to denote dependent relations in JPA entities:

» org. apache. openj pa. per si st ence. Dependent : Marks adirect relation as dependent.

e org. apache. openj pa. per si st ence. El enent Dependent : Marksthe entity elements of a collection, array, or
map field as dependent.

e org. apache. openj pa. persi st ence. KeyDependent : Marks the key entitiesin amap field as dependent.

6.4.2.2. Load Fetch Group

Theor g. apache. openj pa. per si st ence. LoadFet chGr oup annotation specifies afield's |oad fetch group. Sec-
tion 5.7, “ Fetch Groups™” [243] discusses OpenJPA's support for fetch groupsin general; see Section 5.7.1, * Custom Fetch
Groups” [243] for how to use this annotation in particular.

6.4.2.3. LRS

This boolean extension, denoted by the OpenJPA or g. apache. openj pa. per si st ence. LRS annotation, indicates that a
field should use OpenJPA's special large result set collection or map proxies. A complete description of large result set proxiesis
availablein Section 5.6.4.2, “ Large Result Set Proxies” [238].

6.4.2.4. Inverse-Logical

This extension names the inverse field in alogical bidirectional relation. To create alogical bidrectional relation in OpenJPA, use
theor g. apache. openj pa. per si st ence. | nver seLogi cal annotation. We discuss logical bidirectional relations and
thisextension in detail in Section 5.5, “ Managed Inverses” [235].

6.4.2.5. Read-Only

The read-only extension makes a field unwritable. The extension only applies to existing persistent objects; new object fields are
always writeable.

To mark afield read-only in JPA metadata, set the or g. apache. openj pa. per si st ence. ReadOnl y annotation to an
or g. apache. openj pa. per si st ence. Updat eAct i on enum value. The Updat eAct i on enum includes:

* Updat eAct i on. | GNORE: Updates to the field are completely ignored. Thefield is not considered dirty. The new value will

254

../javadoc/org/apache/openjpa/persistence/Dependent.html
../javadoc/org/apache/openjpa/persistence/ElementDependent.html
../javadoc/org/apache/openjpa/persistence/KeyDependent.html
../javadoc/org/apache/openjpa/persistence/LoadFetchGroup.html
../javadoc/org/apache/openjpa/persistence/LRS.html
../javadoc/org/apache/openjpa/persistence/InverseLogical.html
../javadoc/org/apache/openjpa/persistence/ReadOnly.html
../javadoc/org/apache/openjpa/persistence/UpdateAction.html

Metadata

not even get stored in the OpenJPA data cache.

* Updat eAct i on. RESTRI CT: Any attempt to change the field will result in an immediate exception.

6.4.2.6. Type

OpenJPA has three levels of support for relations:

1. Relationsthat hold a reference to an object of a concrete persistent class are supported by storing the primary key values of the
related instance in the database.

2. Relationsthat hold a reference to an object of an unknown persistent class are supported by storing the stringified identity
value of the related instance. Thislevel of support does not allow queries across the relation.

3. Relations that hold an unknown object or interface. The only way to support these relationsis to serialize their value to the
database. This does not allow you to query thefield, and is not very efficient.

Clearly, when you declare afield's type to be another persistence-capable class, OpenJPA useslevel 1 support. By default, Open-
JPA assumesthat any interface-typed fields you declare will be implemented only by other persistent classes, and assigns inter-
faceslevel 2 support. The exception to thisruleisthej ava. i 0. Seri al i zabl e interface. If you declare afield to be of type
Seri al i zabl e, OpenJPA lumpsit together with j ava. | ang. Obj ect fields and other non-interface, unrecognized field
types, which are all assigned level 3 support.

With OpenJPA's type family of metadata extensions, you can control the level of support given to your unknown/interface-typed
fields. Setting the value of thisextension to Ent i t y indicates that the field value will always be some persistent object, and
gives level 2 support. Setting the value of this extension to the class of a concrete persistent type is even better; it givesyou level
1 support (just asif you had declared your field to be of that type in the first place). Setting this extension to Obj ect useslevel 3
support. Thisis useful when you have an interface relation that may not hold other persistent objects (recall that OpenJPA as-
sumes interface fields will always hold persistent instances by default).

This extension is also used with OpenJPA's externalization feature, described in Section 5.6.5, “ Externalization ” [240].

OpenJPA defines the following type annotations for field values, collection, array, and map elements, and map keys, respectively:

» org. apache. openj pa. persi st ence. Type
e 0org. apache. openj pa. per si st ence. El enent Type

» org. apache. openj pa. persi stence. KeyType

6.4.2.7. Externalizer

The OpenJPA or g. apache. openj pa. per si st ence. Ext er nal i zer annotation names a method to transform afield
value into avalue of another type. See Section 5.6.5, “ Externalization ” [240] for details.

6.4.2.8. Factory

The OpenJPA or g. apache. openj pa. per si st ence. Fact or y annotation names a method to re-create a field value from
its externalized form. See Section 5.6.5, “ Externalization " [240] for details.

6.4.2.9. External Values

The OpenJPA or g. apache. openj pa. per si st ence. Ext er nal Val ues annotation declares values for transformation

255

../javadoc/org/apache/openjpa/persistence/Type.html
../javadoc/org/apache/openjpa/persistence/ElementType.html
../javadoc/org/apache/openjpa/persistence/KeyType.html
../javadoc/org/apache/openjpa/persistence/Externalizer.html
../javadoc/org/apache/openjpa/persistence/Factory.html
../javadoc/org/apache/openjpa/persistence/ExternalValues.html

Metadata

of simplefieldsto different constant values in the datastore. See Section 5.6.5.1, “ External Values” [243] for details.

6.4.3. Example

The following example shows you how to specify extensions in metadata.

Example 6.4. OpenJPA Metadata Extensions

i nport org. apache. openj pa. per si st ence. *;
@ntity

@pat aCache(enabl ed=f al se)
public class Magazi ne

@manyToMany

@RS

private Col | ecti on<Subscri ber> subscri bers;
@xt ernal Val ues({"true=1", "fal se=2"})

@ype(int.class)
private bool ean weekl y;

256

Chapter 7. Mapping

7.1.

The JPA Overview's Chapter 12, Mapping Metadata [117] explains object-relational mapping under JPA. This chapter reviews
the mapping utilities OpenJPA provides and examines OpenJPA features that go beyond the JPA specification.

Forward Mapping

Forward mapping is the process of creating mappings and their corresponding database schema from your object model. Open-
JPA supports forward mapping through the mapping tool. The next section presents several common mapping tool use cases. You
can invoke the tool through its Javaclass, or g. apache. openj pa. j dbc. et a. Mappi ngTool .

Section 13.1.4, “ Mapping Tool Ant Task " [326}escribes the mapping tool Ant task.

Example 7.1. Using the Mapping Tool

java org. apache. openj pa. j dbc. met a. Mappi ngTool Magazi ne. j ava

In addition to the universal flags of the configuration framework, the mapping tool accepts the following command line argu-
ments:

 -schemaAction/-sa <add | refresh | drop | build | retain | reflect | createDB | drop-
DB | inport | export | none> :Theaction totake on the schema. These options correspond to the same-named

actions on the schematool described in Section 4.13, “ Schema Tool ” [223]. Actions can be composed in a comma-separated
list. Unless you are running the mapping tool on al of your persistent types at once or dropping a mapping, we strongly recom-
mend you use the default add action or the bui | d action. Otherwise you may end up inadvertently dropping schema compon-
ents that are used by classes you are not currently running the tool over.

-schemaFi | e/ -sf <stdout | output fil e>:Usethisoptiontowritethe planned schemato an XML document
rather than modify the database. The document can then be manipulated and committed to the database with the schema tool.

-sgl Filel/-sql <stdout | output fil e>:Usethisoptiontowritethe planned schema modificationsto a SQL
script rather than modify the database. Combine thiswithaschenmaAct i on of bui | d to generate a script that recreates the
schema for the current mappings, even if the schema already exists.

-dropTabl es/-dt <true/t | fal se/f>:Correspondsto the same-named option on the schematool.
-dropSequences/-dsq <true/t | fal se/f>: Corresponds to the same-named option on the schematool.

-openj paTabl es/-ot <true/t | fal se/f>:Correspondsto the same-named option on the schematool.

-ignoreErrors/-i <true/t | false/f>:Correspondsto the same-named option on the schematool.

-schemas/-s <schema and tabl e nanmes>: Corresponds to the same-named option on the schematool. This option
isignored if r eadSchemna isnot settot r ue.

-readSchena/-rs <true/t | fal se/f>:Setthisoptiontotr ue to read the entire existing schema when the tool

257

../javadoc/org/apache/openjpa/jdbc/meta/MappingTool

7.1.1.

Mapping

runs. Reading the existing schema ensures that OpenJPA does not generate any mappings that use table, index, primary key, or
foreign key names that conflict with existing names. Depending on the JDBC driver, though, it can be a slow process for large
schemas.

e -primaryKeys/-pk <true/t | fal se/f>:Whethertoread and manipulate primary key information of existing
tables. Defaultsto false.

o -foreignKeys/-fk <true/t | fal se/f>:Whethertoread and manipulate foreign key information of existing
tables. Defaults to false. This means that to add any new foreign keysto a class that has already been mapped, you must expli-
citly set thisflag to true.

 -indexes/-ix <true/t | false/f>:Whethertoread and manipulate index information of existing tables. Defaults
to false. This means that to add any new indexes to a class that has already been mapped once, you must explicitly set thisflag
to true.

» -sequences/-sq <true/t | fal se/f>:Whetherto manipulate sequences. Defaults to true.

e -neta/-m<true/t | fal se/f>:Whether the given action applies to metadata rather than or in addition to mappings.

The mapping tool also usesan - act i on/ - a argument to specify the action to take on each class. The available actions are:

* bui | dSchema: Thisisthe default action. It makes the database schema match your existing mappings. If your provided map-
pings conflict with your class definitions, OpenJPA will fail with an informative exception.

» val i dat e: Ensure that the mappings for the given classes are valid and that they match the schema. No mappings or tables
will be changed. An exception is thrown if any mappings are invalid.

Each additional argument to the tool should be one of:

» Thefull name of apersistent class.

» The javafilefor apersistent class.

» The. cl ass fileof apersistent class.

If you do not supply any arguments to the mapping tool, it will run on the classesin your persistent classes list (see Section 5.1, “
Persistent ClassList " [228]).

The mappings generated by the mapping tool are stored by the system mapping factory. Section 7.5, “ Mapping Factory ” [266]
discusses your mapping factory options.

Using the Mapping Tool

The JPA specification defines a comprehensive set of defaults for missing mapping information. Thus, forward mapping in JPA
isvirtualy automatic. After using the mapping annotations covered in Chapter 12, Mapping Metadata [117] of the JPA Over-
view to override any unsatisfactory defaults, run the mapping tool on your persistent classes. The default bui | dSchena map-
ping tool action manipulates the database schema to match your mappings. It failsif any of your mappings don't match your ob-
ject model.

Example 7.2. Creating the Relational Schema from Mappings

java org. apache. openj pa. j dbc. met a. Mappi ngTool Magazi ne. j ava

258

Mapping

To drop the schemafor a persistent class, set the mapping tool'sschenaAct i on todr op.

Example 7.3. Refreshing entire schema and cleaning out tables

java org. apache. openj pa. j dbc. met a. Mappi ngTool -schemaActi on add, del et eTabl eCont ent s

Example 7.4. Dropping Mappings and Association Schema

java org. apache. openj pa. j dbc. met a. Mappi ngTool -schemaAction drop Magazi ne.java

7.1.2. Generating DDL SQL

The examples below show how to use the mapping tool to generate DDL SQL scripts, rather than modifying the database dir-
ectly.

Example 7.5. Create DDL for Current Mappings

This example uses your existing mappings to determine the needed schema, then writes the SQL to create that schemato cr e-
ate.sql.

java org. apache. openj pa. j dbc. met a. Mappi ngTool -schemaAction build -sqgl create.sql Migazine.java

Example 7.6. Create DDL to Update Database for Current Mappings

This example uses your existing mappings to determine the needed schema. It then writes the SQL to add any missing tables and
columnsto the current schemato updat e. sql .

java org. apache. openj pa. j dbc. met a. Mappi ngTool -sql update.sql Magazine.java

7.1.3. Runtime Forward Mapping

Y ou can configure OpenJPA to automatically run the mapping tool at runtime through the open-
j pa.jdbc. Synchroni zeMappi ngs configuration property. Using this property saves you the trouble of running the map-

259

Mapping

ping tool manually, and is meant for use during rapid test/debug cycles.

In order to enable automatic runtime mapping, you must first list all your persistent classes as described in Section 5.1, “ Persist-
ent ClassList " [228].

OpenJPA will run the mapping tool on these classes when your application obtainsitsfirst Ent i t yManager .
Theopenj pa. j dbc. Synchr oni zeMappi ngs property isaplugin string (see Section 2.4, “ Plugin Configuration ”

[177]) where the class name is the mapping tool action to invoke, and the properties are the Mappi ngTool class JavaBean
properties. These properties correspond go the long versions of the tool's command line flags.

Example 7.7. Configuring Runtime Forward Mapping

<property name="openj pa.j dbc. Synchr oni zeMappi ngs" val ue="bui | dSchema(For ei gnKeys=true)"/>

The setting above corresponds to running the following command:

java org. apache. openj pa. j dbc. met a. Mappi ngTool -action buil dSchema -forei gnKeys true

7.2.

Reverse Mapping

OpenJPA includes a reverse mapping tool for generating persistent class definitions, complete with metadata, from an existing
database schema. Y ou do not have to use the reverse mapping tool to access an existing schema; you are free to write your classes
and mappings yourself, as described in Section 7.3, “ Meet-in-the-Middle Mapping ” [264]The reverse mapping tool, however,
can give you an excellent starting point from which to grow your persistent classes.

To use the reverse mapping tool, follow the steps below:

1. Usethe schematool to export your current schemato an XML schemafile. Y ou can skip this step and the next step if you
want to run the reverse mapping tool directly against the database.

Example 7.8. Reflection with the Schema Tool

java org. apache. openj pa. j dbc. schema. SchemaTool -a reflect -f schema. xn

2. Examine the generated schemafile. JDBC drivers often provide incomplete or faulty metadata, in which case the file will not
exactly match the actual schema. Alter the XML file to match the true schema. The XML format for the schemafileis de-
scribed in Section 4.14, “ XML Schema Format ” [226].

After fixing any errorsin the schemafile, modify the XML to include foreign keys between all relations. The schematool will
have automatically detected existing foreign key constraints; many schemas, however, do not employ database foreign keys
for every relation. By manually adding any missing foreign keys, you will give the reverse mapping tool the information it

260

Mapping

needs to generate the proper relations between the persistent classes it creates.

. Run the reverse mapping tool on the finished schemafile. If you do not supply the schemafile to reverse map, the tool will run

directly against the schemain the database. The tool can be run viaits Java class,
or g. apache. openj pa. j dbc. met a. Rever seMappi ngTool .

Example 7.9. Using the Reverse Mapping Tool

java org. apache. openj pa. j dbc. met a. Rever seMappi ngTool -pkg comxyz -d ~/src -cp custom zer. properties schema. xni

In addition to OpenJPA's standard configuration flags, including code for matting options, the reverse mapping tool recog-
nizes the following command line arguments:

» -schenas/-s <schema and tabl e nanes>: A comma-separated list of schema and table names to reverse map,
if no XML schemafileis supplied. Each element of the list must follow the naming conventions for the open-

j pa.j dbc. Schenas property described in Section 4.12.1, “ SchemasList ” [222]. Infact, if thisflag is omitted, it de-
faultsto the value of the Schenas property. If the Schemas property is not defined, al schemas will be reverse-mapped.

- package/ - pkg <package nane>: The package name of the generated classes. If no package nameis given, the
generated code will not contain package declarations.

-directory/-d <output directory>:All generated code and metadata will be written to the directory at this
path. If the path does not match the package of a class, the package structure will be created beneath this directory. Defaults
to the current directory.

-nmetadata/-nd <cl ass | package | none>: Specify thelevel the metadata should be generated at. Defaultsto
generating a single package-level metadatafile. Set to none to disable orm.xml generation.

-annotations/-ann <true/t | fal se/f>:Settotrueto generate JPA annotationsin generated java classes.

-accessType/ -access <field | property>: Changeaccesstype for generated annotations. Defaultsto field
access.

-useSchemaNane/-sn <true/t | false/f>:Setthisflagtotr ue toincludethe schemaaswell astable name
in the name of each generated class. This can be useful when dealing with multiple schemas with same-named tables.

-useForei gnKeyNane/ -fkn <true/t | fal se/f>:Setthisflagtotrue if youwould like field namesfor rela-
tionsto be based on the database foreign key name. By default, relation field names are derived from the name of the related
class.

-nul | abl eAsCbj ect/-no <true/t | fal sel/f>:By default, all non-foreign key columns are mapped to primit-
ives. Set thisflagtot r ue to generate primitive wrapper fields instead for columns that allow null values.

- bl obAsoj ect/-bo <true/t | fal sel/f>:Bydefault, al binary columnsare mappedto byt e[] fields. Set
thisflagtot r ue to map themto Obj ect fieldsinstead. Note that when mapped this way, the column is presumed to con-
tain a serialized Java object.

-primaryKeyOnJoi n/ -pkj <true/t | fal se/f>: Thestandard reverse mapping tool behavior isto map all
tables with primary keys to persistent classes. If your schema has primary keys on many-many join tables as well, set this
flagtot r ue to avoid creating classes for those tables.

-inverseRel ations/-ir <true/t | false/f>:Settof al se toprevent the creation of inverse 1-many/1-1 re-

261

../javadoc/org/apache/openjpa/jdbc/meta/ReverseMappingTool

Mapping

lations for every many-1/1-1 relation detected.

e -useCenericColl ections/-gc <true/t | fal se/f>: Settotrueto use generic collections on OneToMany
and ManyToMany relations (requires JDK 1.5 or higher).

 -useDatastoreldentity/-ds <true/t | false/f>:Settotr ue tousedatastoreidentity for tablesthat have
single numeric primary key columns. Thetool typically uses application identity for all generated classes.

e -useBuiltinldentityC ass/-bic <true/t | false/f>: Settof al se to prevent thetool from using built-
in application identity classes when possible. Thiswill force the tool to to create custom application identity classes even
when there is only one primary key column.

e -innerldentityC asses/-inn <true/t | false/f>:Settotrue to have any generated application identity
classes be created as static inner classes within the persistent classes. Defaultsto f al se.

e -identityd assSuffix/-is <suffix>: Suffix to append to class names to form application identity class names,
or for inner identity classes, the inner class name. Defaultsto | d.

* -typeMap/-typ <type mappi ng>: A string that specifies the default Java classes to generate for each SQL type that
isseen in the schema. Theformat is SQLTYPE1=JavaC ass1, SQLTYPE2=JavaCl ass2 . The SQL type namefirst
looks for a customization based on SQLTYPE(S| ZE, PRECI SI ON) , then SQLTYPE(Sl ZE) , then SQL-

TYPE(SI ZE, PRECI SI ON) . So if acolumn whose type nameis CHAR is found, it will first look for the CHAR(50, 0)
type name specification, then it will look for CHAR(50) , and finally it will just look for CHAR. For example, to generate a
char array for every CHAR column whose size is exactly 50, and to generate ashor t for every type name of | NTEGER,
you might specify: CHAR(50) =char [], | NTEGER=shor t . Note that since various databases report different type
names differently, one database's type name specification might not work for another database. Enable TRACE level 1ogging
on the Met aDat a channel to track which type names OpenJPA is examining.

» -customi zer d ass/-cc <cl ass name>: Thefull class name of a
or g. apache. openj pa. j dbc. net a. Rever seCust omi zer customization plugin. If you do not specify areverse
customizer of your own, the system defaultsto aPr operti esRever seCust onmi zer . This customizer allows you to
specify simple customization options in the properties file given with the - cust omi zer Properti es flag below. We
present the available property keys below.

e -custom zerProperties/-cp <properties file or resource>: Thepath or resource name of a proper-
tiesfile to passto the reverse customizer on initialization.

e -custom zer./-c.<property nane> <property val ue>: Thegiven property name will be matched with the
corresponding Java bean property in the specified reverse customizer, and set to the given value.

Running the tool will generate . | ava filesfor each generated class (and its application identity class, if applicable), along
with JPA annotations (if enabled by setting - annot at i ons true),oranorm xm file (if not disabled with - met adat a
none) containing the corresponding persistence metadata.

4. Examine the generated class, metadata, and mapping information, and modify it as necessary. Remember that the reverse map-
ping tool only provides a starting point, and you are free to make whatever modifications you like to the code it generates.

After you are satisfied with the generated classes and their mappings, you should first compile the classeswith j avac,
j 1 kes, or your favorite Java compiler. Make sure the classes are located in the directory corresponding to the - package

flag you gave the reverse mapping tool. Next, if you have generated an or m xmi , move that fileto a META- | NF directory
within adirectory in your classpath. Finally, enhance the classes if necessary (see Section 5.2, “ Enhancement ” [228]).

Y our persistent classes are now ready to access your existing schema.

7.2.1. Customizing Reverse Mapping

Theor g. apache. openj pa. j dbc. nmet a. Rever seCust oni zer plugin interface allows you to customze the reverse

262

../javadoc/org/apache/openjpa/jdbc/meta/ReverseCustomizer.html
../javadoc/org/apache/openjpa/jdbc/meta/PropertiesReverseCustomizer.html

Mapping

mapping process. See the class Javadoc for details on the hooks that this interface provides. Specify the concrete plugin imple-
mentation to use with the - cust omi zer C ass/ - cc command-line flag, described in the preceding section.

By default, the reverse mapping tool usesaor g. apache. openj pa. j dbc. net a. Properti esRever seCust oni zer .

This customizer allows you to perform relatively simple customizations through the properties file named with the -
cust om zer Properti es tool flag. The customizer recognizes the following properties:

» <tabl e nanme>.tabl e-type <type>: Override the default type of the table with name <t abl e nanme>. Legal values
are:
* base: Primary table for a base class.
e secondar y: Secondary table for a class. The table must have aforeign key joining to aclass table.
e secondar y- out er : Outer-joined secondary table for a class. The table must have aforeign key joining to a class table.
e associ at i on: Association table. The table must have two foreign keysto class tables.
e col | ecti on: Collection table. The table must have one foreign key to a class table and one data column.
e subcl ass: A joined subclass table. The table must have aforeign key to the superclass' table.
¢ none: The table should not be reverse-mapped.

e <cl ass nane>.renane <new cl ass nane>: Override the given tool-generated name <cl ass nane> with anew
value. Use full class names, including package. Y ou are free to rename a class to a new package. Specify avalue of none to
reject the class and leave the corresponding table unmapped.

» <tabl e nanme>. cl ass-nane <new cl ass name>: Assign the given fully-qualified class name to the type created
from the table with name <t abl e nane>. Use avalue of none to prevent reverse mapping thistable. This property can be
used in place of ther enane property.

* <class nane>.identity <datastore | builtin | identity class name>: Setthisproperty to dat a-
st or e to use datastore identity for the class<cl ass name>, bui | ti n to use abuilt-in identity class, or the desired applic-
ation identity class name. Give full class names, including package. Y ou are free to change the package of the identity class
thisway. If the persistent class has been renamed, use the new class name for this property key. Remember that datastore iden-
tity requires a table with a single numeric primary key column, and built-in identity requires a single primary key column of
any type.

e <cl ass nane>. <field nane>.renane <new fi el d name> : Overidethetool-generated <fi el d nane>in

class<cl ass nane> with the given name. Use the field owner's full class namein the property key. If the field owner's class
was renamed, use the new class name. The property value should be the new field name, without the preceding class name. Use
avalue of none to reject the generated mapping and remove the field from the class.

<t abl e nane>. <col um nane>. fi el d-nane <new fi el d nanme>: Set the generated field name for the <t abl e
nane> table's<col umm nane> column. If thisis amulti-column mapping, any of the columns can be used. Use a value of
none to prevent the column and its associated columns from being reverse-mapped.

<cl ass nanme>.<field name>.type <field type>:Thetypeto givethe named field. Usefull class names. If the
field or the field's owner class has been renamed, use the new name.

<cl ass nane>. <fi el d name>. val ue: Theinitia value for the named field. The given string will be placed as-isin the
generated Java code, so be sureit isvalid Java. If thefield or the field's owner class has been renamed, use the new name.

All property keys are optional; if not specified, the customizer keeps the default value generated by the reverse mapping tool.

Example 7.10. Customizing Reverse Mapping with Properties

263

../javadoc/org/apache/openjpa/jdbc/meta/ReverseCustomizer.html
../javadoc/org/apache/openjpa/jdbc/meta/PropertiesReverseCustomizer.html

Mapping

java org. apache. openj pa. j dbc. met a. Rever seMappi ngTool -pkg com xyz -cp custom properties schenma. xn

Examplecust om properti es:

com xyz. Thl Magazi ne. r enane: com xyz. Magazi ne

com xyz. Thl Arti cl e. renane: com xyz. Article

com xyz. Thl PubConpany. r enane: com xyz. pub. Conpany
com xyz. Thl Sysl nf o. r enane: none

com xyz. Magazi ne. al | Articl es. renane: articles

com xyz. Magazi ne. arti cl es. type: java.util.Collection
com xyz. Magazi ne. articl es. val ue: new TreeSet ()

com xyz. Magazi ne. i dentity: dat astore

com xyz. pub. Conpany. i dentity: com xyz. pub. Conpanyl d

7.3.

Meet-in-the-Middle Mapping

In the meet-in-the-middle mapping approach, you control both the relational model and the object model. It is up to you to define
the mappings between these models. The mapping tool'sval i dat e action is useful to meet-in-the-middle mappers. This action
verifies that the mapping information for a class matches the class definition and the existing schema. It throws an informative
exception when your mappings are incorrect.

Example 7.11. Validating Mappings

java org. apache. openj pa. j dbc. met a. Mappi ngTool -action validate Magazine.java

7.4,

Thebui | dSchena action we discussed in Section 7.1, “ Forward Mapping” [257] is also somewhat useful during meet-
in-the-middle mapping. Unliketheval i dat e action, which throws an exception if your mapping data does not match the exist-
ing schema, the bui | dSchermma action assumes your mapping data is correct, and modifies the schemato match your mappings.
Thislets you modify your mapping data manually, but saves you the hassle of using your database's tools to bring the schema up-
to-date.

Mapping Defaults

The previous sections showed how to use the mapping tool to generate default mappings. But how does the mapping tool know
what mappings to generate? The answer liesinthe or g. apache. openj pa. j dbc. net a. Mappi ngDef aul t s interface.
OpenJPA uses an instance of this interface to decide how to name tables and columns, where to put foreign keys, and generally
how to create a schema that matches your object model.

| mportant

OpenJPA relies on foreign key constraint information at runtime to order SQL appropriately. Be sure to set your map-
ping defaults to reflect your existing database constraints, set the schema factory to reflect on the database for constraint
information (see Section 4.12.2, “ Schema Factory ” [222]), or use explicit foreign key mappings as described in Sec-

264

../javadoc/org/apache/openjpa/jdbc/meta/MappingDefaults.html

Mapping

tion 7.7.9.2, “ Foreign Keys” [274]

Theopenj pa. j dbc. Mappi ngDef aul t s configuration property controlsthe Mappi ngDef aul t s interface implementa-
tion in use. Thisisaplugin property (see Section 2.4, “ Plugin Configuration ” [177]), so you can substitute your own imple-
mentation or configure the existing ones. OpenJPA includes the following standard implementations:

* j pa: Provides defaults in compliance with the JPA standard. Thisis an aiasfor the
or g. apache. openj pa. per si st ence. j dbc. Per si st enceMappi ngDef aul t s class. This class extends the
Mappi ngDef aul t sl npl class described below, so it has all the same properties (though with different default values), as
well as:

Pr ependFi el dNanmeToJoi nTabl el nver seJoi nCol unms: Whether to prepend the owning field name to the names
of inverse join columnsin join tables. Defaults to true per the JPA specification. Set to false for compatibility with older
OpenJPA versions which did not prepend the field name.

» defaul t: Thisisan aliasfor theor g. apache. openj pa. j dbc. net a. Mappi ngDef aul t sl npl class. This default
implementation is highly configurable. It has the following properties:

Def aul t M ssi ngl nf o: Whether to default missing column and table names rather than throw an exception. If set to
false, full explicit mappings are required at runtime and when using mapping tool actionslike bui | dSchenma andval i d-
at e.

RenmoveHungar i anNot at i on: Switches on/off removal of Hungarian notation when generating column names. Fields
such asnfFoobar and st r Bar Foo would become columns named f oobar and bar f oo respectively. OpenJPA will
search for the first instance of a uppercase character in the field name and then truncate the column name to remove anything
before it.

Based assStr at egy: The default mapping strategy for base classes. Y ou can specify abuilt-in strategy alias or the full
class name of acustom class strategy. You can also use OpenJPA's plugin format (see Section 2.4, “ Plugin Configura-
tion " [177]) to pass arguments to the strategy instance. Seetheor g. apache. openj pa. j dbc. net a. strat s pack-
age for available strategies.

Subcl ass St r at egy: The default mapping strategy for subclasses. Y ou can specify abuiltin strategy alias or the full
class name of acustom class strategy. You can also use OpenJPA's plugin format (see Section 2.4, “ Plugin Configura-
tion " [177]) to pass arguments to the strategy instance. Common strategiesareverti cal andf | at , the default. See the
or g. apache. openj pa. j dbc. net a. st r at s package for all available strategies.

Ver si onSt r at egy: The default version strategy for classes without aversion field. Y ou can specify a builtin strategy ali-
as or the full class name of a custom version strategy. You can also use OpenJPA's plugin format (see Section 2.4, “ Plu-
gin Configuration " [177]) to pass arguments to the strategy instance. Common strategies are none, st at e- com

pari son,timest anp, andver si on- nunber , the default. See the

or g. apache. openj pa. j dbc. net a. st r at s package for all available strategies.

Di scri m nat or St r at egy: The default discriminator strategy when no discriminator valueis given. Y ou can specify a
builtin strategy alias or the full class name of a custom discriminator strategy. You can also use OpenJPA's plugin format
(see Section 2.4, “ Plugin Configuration ” [177]) to pass arguments to the strategy instance. Common strategies aref i -
nal for abase classwithout subclasses, none to use joins to subclass tables rather than a discriminator column, and

cl ass- nane, the default. Seethe or g. apache. openj pa. j dbc. net a. st r at s package for all available strategies.

Fi el dStrat egi es: This property associates field types with custom strategies. The format of this property is similar to
that of plugin strings (see Section 2.4, “ Plugin Configuration ” [177]), without the class name. It is a comma-separated
list of key/value pairs, where each key isapossible field type, and each value isitself a plugin string describing the strategy
for that type. We present an example below. See Section 7.14.3, “ Custom Field Mapping” [283or information on custum
field strategies.

For ei gnKeyDel et eAct i on: The default delete action of foreign keys representing relations to other objects. Recog-
nized valuesincluder estri ct,cascade, nul | , def aul t . These values correspond exactly to the standard database
foreign key actions of the same names.

265

../javadoc/org/apache/openjpa/persistence/jdbc/PersistenceMappingDefaults.html
../javadoc/org/apache/openjpa/jdbc/meta/MappingDefaultsImpl.html
../javadoc/org/apache/openjpa/jdbc/meta/strats/package-summary.html
../javadoc/org/apache/openjpa/jdbc/meta/strats/package-summary.html
../javadoc/org/apache/openjpa/jdbc/meta/strats/package-summary.html
../javadoc/org/apache/openjpa/jdbc/meta/strats/package-summary.html

Mapping

The value none tells OpenJPA not to create database foreign keys on relation columns. Thisis the default.

* Joi nFor ei gnKeyDel et eAct i on: The defualt delete action of foreign keys that join join secondary, collection, map, or
subclass tables to the primary table. Accepts the same values asthe For ei gnKeyDel et eAct i on property above.

< Def er Const rai nt s: Whether to use deferred database constraints if possible. Defaults to false.

* I ndexLogi cal For ei gnKeys: Boolean property controlling whether to create indexes on logical foreign keys. Logical
foreign keys are columns that represent alink between tables, but have been configured through the For ei gnKey proper-
ties above not to use a physical database foreign key. Defaults to true.

» Dat aSt or el dCol urmNane: The default name of datastore identity columns.

e Di scri m nat or Col utmName: The default name of discriminator columns.

¢ I ndexDi scri nmi nat or : Whether to index the discriminator column. Defaults to true.

* Ver si onCol utmNane: The default name of version columns.

* | ndexVer si on: Whether to index the version column. Defaults to false.

e AddNul I I ndi cat or : Whether to create a synthetic null indicator column for embedded mappings. The null indicator
column allows OpenJPA to distinguish between a null embedded object and one with default values for all persistent fields.

e Nul I I ndi cat or Col utmNane: The default name of synthetic null indicator columns for embedded objects.
e OrderLi st s: Whether to create a database ordering column for maintaining the order of persistent lists and arrays.
e O der Col utmNane: The default name of collection and array ordering columns.

¢ St or eEnuntr di nal : Set to true to store enum fields as numeric ordinal valuesin the database. The default is to store the
enum value name as a string, which is more robust if the Java enum declaration might be rearranged.

e St oreUnmappedObj ect | dSt ri ng: Set to true to store the stringified identity of related objects when the declared re-
lated type is unmapped. By default, OpenJPA stores the related object's primary key value(s). However, this breaks down if
different subclasses of the related type use incompatible primary key structures. In that case, stringifying the identity valueis
the better choice.

The example below turns on foreign key generation during schema creation and associates the or g. mag. dat a. | nf oSt r uct
field type with the custom or g. mag. mappi ng. | nf oSt r uct Handl er value handler.

Example 7.12. Configuring Mapping Defaults

<property name="openj pa.j dbc. Mappi ngDef aul t s"
val ue="For ei gnKeyDel et eActi on=restrict,
Fi el dStrat egi es=' org. mag. dat a. | nf oSt ruct =or g. mag. mappi ng. | nf oSt ruct Handl er' "/ >

7.5. Mapping Factory

An important decision in the object-relational mapping process is how and where to store the data necessary to map your persist-

266

Mapping

ent classes to the database schema.

Section 6.1, “ Metadata Factory ” [250] introduced OpenJPA's Met aDat aFact or y interface. OpenJPA uses this same inter-
face to abstract the storage and retrieval of mapping information. OpenJPA includes the built-in mapping factories below, and
you can create your own factory if you have custom needs. Y ou control which mapping factory OpenJPA uses with the open-

j pa.j dbc. Mappi ngFact ory configuration property.

The bundled mapping factories are:

» -:Leavingtheopenj pa. j dbc. Mappi ngFact ory property unset allows your metadata factory to take over mappings as
well. If you are using the default j pa metadata factory, OpenJPA will read mapping information from your annotations and
orm xm when you leave the mapping factory unspecified.

Example 7.13. Standard JPA Configuration

In the standard JPA configuration, the mapping factory isleft unset.

<property name="openj pa. Met aDat aFact ory" val ue="j pa"/>

7.6.

Non-Standard Joins

The JPA Overview's Chapter 12, Mapping Metadata [117] explains join mapping. All of the examplesin that document,
however, use "standard" joins, in that there is one foreign key column for each primary key column in the target table. OpenJPA
supports additional join patterns, including partial primary key joins, non-primary key joins, and joins using constant values.

Inapartial primary key join, the source table only has foreign key columns for a subset of the primary key columnsin the target
table. So long as this subset of columns correctly identifies the proper row(s) in the referenced table, OpenJdPA will function prop-
erly. Thereis no specia syntax for expressing a partial primary key join - just do not include column definitions for missing for-
eign key columns.

In anon-primary key join, at least one of the target columnsis not a primary key. Once again, OpenJPA supports thisjoin type
with the same syntax as a primary key join. Thereis one restriction, however: each non-primary key column you are joining to
must be controlled by afield mapping that implementsthe or g. apache. openj pa. j dbc. met a. Joi nabl e interface. All
built in basic mappings implement this interface, including basic fields of embedded objects. OpenJPA will also respect any cus-
tom mappings that implement this interface. See Section 7.14, “ Custom Mappings” [283or an examination of custom map-

pings.

Not all joins consist of only links between columns. In some cases you might have a schemain which one of thejoin criteriais
that a column in the source or target table must have some constant value. OpenJPA calls joins involving constant val ues constant
joins.

To form a constant join in JPA mapping, first set the Joi nCol unm 'sharme attribute to the name of the column. If the column
with the constant value is the target of the join, giveitsfully qualified namein the form <t abl e name>. <col um nane> .
Next, set ther ef er encedCol urmNane attribute to the constant value. If the constant valueis a string, placeit in single quotes
to differentiate it from a column name.

267

../javadoc/org/apache/openjpa/jdbc/meta/Joinable.html

Consider the tables above. First, wewant to joinrow T1. R1 torow T2. R1. If wejust join column T1. FK to T2. PK1, we will
wind up matching both T2. R1 and T2. R2. So in addition to joining T1. FKto T2. PK1, we also have to specify that T2. PK2
has the value a. Here is how we'd accomplish this in mapping metadata.

@ntity
@rabl e(name="T1")
public class ... {

@manyToOne

@oi nCol ums({
@oi nCol utm(nanme="FK" referencedCol umNanme="PK1")
@oi nCol utm(nanme="T2. PK2" referencedCol umNane=""a'")

prlvate 5000

Notice that we had to fully qualify the name of column PK2 becauseit isin the target table. Also notice that we put single quotes
around the constant value so that it won't be confused with a column name. Y ou do not need single quotes for numeric constants.
For example, the syntax tojoin T1. R2 to T2. R4 is:

@ntit
@rabl e(nama "T1")
public class ... {

@manyToOne
@oi nCol ums({
@oi nCol um(nane="FK" referencedCol umNane= " PK2"),
@oi nCol utm(nanme="T2. PK1" referencedCol umNane="2")
1}

prlvate 5000

Finally, from the inverse direction, these joins would look like this:

@ntity
@abl e(name="T2")
public class ... {

@manyToOne

@oi nOoI ums({
@oi nCol um(name="T1. FK" ref erencedCol utmmNanme= " PK1"),
@oi nCol um(name="PK2" referencedCol umName=""a"")

prlvate 500

@anyToOne
@oi nCol ums({

@oi nCol utm(name="T1. FK" ref er encedCol unmNane="PK2") ,
H @oi nCol uim(name="PK1" referencedCol utmNanme="2")

private ...;

268

Mapping

7.7. Additional JPA Mappings

OpenJPA supports many persistence strategies beyond those of the JPA specification. Section 6.3, “ Additional JPA M etadata
" [251] covered the logical metadata for OpenJPA's additional persistence strategies. We now demonstrate how to map entities
using these strategies to the database.

7.7.1. Datastore ldentity Mapping

Section 5.4, “ Object Identity ” [232] describes how to use datastore identity in JPA. OpenJPA requires a single numeric
primary key column to hold datastore identity values. The

or g. apache. openj pa. persi st ence. j dbc. Dat aSt or el dCol unmn annotation customizes the datastore identity
column. This annotation has the following properties:

e String name: Defaultsto| D.

e int precision

* String columDefinition

* bool ean insertable

* bool ean updat abl e

All properties correspond exactly to the same-named properties on the standard Col unm annotation, described in Section 12.3, “
Column” [121].

Example 7.14. Datastore | dentity Mapping

i mport org. apache. openj pa. per si stence. *;
i nport org. apache. openj pa. per si st ence. j dbc. *;

@ntity

@abl e(nane 'LOGS")

@at aSt or el dCol urm(name="ENTRY")
public class LogEntry {

@ob
private String content;

7.7.2. Surrogate Version Mapping

OpenJPA supports version fields as defined by the JPA specification, but allows you to use a surrogate version column in place of
aversion field if you like. Y ou map the surrogate version column with the

or g. apache. openj pa. persi stence. j dbc. Ver si onCol unm annotation. Y ou can aso use the

or g. apache. openj pa. persi stence. j dbc. Ver si onCol unms annotation to declare an array of Ver si onCol umm
values. Each Ver si onCol um has the following properties:

e String name: Defaultsto VERSN.

e int length

269

../javadoc/org/apache/openjpa/persistence/jdbc/DataStoreIdColumn.html
../javadoc/org/apache/openjpa/persistence/jdbc/VersionColumn.html
../javadoc/org/apache/openjpa/persistence/jdbc/VersionColumns.html

7.7.3.

Mapping

e int precision

* int scale

* String columDefinition

* bool ean nul | abl e

* bool ean insertable

* bool ean updat abl e

élllproperti[ef2 %)rrespond exactly to the same-named properties on the standard Col unm annotation, described in Section 12.3, “
olumn” .

By default, OpenJPA assumes that surrogate versioning uses aversion number strategy. Y ou can choose a different strategy with
the Ver si onSt r at egy annotation described in Section 7.13.1.4, “ Version Strategy " [281]

Multi-Column Mappings

7.7.4.

OpenJPA makes it easy to create multi-column custom mappings. The JPA specification includes a Col urm annotation, but is
missing away to declare multiple columns for asingle field. OpenJPA remedies this with the
or g. apache. openj pa. persi st ence. j dbc. Col untms annotation, which contains an array of Col unm values.

Remember to annotate custom field types with Per si st ent , asdescribed in Section 6.3.3, “ Persistent Field Values” [251].

Join Column Attribute Targets

7.7.5.

Section 12.8.4, “ Direct Relations” [150] in the JPA Overview introduced you to the Joi nCol unm annotation. A Joi n-

Col um’sr ef er encedCol utmNan®e property declares which column in the table of the related type this join column links to.
Suppose, however, that the related type is unmapped, or that it is part of a table-per-class inheritance hierarchy. Each subclass
that might be assigned to the field could reside in a different table, and could use entirely different names for its primary key
columns. It becomesimpossible to supply asingler ef er encedCol urmNane that works for all subclasses.

OpenJPA rectifies this by allowing you to declare which attribute in the related type each join column links to, rather than which
column. If the attribute is mapped differently in various subclass tables, OpenJPA automatically forms the proper join for the sub-
classrecord at hand. Theor g. apache. openj pa. per si st ence. j dbc. XJoi nCol unm annotation has all the same prop-
erties as the standard Joi nCol unm annotation, but adds an additional r ef er encedAt t ri but eNamne property for this pur-

pose. Simply use a XJoi nCol umm in place of aJoi nCol urm whenever you need to access this added functionality.

For compound keys, usethe or g. apache. openj pa. per si st ence. j dbc. XJoi nCol utms annotation. The value of this
annotationis an array of individual XJoi nCol ums.

Embedded Mapping

JPA usesthe At t ri but eOver ri de annotation to override the default mappings of an embeddable class. The JPA Overview
details this processin Section 12.8.3, “ Embedded Mapping ” [148]. At t ri but eOver ri dessuffice for simple mappings,
but do not alow you to override complex mappings. Also, JPA has no way to differentitate between a null embedded object and
one with default values for all of itsfields.

OpenJPA overcomes these shortcomings with the or g. apache. openj pa. per si st ence. j dbc. EnbeddedMappi ng
annotation. This annotation has the following properties:

e String nulllndicator Col umNane: If the named column's value is NULL, then the embedded object is assumed to be
null. If the named column has anon- NULL value, then the embedded object will get loaded and populated with data from the

270

../javadoc/org/apache/openjpa/persistence/jdbc/Columns.html
../javadoc/org/apache/openjpa/persistence/jdbc/XJoinColumn.html
../javadoc/org/apache/openjpa/persistence/jdbc/XJoinColumns.html
../javadoc/org/apache/openjpa/persistence/jdbc/EmbeddedMapping.html

Mapping

other embedded fields. This property is entirely optional. By default, OpenJPA always assumes the embedded object is hon-
null, just asin standard JPA mapping.

If the column you name does not belong to any fields of the embedded object, OpenJPA will create a synthetic null-indicator
column with this name. In fact, you can specify avaue of t r ue to simply indicate that you want a synthetic null-indicator
column, without having to come up with aname for it. A value of f al se signalsthat you explicitly do not want a null-in-
dicator column created for this mapping (in case you have configured your mapping defaults to create one by default).

e String nulllndicatorFi el dNane: Rather than name anull indicator column, you can name a field of the embedded
type. OpenJPA will use the column of thisfield as the null-indicator column.

* Mappi ngOverride[] overrides: Thisarray alowsyou to override any mapping of the embedded object.

The EnmbeddedMappi ng'sover ri des array servesthe same purpose as standard JPA'sAt t ri but eOverri de sand As-
soci ati onOverri de s. Infact, you can also use the Mappi ngOver ri de annotation on an entity class to override a com-
plex mapping of its mapped superclass, just asyou canwith At t ri but eOverri de and Associ ati onOverri de s The
Mappi ngOver ri des annotation, whose valueis an array of Mappi ngOver ri de s, alows you to overide multiple mapped
superclass mappings.

Each or g. apache. openj pa. persi st ence. j dbc. Mappi ngOver ri de annotation has the following properties:

* String nane: The name of thefield that is being overridden.
e Col um[] col ums: Columnsfor the new field mapping.
* XJoi nCol um[] j oi nCol umms: Join columns for the new field mapping, if it isarelation field.

e Cont ai ner Tabl e cont ai ner Tabl e: Table for the new collection or map field mapping. We cover collection mappings
in Section 7.7.6, “ Collections” [272nd map mappingsin Section 7.7.8,“ Maps” [274]

* El ement Joi nCol um[] el enent Joi nCol umrms: Element join columns for the new collection or map field mapping.
Y ou will see how to use element join columnsin Section 7.7.6.2, “ Element Join Columns” [272]

The following example defines an embeddable Pat hCoor di nat e classwith a custom mapping of aj ava. awt . Poi nt
field to two columns. It then defines an entity which embeds a Poi nt Coor di nat e and overrides the default mapping for the
point field. The entity also declaresthat if the Pat hCoor di nat e 'ssi t eNane field column isnull, it means that no Pat h-
Coor di nat e is stored in the embedded record; the owning field will load as null.

Example 7.15. Overriding Complex Mappings

i mport org. apache. openj pa. persi stence. j dbc. *;

@nbeddabl e
public class PathCoordinate {

private String siteNane;

@per si st ent
@Bt r at egy("com xyz. openj pa. Poi nt Val ueHandl er")
private Point point;

}

@Entity
public class Path {

@nbedded
@nbeddedMappi ng(nul | I ndi cat or Fi el dNanme="si t eNane", overri des={
@mppi ngOverri de(name="si t eName", col ums=@Col umm(nanme="START_SI TE")),
@mppi ngOverri de(nanme="poi nt", col ums={
@ol umm(name="START_X"),
@col um(nanme="START_Y")

271

../javadoc/org/apache/openjpa/persistence/jdbc/MappingOverride.html

Mapping

}

private PathCoordinate start;

7.7.6. Collections

In Section 6.3.4, “ Persistent Collection Fields’ [252], we explored the Per si st ent Col | ect i on annotation for persistent
collection fields that aren't a standard OneToMany or Many ToMany relation. To map these non-standard collections, combine
OpenJPA's Cont ai ner Tabl e annotation with EI enent Joi nCol urms. We explore the annotations below.

7.7.6.1. Container Table

Theor g. apache. openj pa. per si st ence. j dbc. Cont ai ner Tabl e annotation describes a database table that holds
collection (or map) elements. This annotation has the following properties:

e String nane

 String catal og

e String schema

* XJoi nCol um[] j oi nCol umms

e Forei gnKey | oi nFor ei gnKey

* I ndex j oi nl ndex

Thenane, cat al og, schema , andj oi nCol umms properties describe the container table and how it joins to the owning en-
tity's table. These properties correspond to the same-named properties on the standard Joi nTabl e annotation, described in Sec-
tion 12.8.5,“ Join Table” [153] . If left unspecified, the name of the table defaultsto the first five characters of the entity table
name, plus an underscore, plus the field name. Thej oi nFor ei gnKey andj oi nl ndex properties override default foreign key

and index generation for the join columns. We explore foreign keys and indexes later in this chapter.

Y ou may notice that the container table does not define how to store the collection elements. That is left to separate annotations,
which are the subject of the next sections.

7.7.6.2. Element Join Columns

Element join columns are equivalent to standard JPA join columns, except that they represent ajoin to a collection or map ele-
ment entity rather than a direct relation. Y ou represent an element join column with OpenJPA's

or g. apache. openj pa. persi st ence. j dbc. El enent Joi nCol unm annotation. To declare a compound join, enclose
an array of El ement Joi nCol umsintheor g. apache. openj pa. per si st ence. j dbc. El enent Joi nCol utms an-
notation.

An El enent Joi nCol unm awaysresidesin a container table, so it does not have thet abl e property of astandard Joi n-
Col umm. Like XJoi nCol ummsabove, El enent Joi nCol umnms can reference alinked attribute rather than a static linked
column. Otherwise, the El enent Joi nCol unm and standard Joi nCol unm annotations are equivalent. See Section 12.8.4, “
Direct Relations” [150] in the JPA Overview for areview of the Joi nCol unm annotation.

7.7.6.3. Order Column

272

../javadoc/org/apache/openjpa/persistence/jdbc/ContainerTable.html
../javadoc/org/apache/openjpa/persistence/jdbc/ElementJoinColumn.html
../javadoc/org/apache/openjpa/persistence/jdbc/ElementJoinColumns.html

7.7.7.

Mapping

Relational databases do not guarantee that records are returned in insertion order. If you want to make sure that your collection
elements are loaded in the same order they were in when last stored, you must declare an order column. OpenJPA's

or g. apache. openj pa. persi st ence. j dbc. O der Col umm annotation has the following properties:

e String nane: Defaultsto ORDR.

* bool ean enabl ed

e int precision

e String columbDefinition

* bool ean insertable

e bool ean updat abl e

Order columns are always in the container table. Y ou can explicitly turn off ordering (if you have enabled it by default via your

mapping defaults) by setting the enabl ed property to f al se. All other properties correspond exactly to the same-named
properties on the standard Col urm annotation, described in Section 12.3,“ Column ” [121].

One-Sided One-Many Mapping

The previous section covered the use of El enment Joi nCol unn annotations in conjunction with aCont ai ner Tabl e for
mapping collections to dedicate tables. El enent Joi nCol urm s, however, have one additional use: to create a one-sided one-
many mapping. Standard JPA supports OneToMany fields without amappedBy inverse, but only by mapping thesefieldsto a
Joi nTabl e (see Section 12.8.5,“ Join Table” [153] in the JPA Overview for details). Often, you'd like to create a one-many
association based on an inverse foreign key (logical or actual) in the table of the related type.

org.mag.subscribe

Subscription
- items: Collection<Lineltern= |}

Lineltem

Consider the model above. Subscri pti on hasacollection of Li nel t ems, but Li nel t emhas no inverse relation to Sub-
scri ption. Toretrievedl of theLi nel t emrecordsfor aSubscri pti on ,wejointhe SUB_| Dinverse foreign key
columninthe LI NE_| TEMtable to the primary key column of the SUB table. The example below shows how to represent this
model in mapping annotations. Note that OpenJPA automatically assumes an inverse foreign key mapping when element join
columns are given, but no container or join table is given.

Example 7.16. One-Sided One-Many Mapping

package org. nmag. subscri be;
i mport org. apache. openj pa. persi stence. j dbc. *;

@Entity
@rabl e(name="LI NE_| TEM', schema="CNTRCT")
public class Lineltem {

}

273

../javadoc/org/apache/openjpa/persistence/jdbc/OrderColumn

Mapping

@Entity
@abl e(nane="SUB", schema="CNTRCT")
public class Subscription {

@d private long id;
@neToMany

@l ement Joi nCol um(nanme="SUB_| D', referencedCol umNanme="1D")
private Col |l ection<Linelten itens;

7.7.8. Maps

We detailed the Cont ai ner Tabl e annotation in Section 7.7.6.1, “ Container Table” [272]. Custom map mappings may also
use this annotation to represent a map table.

7.7.9. Indexes and Constraints

OpenJPA uses index information during schema generation to index the proper columns. OpenJPA uses foreign key and unique
constraint information during schema creation to generate the proper database constraints, and also at runtime to order SQL state-
ments to avoid constraint violations while maximizing SQL batch size.

OpenJPA assumes certain columns have indexes or constraints based on your mapping defaults, as detailed in Section 7.4, “

Mapping Defaults” [264]. Y ou can override the configured defaults on individua joins, field values, collection elements, map
keys, or map values using the annotations presented in the following sections.

7.7.9.1. Indexes

Theor g. apache. openj pa. per si st ence. j dbc. | ndex annotation represents an index on the columns of afield. Itis
also used within the Cont ai ner Tabl e annotation to index join columns. To index the columns of a collection element, use
theor g. apache. openj pa. per si st ence. j dbc. El ement | ndex annotation. These annotations have the following
properties:

* bool ean enabl ed: Set thisproperty tof al se to explicitly tell OpenJPA not to index these columns, when OpenJPA
would otherwise do so.
e String nane: The name of the index. OpenJPA will choose anameif you do not provide one.

* bool ean uni que: Whether to create a unique index. Defaults to false.

7.7.9.2. Foreign Keys

Theor g. apache. openj pa. per si st ence. j dbc. For ei gnKey annotation represents a foreign key on the columns of a
field. It is also used within the Cont ai ner Tabl e annotation to set a database foreign key on join columns. To set a constraint
to the columns of a collection element, usethe or g. apache. openj pa. per si st ence. j dbc. El ement For ei gnKey
annotation. These annotations have the following properties:

* bool ean enabl ed: Set thisproperty tof al se to explicitly tell OpenJPA not to set aforeign key on these columns, when
OpenJPA would otherwise do so.

e String nane: The name of the foreign key. OpenJPA will choose aname if you do not provide one, or will create an an-
onymous key.

274

../javadoc/org/apache/openjpa/persistence/jdbc/Index.html
../javadoc/org/apache/openjpa/persistence/jdbc/ElementIndex.html
../javadoc/org/apache/openjpa/persistence/jdbc/ForeignKey.html
../javadoc/org/apache/openjpa/persistence/jdbc/ElementForeignKey.html

Mapping

» bool ean def erred: Whether to create adeferred key if supported by the database.

* Forei gnKeyActi on del et eActi on: Vauefromthe
or g. apache. openj pa. persi st ence. j dbc. For ei gnKeyAct i on enum identifying the desired delete action. De-
faultsto RESTRI CT.

» Forei gnKeyActi on updat eAct i on: Vauefromthe
or g. apache. openj pa. per si st ence. j dbc. For ei gnKeyAct i on enum identifying the desired update action. De-
faultsto RESTRI CT.

Keep in mind that OpenJPA uses foreign key information at runtime to avoid constraint violations; it isimportant, therefore, that
your mapping defaults and foreign key annotations combine to accurately reflect your existing database constraints, or that you
configure OpenJPA to reflect on your database schemato discover existing foreign keys (see Section 4.12.2, “ Schema Factory
" [222)).

7.7.9.3. Unique Constraints

Theor g. apache. openj pa. persi st ence. j dbc. Uni que annotation represents a ungjiue constraint on the columns of a
field. It is more convenient than using the uni queConst r ai nt s property of standard JPA Tabl e and Secondar yTabl e
annotations, because you can apply it directly to the constrained field. The Uni que annotation has the following properties:

» bool ean enabl ed: Set thisproperty tof al se to explicitly tell OpenJPA not to constrain these columns, when OpenJPA
would otherwise do so.

» String name: The name of the constraint. OpenJPA will choose aname if you do not provide one, or will create an an-
onymous constraint.

* bool ean def erred: Whether to create adeferred constraint if supported by the database.

7.7.10. XML Column Mapping

DB2, Oracle and SQL Server support XML column types and X Path queries and indexes over these columns.OpenJPA supports
mapping of an entity property mapped to an XML column.

Annotate the entity property using the XMLV alueHandler strategy:

@er si st ent
@Bt r at egy("org. apache. openj pa. j dbc. net a. strats. XM_Val ueHandl er")

The default fetch type is EAGER but can be changed to LAZY by using:

@er si st ence(f et ch=Fet chType. LAZY)

The entity property class is required to have jaxb binding annotations. This is produced when the classes are generated from an
xml schemausing the jaxb generator XJC.Ensure that @Xml Root El enment appearsin theroot class. In some case this annota-
tion needs to be added manually if it is missing.

Thejaxb jar files must be on the application classpath (jaxb-api.jar, jaxb-impl.jar, jsr173_1.0 api.jar or equivaent).

275

../javadoc/org/apache/openjpa/persistence/jdbc/ForeignKeyAction.html
../javadoc/org/apache/openjpa/persistence/jdbc/ForeignKeyAction.html
../javadoc/org/apache/openjpa/persistence/jdbc/Unique.html

Mapping

EJB Query path expressions can navigate into the mapped class and its subfields to any level.
The path expression is rewritten into an equivalent XPATH expression using SQL XML functions.

The path expression must be single valued.Path expressions over xml mapped classes can only be used in WHERE as an operand
to asimple predicate (= <> < > >= <=).

Path expressions over XML mapped fields can not be:

* aninput to aEJB query scalar function

» anoperand of BETWEEN, ISNULL, LIKE or IN predicate

* used to project out subfieldsin the SELECT clause

 used inthe FROM , GROUPBY, HAVING, ORDER BY clauses

XML schemamust not contain namespace declarations. The EJB query path expressions can not refer to javafields generated
from XML ANY type or XML mixed element types.

The datatype generated by JAXB must be avalid EJB query type to use the property in an EJB query predicate.

Shown below isasample XML schema myaddress.xsd, in which the JPA entity Order has <shi pAddr ess> persistent field
that maps to an XML column.

Example 7.17. myaddress.xsd

<?xm version="1.0" ?>
<xs:schema xm ns: xs="http://wwm. w3. or g/ 2001/ XM_-Schena" >

<xs: conpl exType nanme="Address">

<xs:sequence>
<xs: el ement nane="Nane" type="xs:string" />
<xs: el ement name="Street" type="xs:string"

m nCccurs="1" maxCccurs="3" />

<xs: el ement nane="City" type="xs:string" />

</ xs: sequence>

</ xs: conpl exType>

<xs: conpl exType name="CAN_Addr ess" >
<xs: conpl exCont ent >
<xs: extensi on base="Address">
<XS:sequence>
<xs: el ement name="Provi nce" type="xs:string" />
<xs: el ement nane="Post al Code" type="xs:string" />
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<xs: si npl eType nanme="USPS_ZI P">
<xs:restriction base="xs:integer">
<xs: mnl ncl usi ve val ue="01000" />
<xs: maxl ncl usi ve val ue="99999" />
</xs:restriction>

</ xs: si nmpl eType>

<xs: conpl exType name="USA Address">
<xs: conpl exCont ent >
<xs: extensi on base="Address">
<Xs:sequence>
<xs: el ement nane="State" type="xs:string" />
<xs: el ement name="ZIP" type="USPS_ZIP" />
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<xs: el ement name="Mai | Address" type="Address" />

<xs: el ement nane="Addr CAN' type="CAN_Address"
substituti onG oup="Mai | Address" />

<xs: el ement name="Addr USA" type="USA Address"

276

Mapping

substituti onG oup="Mai | Address" />
</ xs: schena>

Java classes Address, USAAddress and CANAddress are produced using jaxb XJC generator from myaddress schema.

Example 7.18. Address.Java

@ Root El ement
@m Accessor Type(Xm AccessType. FI ELD)
@Xm Type(nanme = "Address", propOrder = {

"name",
"street",
"city"
public class Address
@ El enent (nane = "Nanme", required = true)
protected String nane;
@Xm El enent (nanme = "Street", required = true)

protected List<String> street;
@ El enent (nane = "City", required = true)
protected String city;

| **

* Getter and Setter nethods.
*
@]

Example 7.19. USAAddress,java

@ Root El enent

@Xm Accessor Type(Xm AccessType. Fl ELD)

@m Type(name = "USA Address”, propOrder = {
"state",
" Zi p"

public class USAAddress
extends Address

@m El ement (nanme = "State")
protected String state;
@ El enent (nane = "ZI P")
protected int zip;

| **

* Getter and Setter nethods.
*
*/

Example 7.20. CANAddress,java

277

Mapping

@ Root El ement

@Xm Accessor Type(Xm AccessType. Fl ELD)

@m Type(name = "CAN_Address", propOrder = {
"province",
"post al Code"

1
public class CANAddress
extends Address

@m El erent (name = "Provi nce")
protected String province;

@Xm El enent (name = " Post al Code")
protected String postal Code;

* %

* Getter and Setter nethods.
*
*/

Example 7.21. Showing annotated Order entity with XML mapping strategy

@ntity
public class Oder {
private into id;
@per si st ent
@trategy ("org.apache. openjpa.jdbc. neta.strats. XM_Val ueHandl er")
private Address shi pAddress;

Example 7.22. Showing creation of Order Entity having shipAddress mapped to XML column

nyaddr ess. Obj ect Fact ory addressFactory = new nyaddress. Obj ect Factory();
Customer cl1 = new Custoner();

cl.set G d(new Custoner. CustonerKey("USA", 1));
cl.setName("Harry's Auto");

Order 01 = new Order(850, false, cl);

USAAddr ess addr1 = addressFactory. creat eUSAAddress();
addr1.setCity("San Jose");

addr1.set State("CA");

addr 1. set ZI P(new | nt eger ("95141"));

addr 1. get Street().add("12500 Monterey");

addr 1. set Narme(cl. get Narme());

ol. set Shi pAddr ess(addr1);

em persist(ol);

Example 7.23. Sample EJB Queriesfor XML Column mapping

"San Jose" or
"San Franci sco" (OK)

select o from Order o where o.shi pAddress.city
0. shi pAddress.city

278

Mapping

. select o.shipaAddress fromOrder o (OK)
. select o.shipAddress.city from Order o (I NVALID)

. select o fromOrder o where o.shi pAddress.street = "San Jose" (INVALID nmulti val ued)

7.7.11. Stream LOB Support

Since the 1.1.0 release Apache OpenJPA added support for Streams. This feature makes it possible to stream large amounts of
datainto and out of fieldsin objects managed by OpenJPA without ever holding all the datain memory at the same time.

To persist astream, usetheor g. apache. openj pa. per si st ence. Per si st ent annotation.

Example 7.24. Showing annotated | nputStream

@ntity
public class Enpl oyee {

@ér si stent
private | nput Stream phot oSt ream

7.8. Key Columns

Key columns serve the same role for map keys as the element columns described in ??? serve for collection elements. OpenJPA's
or g. apache. openj pa. persi st ence. j dbc. KeyCol umm annotation represents a map key. To map custom multi-
column keys, usethe or g. apache. openj pa. per si st ence. j dbc. KeyCol umrms annotation, whose value is an array of
KeyCol ums.

A KeyCol umm always residesin a container table, so it does not have thet abl e property of a standard Col urm. Otherwise,
the Key Col umrm and standard Col unm annotations are equivalent. See Section 12.3, “ Column ” [121] in the JPA Overview for
areview of the Col unm annotation.

7.9. Key Join Columns

Key join columns are equivalent to standard JPA join columns, except that they represent ajoin to amap key entity rather than a
direct relation. Y ou represent akey join column with OpenJPA's

or g. apache. openj pa. persi st ence. j dbc. KeyJoi nCol unm annotation. To declare a compound join, enclose an ar-
ray of KeyJoi nCol unmmsintheor g. apache. openj pa. per si st ence. j dbc. KeyJoi nCol utms annotation.

A KeyJoi nCol unm alwaysresidesin a container table, so it does not havethet abl e property of astandard Joi nCol umm.
Like XJoi nCol ums above, KeyJoi nCol umms can reference alinked field rather than a static linked column. Otherwise, the
KeyJoi nCol umm and standard Joi nCol urm annotations are equivalent. See Section 12.8.4, “ Direct Relations” [150] in the
JPA Overview for areview of the Joi nCol umm annotation.

7.10. Key Embedded Mapping

279

../javadoc/org/apache/openjpa/persistence/Persistent.html
../javadoc/org/apache/openjpa/persistence/jdbc/KeyColumn.html
../javadoc/org/apache/openjpa/persistence/jdbc/KeyColumns.html
../javadoc/org/apache/openjpa/persistence/jdbc/KeyJoinColumn.html
../javadoc/org/apache/openjpa/persistence/jdbc/KeyJoinColumns.html

Mapping

Theor g. apache. openj pa. per si st ence. j dbc. KeyEnbeddedMappi ng annotation allows you to map your map
field's embedded key type to your container table. This annotation has exactly the same properties as the EnbeddedMappi ng
annotation described above.

7.11. Examples

org.mag

Article

- id: long
- authors: Map<String,Author=

Author

org.mag.pub

Map mapping in OpenJPA uses the same principles you saw in collection mapping. The example below mapsthe Ar t -
i ¢l e. aut hor s map according to the diagram above.

Example 7.25. String Key, Entity Value Map Mapping

package org. mag. pub;

i mport org.apache. openj pa. per si st ence. *;
i nport org.apache. openj pa. per si st ence. j dbc. *;

@ntity

@rabl e(name=" AUTH")

@at aSt or el dCol uim(narme="Al D' col umbDefi niti on="1NTEGER64")
public class Author {

}
package org. nag;

@ntity

@rabl e(nama "ART")

public class Article {
@d private long id;

@per si st ent Map

@Cont ai ner Tabl e(nane="ART_AUTHS", j oi nCol ums=@XJoi nCol um(name="ART_I D"))

@XeyCol um(nane="LNAME"

@l enent Joi nCol unm(name="AUTH_| D")

private Map<String, Aut hor> authors;

7.12. Mapping Limitations

The following sections outline the limitations OpenJPA places on specific mapping strategies.

280

../javadoc/org/apache/openjpa/persistence/jdbc/KeyEmbeddedMapping.html

Mapping

7.12.1. Table Per Class

Table-per-class inheritance mapping has the following limitations:

* You cannot traverse polymorphic relations to non-leaf classes in atable-per-class inheritance hierarchy in queries.

» You cannot map aone-sided polymorphic relation to a non-leaf class in atable-per-class inheritance hierarchy using an inverse
foreign key.

» You cannot use an order column in a polymorphic relation to a non-leaf class in atable-per-class inheritance hierarchy mapped
with an inverse foreign key.

» Table-per-class hierarchies impose limitations on eager fetching. See Section 5.8.2, “ Eager Fetching Considerationsand
Limitations” [249].

Non-polymorphic relations do not suffer from these limitations. Y ou can declare a non-polymorphic relation using the
extensions described in Section 7.13.2.2, “ Nonpolymor phic” [282]

7.13. Mapping Extensions

Mapping extensions allow you to access OpenJPA-specific functionality from your mappings. Note that all extensions below are
specific to mappings. If you store your mappings separately from your persistence metadata, these extensions must be specified
along with the mapping information, not the persistence metadata information.

7.13.1. Class Extensions

OpenJPA recognizes the following class extensions.

7.13.1.1. Subclass Fetch Mode

This extension specifies how to eagerly fetch subclass state. It overridesthe global openj pa. j dbc. Subcl assFet chMbde
property. Set the JPA or g. apache. openj pa. per si st ence. j dbc. Subcl assFet chMbde annotation to avalue from
theor g. apache. openj pa. per si st ence. j dbc. Eager Fet chType enum: JO N, PARALLEL, or NONE. See Sec-
tion 5.8, “ Eager Fetching” [247] for adiscussion of eager fetching.

7.13.1.2. Strategy

Theor g. apache. openj pa. per si st ence. j dbc. St r at egy class annotation allows you to specify a custom mapping
strategy for your class. See Section 7.14, “ Custom Mappings” [283or information on custom mappings.

7.13.1.3. Discriminator Strategy

Theor g. apache. openj pa. persi stence. jdbc. Di scri m nat or St r at egy class annotation allows you to specify
acustom discriminator strategy. See Section 7.14, “ Custom Mappings” [283or information on custom mappings.

7.13.1.4. Version Strategy

Theor g. apache. openj pa. per si st ence. j dbc. Ver si onSt r at egy class annotation allows you to specify a custom
version strategy. See Section 7.14, “ Custom Mappings” [28For information on custom mappings.

281

../javadoc/org/apache/openjpa/persistence/jdbc/SubclassFetchMode.html
../javadoc/org/apache/openjpa/persistence/jdbc/EagerFetchType.html
../javadoc/org/apache/openjpa/persistence/jdbc/Strategy.html
../javadoc/org/apache/openjpa/persistence/jdbc/DiscriminatorStrategy.html
../javadoc/org/apache/openjpa/persistence/jdbc/VersionStrategy.html

Mapping

7.13.2. Field Extensions

OpenJPA recognizes the following field extensions.

7.13.2.1. Eager Fetch Mode

This extension specifies how to eagerly fetch related objects. It overrides the global openj pa. j dbc. Eager Fet chMode
property. Set the JPA or g. apache. openj pa. per si st ence. j dbc. Eager Fet chMode annotation to a value from the
or g. apache. openj pa. persi st ence. j dbc. Eager Fet chType enum: JO N, PARALLEL, or NONE. See Section 5.8,
“ Eager Fetching” [247] for adiscussion of eager fetching.

7.13.2.2. Nonpolymorphic

All fields in Java are polymorphic. If you declare afield of type T , you can assign any subclass of T to thefield aswell. Thisis
very convenient, but can make relation traversal very inefficient under some inheritance strategies. It can even make querying
across the field impossible. Often, you know that certain fields do not need to be entirely polymorphic. By telling OpenJPA about
such fields, you can improve the efficiency of your relations.

OpenJPA also includesthe t ype metadata extension for narrowing the declared type of afield. See Section 6.4.2.6, “
Type” [255].

OpenJPA defines the following extensions for nonpolymorphic values:

e org. apache. openj pa. persi st ence. j dbc. Nonpol ynor phi ¢

» org. apache. openj pa. per si st ence. j dbc. El enent Nonpol ynor phi ¢

The value of these extensions is a constant from the

or g. apache. openj pa. persi st ence. j dbc. Nonpol ynor phi cType enumeration. The default value, EXACT, indic-

ates that the relation will always be of the exact declared type. A value of JO NABLE, on the other hand, means that the relation
might be to any joinable subclass of the declared type. This value only excludes table-per-class subclasses.

7.13.2.3. Class Criteria

Thisfamily of boolean extensions determines whether OpenJPA will use the expected class of related objects as criteriain the
SQL itissuestoload arelation field. Typically, thisis not needed. The foreign key values uniquely identify the record for the re-
lated object. Under some rare mappings, however, you may need to consider both foreign key values and the expected class of the
related object - for example, if you have an inverse relation that shares the foreign key with another inverse relation to an object
of adifferent subclass. In these cases, set the proper class criteraextensiontot r ue to force OpenJPA to append class criteriato
itsselect SQL.

OpenJPA defines the following class criteria annotations for field relations and array or collection element relations, respectively:

e org. apache. openj pa. persi stence. jdbc. C assCriteria

e org. apache. openj pa. persi stence. jdbc. El enent Cl assCriteria

7.13.2.4. Strategy

OpenJPA'sor g. apache. openj pa. persi st ence. j dbc. St r at egy extension alows you to specify a custom mapping

282

../javadoc/org/apache/openjpa/persistence/jdbc/EagerFetchMode.html
../javadoc/org/apache/openjpa/persistence/jdbc/EagerFetchType.html
../javadoc/org/apache/openjpa/persistence/jdbc/Nonpolymorphic.html
../javadoc/org/apache/openjpa/persistence/jdbc/ElementNonpolymorphic.html
../javadoc/org/apache/openjpa/persistence/jdbc/NonpolymorphicType.html
../javadoc/org/apache/openjpa/persistence/jdbc/ClassCriteria.html
../javadoc/org/apache/openjpa/persistence/jdbc/ElementClassCriteria.html
../javadoc/org/apache/openjpa/persistence/jdbc/Strategy.html

Mapping

strategy or value handler for afield. See Section 7.14, “ Custom Mappings” [283or information on custom mappings.

7.14. Custom Mappings

In OpenJPA, you are not limited to the set of standard mappings defined by the specification. OpenJPA alows you to define cus-
tom class, discriminator, version, and field mapping strategies with all the power of OpenJPA's built-in strategies.

7.14.1. Custom Class Mapping

To create a custom class mapping, write an implementation of the or g. apache. openj pa. j dbc. net a. O assSt r at egy
interface. Y ou will probably want to extend one of the existing abstract or concrete strategies in the
or g. apache. openj pa. j dbc. net a. strats package.

Theor g. apache. openj pa. per si st ence. j dbc. St r at egy annotation allows you to declare a custom class mapping

strategy in JPA mapping metadata. Set the value of the annotation to the full class name of your custom strategy. Y ou can config-
ure your strategy class bean properties using OpenJPA's plugin syntax, detailed in Section 2.4, “ Plugin Configuration ” [177].

7.14.2. Custom Discriminator and Version Strategies

To define a custom discriminator or version strategy, implement the

or g. apache. openj pa. j dbc. net a. Di scri m nat or St r at egy or

or g. apache. openj pa. j dbc. nmet a. Ver si onSt r at egy interface, respectively. Y ou might extend one of the existing
abstract or concrete strategiesinthe or g. apache. openj pa. j dbc. net a. strats package.

OpenJPA includesthe or g. apache. openj pa. per si st ence. j dbc. Di scri m nat or Str at egy and

or g. apache. openj pa. persi st ence. j dbc. Ver si onSt r at egy class annotations for declaring a custom discriminat-
or or version strategy in JPA mapping metadata. Set the string value of these annotations to the full class name of your imple-
mentation, or to the class name or alias of an existing OpenJPA implementation.

As with custom class mappings, you can configure your strategy class bean properties using OpenJPA's plugin syntax, detailed in
Section 2.4, “ Plugin Configuration ” [177].

7.14.3. Custom Field Mapping

While custom class, discriminator, and version mapping can be useful, custom field mappings are far more common. OpenJPA
offers two types of custom field mappings. value handlers, and full custom field strategies. The following sections examine each.

7.14.3.1. Value Handlers

Vaue handlers make it trivial to map any type that you can break down into one or more simple values. All value handlersimple-
ment theor g. apache. openj pa. j dbc. net a. Val ueHandl er interface; seeits Javadoc for details. Also, examine the
built-in handlersinthe sr ¢/ openj pa/ j dbc/ net a/ st r at s directory of your OpenJPA source distribution. Use these func-
tional implementations as examples when you create your own value handlers.

7.14.3.2. Field Strategies

OpenJPA interacts with persistent fields through the or g. apache. openj pa. j dbc. net a. Fi el dStr at egy interface.
Y ou can implement this interface yourself to create a custom field strategy, or extend one of the existing abstract or concrete
strategiesintheor g. apache. openj pa. j dbc. net a. st r at s package. Creating a custom field strategy is more difficult
than writing a custom value handler, but gives you more freedom in how you interact with the database.

7.14.3.3. Configuration

OpenJPA gives you two ways to configure your custom field mappings. The Fi el dSt r at egi es property of the built-in Map-
pi ngDef aul t s implementations allows you to globally associate field types with their corresponding custom value handler or

283

../javadoc/org/apache/openjpa/jdbc/meta/ClassStrategy.html
../javadoc/org/apache/openjpa/persistence/jdbc/Strategy.html
../javadoc/org/apache/openjpa/jdbc/meta/DiscriminatorStrategy.html
../javadoc/org/apache/openjpa/jdbc/meta/VersionStrategy.html
../javadoc/org/apache/openjpa/persistence/jdbc/DiscriminatorStrategy.html
../javadoc/org/apache/openjpa/persistence/jdbc/VersionStrategy.html
../javadoc/org/apache/openjpa/jdbc/meta/ValueHandler.html
../javadoc/org/apache/openjpa/jdbc/meta/FieldStrategy

7.15.

Mapping

strategy. OpenJPA will automatically use your custom strategies when it encounters afield of the associated type. OpenJPA will
use your custom value handlers whenever it encounters afield of the associated type. Section 7.4, “ Mapping Defaults” [264]
described mapping defaultsin detail.

Y our other option isto explicitly install acustom value handler or strategy on a particular field. To do so, specify the full name of
your implementation classin the proper mapping metadata extension. OpenJPA includes the

or g. apache. openj pa. persi st ence. j dbc. St r at egy annotation. Y ou can configure the named strategy or handler's
bean properties in these extensions using OpenJPA's plugin format (see Section 2.4, “ Plugin Configuration ” [177]).

Orphaned Keys

Unless you apply database foreign key constraints extensively, it is possible to end up with orphaned keysin your database. For
example, suppose Magazi nemhasareferenceto Arti cl e a. If you delete a without nulling nis reference, ms database record
will wind up with an orphaned key to the non-existent a record.

One way of avoiding orphaned keysis to use dependent fields.

OpenJPA'sopenj pa. Or phanedKeyAct i on configuration property controls what action to take when OpenJPA encounters
an orphaned key. Y ou can set this plugin string (see Section 2.4, “ Plugin Configuration ” [177]) to a custom implementation of
theor g. apache. openj pa. event . O phanedKeyAct i on interface, or use one of the built-in options:

» | 0g: Thisisthe default setting. This option logs a message for each orphaned key. It isan alias for the
or g. apache. openj pa. event . LogOr phanedKeyAct i on class, which has the following additional properties:
e Channel : Thechannel to log to. Defaultsto openj pa. Runt i ne.
e Level : Thelevel tolog at. Defaultsto WARN .

* exception: Throw an Enti t yNot FoundExcept i on when OpenJPA discovers an orphaned key. Thisisan diasfor the
or g. apache. openj pa. event . Except i onOr phanedKeyAct i on class.

» none: Ignore orphaned keys. Thisisan aliasfor the or g. apache. openj pa. event. NoneOr phanedKeyAct i on
class.

Example 7.26. Custom Logging Orphaned Keys

<property name="openj pa. O phanedKeyActi on" val ue="1og(Channel =Or phans, Level =DEBUG "/ >

284

../javadoc/org/apache/openjpa/persistence/jdbc/Strategy.html
../javadoc/org/apache/openjpa/event/OrphanedKeyAction.html
../javadoc/org/apache/openjpa/event/LogOrphanedKeyAction.html
../javadoc/org/apache/openjpa/event/ExceptionOrphanedKeyAction.html
../javadoc/org/apache/openjpa/event/NoneOrphanedKeyAction.html

Chapter 8. Deployment

8.1.

OpenJPA deployment includes choosing a factory deployment strategy, and in a managed environment, optionally integrating
with your application server's managed and XA transactions. This chapter examines each aspect of deployment in turn.

Factory Deployment

8.1.1.

OpenJPA offerstwo Ent i t yManager Fact or y deployment options.

Standalone Deployment

8.1.2.

The JPA Overview describesthej avax. per si st ence. Per si st ence class. You can use Per si st ence to obtain En-
tit yManager Fact ory instances, as demonstrated in Chapter 6, Persistence [60]. OpenJPA aso extends Per si st ence to
add additional Ent i t yManager Fact or y creation methods. The

or g. apache. openj pa. persi stence. OpenJPAPer si st ence class Javadoc details these extensions.

After obtaining the factory, you can cacheit for al Ent i t yManager creation duties. OpenJPA factories support being bound to
JINDI aswell.

EntityManager Injection

8.2.

Java EE 5 application servers allow you to inject entity managers into your session beans using the Per si st enceCont ext
annotation. See your application server documentation for details.

Integrating with the Transaction Manager

OpenJPA Ent i t yManager s have the ability to automatically synchronize their transactions with an external transaction man-
ager. Whether or not Ent i t yManager sfromagiven Ent i t yManager Fact or y exhibit this behavior by default depends on
the transaction type you set for the factory's persistence unit in your per si st ence. xm file. OpenJPA uses the given transac-
tion typeinternaly to set theopenj pa. Transact i onMbde configuration property. This property accepts the following
modes:

* | ocal : Perform transaction operations locally.

« managed: Integrate with the application server's managed global transactions.

Y ou can override the global transaction mode setting when you obtain an Ent i t yManager using the Ent i t yManager -
Fact ory'screat eEnti t yManager (Map props) method. Simply set theopenj pa. Transact i onMode key of the
given Map to the desired value.

You can aso overridethe openj pa. Connect i onUser Name, openj pa. Connect i onPasswor d, and open-
j pa. Connect i onRet ai nMode settings using the given Map.

In order to use global transactions, OpenJPA must be able to access the application server's

javax. transacti on. Transacti onManager . OpenJPA can automatically discover the transaction manager for most
major application servers. Occasionally, however, you might have to point OpenJPA to the transaction manager for an unrecog-
nized or non-standard application server setup. Thisis accomplished through the openj pa. ManagedRunt i e configuration
property. This property describesan or g. apache. openj pa. ee. ManagedRunt i ne implementation to use for transaction
manager discovery. Y ou can specify your own implementation, or use one of the built-ins:

285

../javadoc/org/apache/openjpa/persistence/OpenJPAPersistence.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManagerFactory.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManagerFactory.html
../javadoc/org/apache/openjpa/ee/ManagedRuntime.html

Deployment

» aut o: Thisisthedefault. Itisan adiasfor theor g. apache. openj pa. ee. Aut onat i cManagedRunt i ne class. This
managed runtime is able to automatically integrate with several common application servers.

e invocation: Analiasfortheor g. apache. openj pa. ee. | nvocat i onManagedRunt i ne class. You can configure
this runtime to invoke any static method in order to obtain the appserver's transaction manager.

* jndi: Analiasfortheor g. apache. openj pa. ee. JNDI ManagedRunt i e class. Y ou can configure this runtime to
look up the transaction manager at any JNDI location.

See the Javadoc for of each class for details on the bean properties you can pass to these plugins in your configuration string.

Example 8.1. Configuring Transaction Manager | ntegration

<property name="openj pa. Transacti onMbde" val ue="nmanaged"/>
<property name="openj pa. ManagedRunti me" val ue="j ndi (Transacti onManager Nane=j ava: / Tr ansact i onManager)"/>

8.3.

XA Transactions

8.3.1.

The X/Open Distributed Transaction Processing (X/Open DTP) model, designhed by Open Group (avendor consortium), defines
a standard communication architecture that provides the following:

» Concurrent execution of applications on shared resources.

Coordination of transactions across applications.

» Components, interfaces, and protocols that define the architecture and provide portability of applications.

Atomicity of transaction systems.

Single-thread control and sequential function-calling.

The X/Open DTP XA standard defines the application programming interfaces that a resource manager uses to communicate with
atransaction manager. The XA interfaces enable resource managers to join transactions, to perform two-phase commit, and to re-
cover in-doubt transactions following afailure.

Using OpenJPA with XA Transactions

OpenJPA supports X A-compliant transactions when used in a properly configured managed environment. The following com-
ponents are required:

» A managed environment that provides an XA compliant transaction manager. Examples of this are application servers such as
WebL ogic or JBoss.

 Instancesof aj avax. sql . XADat aSour ce for each of the Dat aSour ces that OpenJPA will use.

Given these components, setting up OpenJPA to participate in distributed transactions is a simple two-step process:

286

../javadoc/org/apache/openjpa/ee/AutomaticManagedRuntime.html
../javadoc/org/apache/openjpa/ee/InvocationManagedRuntime.html
../javadoc/org/apache/openjpa/ee/JNDIManagedRuntime.html
http://www.xopen.org

Deployment

1. Integrate OpenJPA with your application server's transaction manager, as detailed in Section 8.2, “ Integrating with the
Transaction Manager ” [285] above.

2. Point OpenJPA at an enlisted XADat aSour ce, and configure a second non-enlisted data source. See Section 4.2.1, “ Man-
aged and XA DataSources” [204].

287

Chapter 9. Runtime Extensions

9.1.

This chapter describes OpenJPA extensions to the standard JPA interfaces, and outlines some additional features of the OpenJPA
runtime.

Architecture

9.1.1.

Internally, OpenJPA does not adhere to any persistence specification. The OpenJPA kernel hasits own set of APIs and compon-
ents. Specifications like JPA and JDO are simply different "personalities’ that OpenJPA's native kernel can adopt.

As an OpenJPA user, you will not normally see beneath OpenJPA's JPA personality. OpenJPA allows you to access its feature set
without leaving the comfort of JPA. Where OpenJPA goes beyond standard JPA functionality, we have crafted JPA-specific APIs
to each OpenJPA extension for as seamless an experience as possible.

When writing OpenJPA plugins or otherwise extending the OpenJPA runtime, however, you will use OpenJPA's native APIs. So
that you won't feel logt, the list below associates each specification interface with its backing native OpenJPA component:

» javax. persi stence. EntityManager Fact ory: org. apache. openj pa. ker nel . Br oker Fact ory

* javax. persi stence. EntityManager:org. apache. openj pa. ker nel . Br oker

e javax. persi stence. Query:org. apache. openj pa. ker nel . Query

» org. apache. openj pa. persi st ence. Ext ent : or g. apache. openj pa. ker nel . Ext ent

e org. apache. openj pa. persi st ence. St or eCache: or g. apache. openj pa. dat acache. Dat aCache

» org. apache. openj pa. persi st ence. Quer yResul t Cache:
or g. apache. openj pa. dat acache. Quer yCache

» org. apache. openj pa. persi st ence. Fet chPl an: or g. apache. openj pa. kernel . Fet chConfi gurati on

e org. apache. openj pa. persi st ence. GCener at or: or g. apache. openj pa. ker nel . Seq

Theor g. apache. openj pa. per si st ence. OpenJPAPer si st ence helper allows you to convert between Ent i t y-
Manager Fact ori es and Br oker Fact ori es, Ent i t yManager sand Br oker s.

Broker Finalization

9.1.2.

Outside of a Java EE 5 application server or other JPA persistence container environment, the default OpenJPAEntityManager
implementation automatically closesitself during instance finalization. This guards against accidental resource leaks that may oc-
cur if adeveloper failsto explicitly close EntityManagers when finished with them, but it also incurs a scalability bottleneck,
since the VM must perform synchronization during instance creation, and since the finalizer thread will have more instances to
monitor. To avoid this overhead, set the openj pa. Br oker | npl configuration property to non- f i nal i zi ng.

Broker Customization and Eviction

Asaplugin string, this property can be used to configure the Br oker | npl with the following properties:

» Bvi ct Fr onDat aCache: When evicting an object through the OpenJPAENnt i t yManager . evi ct methods, whether to
aso evict it from the OpenJPA's data cache. Defaultstof al se.

288

Runtime Extensions

Example 9.1. Evict from Data Cache

<property name="openj pa. Brokerlnpl" val ue="Evi ct Fr onDat aCache=true"/>

9.2.

Additionally, some advanced users may want to add capabilities to OpenJPA's internal

or g. apache. openj pa. ker nel . Broker | npl . You can configure OpenJPA to use a custom subclass of Br oker | npl
withtheopenj pa. Broker | npl configuration property. Set this property to the full class name of your custom subclass.
When implementing your subclass, consider the finalization issues mentioned in Section 9.1.1, “ Broker Finalization ” [288]. It
may be appropriate to create a subtype of both or g. apache. openj pa. ker nel . Br oker | npl and

or g. apache. openj pa. kernel . Fi nal i zi ngBr oker | npl .

JPA Extensions

The following sections outline the runtime interfaces you can use to access OpenJPA-specific functionality from JPA. Each inter-
face contains services and convenience methods missing from the JPA specification. OpenJPA strives to use the same naming
conventions and API patterns as standard JPA methodsin all extensions, so that OpenJPA extension APIs feel as much as pos-
sible like standard JPA.

Y ou may have noticed the examples throughout this document using the OQpenJPAPer si st ence. cast methods to cast from
standard JPA interfaces to OpenJPA extended interfaces. Thisis the recommended practice. Some application server vendors
may proxy OpenJPA's JPA implementation, preventing a straight cast. OpenJPAPer si st ence'scast methods work around
these proxies.

public static OpenJPAEntityManager Factory cast (EntityManager Factory enf);
public static OpenJPAEntityManager cast(EntityManager em;
public static OpenJPAQuery cast(Query Qq);

9.2.1.

We provide additional information on the OpenJPAPer si st ence helper below.

OpenJPAENtityManagerFactory

9.2.2.

Theor g. apache. openj pa. per si st ence. OpenJPAEnt i t yManager Fact ory interface extends the basic

j avax. persi stence. Enti t yManager Fact or y with OpenJPA-specific features. The OQpenJPAENt i t yManager -
Fact or y offers APIsto access the OpenJPA data and query caches and to perform other OpenJPA-specific operations. See the
interface Javadoc for details.

OpenJPAENtityManager

9.2.3.

All OpenJPA Ent i t yManager simplement theor g. apache. openj pa. per si st ence. QpenJPAENt i t yManager in-
terface. Thisinterface extends the standard j avax. per si st ence. Enti t yManager . Just asthe standard Ent i t yMan-
ager isthe primary window into JPA services, the QpenJPAENt i t yManager isthe primary window from JPA into Open-
JPA-specific functionality. We strongly encourage you to investigate the APl extensions thisinterface contains.

OpenJPAQuery

OpenJPA extends JPA's standard query functionality with theor g. apache. openj pa. per si st ence. OpenJPAQuery in-
terface. Seeits Javadoc for details on the convenience methods it provides.

289

../javadoc/org/apache/openjpa/kernel/BrokerImpl.html
../javadoc/org/apache/openjpa/kernel/BrokerImpl.html
../javadoc/org/apache/openjpa/kernel/FinalizingBrokerImpl.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManagerFactory.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html
../javadoc/org/apache/openjpa/persistence/OpenJPAQuery.html

9.2.4.

Runtime Extensions

Extent

An Ext ent isalogica view of al persistent instances of a given entity class, possibly including subclasses. OpenJPA adds the
or g. apache. openj pa. per si st ence. Ext ent classto the set of Java Persistence APIs. The following code illustrates it-
erating over all instances of the Magazi ne entity, without subclasses:

Example 9.2. Using a JPA Extent

i nport org.apache. openj pa. per si st ence. *;

OpenJPAENt i t yManager kem = OpenJPAPer si st ence. cast (en) ;
Ext ent <Magazi ne> mags = kem get Ext ent (Magazi ne. cl ass, false);
for (Magazine m: nags)

processMagazi ne (m);

9.2.5.

StoreCache

9.2.6.

In additiontothe Ent i t yManager object cache mandated by the JPA specification, OpenJPA includes a flexible datastore-
level cache. Y ou can access this cache from your JPA code using the

or g. apache. openj pa. persi st ence. St or eCache facade. Section 10.1, “ Data Cache” [301as detailed information
on OpenJPA's data caching system, including the St or eCache facade.

QueryResultCache

9.2.7.

OpenJPA can cache query results as well as persistent object data. The
or g. apache. openj pa. per si st ence. Quer yResul t Cache isan JPA-flavored facade to OpenJPA'sinterna query
cache. See Section 10.1.3, “ Query Cache” [305jor details on query caching in OpenJPA.

FetchPlan

9.2.8.

Many of the aforementioned OpenJPA interfaces give you access to an
or g. apache. openj pa. per si st ence. Fet chPl an instance. The Fet chPl an allows you to exercise some control over
how objects are fetched from the datastore, including large result set support, custom fetch groups, and lock levels.

OpenJPA goes one step further, extending Fet chPl an with

or g. apache. openj pa. persi st ence. j dbc. JDBCFet chPl an to add additional JDBC-specific tuning methods. Un-
less you have customized OpenJPA to use a hon-relational back-end (see Section 9.8, “ Non-Relational Stores” [300), all

Fet chPl ansin OpenJPA implement JDBCFet chPl an, so feel freeto cast to thisinterface.

Fetch plans pass on from parent components to child components. The Ent i t yManager Fact or y settings (viayour configur-
ation properties) for things like the fetch size, result set type, and custom fetch groups are passed on to the fetch plan of the En-
tityManager sit produces. The settings of each Ent i t yManager , in turn, are passed on to each Quer y and Ext ent itre-
turns. Note that the opposite, however, is not true. Modifying the fetch plan of aQuer y or Ext ent does not affect the En-
tityManager 'sconfiguration. Likewise, modifying an Ent i t yManager 's configuration does not affect the Ent i t yMan-
ager Factory.

Section 5.7, “ Fetch Groups” [243] includes examples using Fet chPI ans.

OpenJPAENtityTransaction

290

../javadoc/org/apache/openjpa/persistence/Extent.html
../javadoc/org/apache/openjpa/persistence/StoreCache.html
../javadoc/org/apache/openjpa/persistence/QueryResultCache.html
../javadoc/org/apache/openjpa/persistence/jdbc/JDBCFetchPlan.html

9.2.9.

Runtime Extensions

or g. apache. openj pa. persi st ence. OpenJPAEnt i t yTransact i on extends
j avax. persi stence. EntityTransacti on to provide additional transaction-debugging capabilities and some concur-
rency-related commit and rollback features.

OpenJPAPersistence

or g. apache. openj pa. per si st ence. OQpenJPAPer si st ence isastatic helper class that adds OpenJPA-specific util-
ity methodstoj avax. per si st ence. Per si st ence.

9.3. Object Locking

9.3.1.

Controlling how and when objects are locked is an important part of maximizing the performance of your application under load.
This section describes OpenJPA's APIs for explicit locking, as well asits rules for implicit locking.

Configuring Default Locking

Y ou can control OpenJPA's default transactional read and write lock levels through the openj pa. ReadLockLevel and
openj pa. Wi teLockLevel configuration properties. Each property accepts avalue of none, r ead, wri t e, or anumber
corresponding to alock level defined by the lock manager in use. These properties apply only to non-optimistic transactions;
during optimistic transactions, OpenJPA never locks objects by defaullt.

Y ou can control the default amount of time OpenJPA will wait when trying to obtain locks through the open-

j pa. LockTi neout configuration property. Set this property to the number of milliseconds you are willing to wait for alock
before OpenJPA will throw an exception, or to -1 for no limit. It defaultsto -1.

Example 9.3. Setting Default Lock Levels

<property name="openj pa. ReadLockLevel " val ue="none"/>
<property name="openj pa. WitelLockLevel " value="wite"/>
<property name="openj pa. LockTi meout" val ue="30000"/>

9.3.2.

Configuring Lock Levels at Runtime

At runtime, you can override the default lock levels through the Fet chPI an interface described above. At the beginning of each
datastore transaction, OpenJPA initializesthe Ent i t yManager 'sfetch plan with the default lock levels and timeouts de-
scribed in the previous section. By changing the fetch plan's locking properties, you can control how objects loaded at different
pointsin the transaction are locked. Y ou can also use the fetch plan of an individual Quer y to apply your locking changes only
to objects loaded through that Query.

publ i c LockMbdeType get ReadLockMode();

public FetchPl an set ReadLockMdde(LockModeType node);
public LockMbdeType get WiteLockMde();

public FetchPlan set WiteLockMyde(LockMbdeType node);
1 ong get LockTi meout () ;

Fet chPl an set LockTi meout (1 ong ti meout);

Controlling locking through these runtime APIs works even during optimistic transactions. At the end of the transaction, Open-
JPA resets the fetch plan's lock levelsto none. Y ou cannot lock objects outside of a transaction.

291

../javadoc/org/apache/openjpa/persistence/OpenJPAEntityTransaction.html
../javadoc/org/apache/openjpa/persistence/OpenJPAPersistence.html

Runtime Extensions

Example 9.4. Setting Runtime Lock Levels

i mport org. apache. openj pa. persi stence. *;

EntityManager em =
em get Transact i on() begl n();

/1 1oad stock we know we're going to update at wite | ock node
Query g = em creat eQuery(" sel ect s from Stock s where synbol = :s");
g. set Paraneter("s", synbo

OpenJPAQuery oq = QQenJPAPerS| stence. cast(q);

FetchPl an fetch = oq.getFetchPlan ();

fetch. set ReadLockMbde(LockMbdeType. VR TE) ;

fetch. set LockTi neout (3000); // 3 seconds

Stock stock = (Stock) q.getSingleResult();

/1 1oad an object we don't need | ocked at none | ock nobde
fetch = OpenJPAPersi stence. cast (en). get FetchPl an();
fetch. set ReadLockMbde(nul I');

Mar ket market = em find(Mrket.class, marketld);

stock. set Pri ce(narket. cal cul atePrice(stock));
em get Transaction().commt();

9.3.3. Object Locking APIs

In addition to allowing you to control implicit locking levels, OpenJPA provides explicit APIsto lock objects and to retrieve their
current lock level.

public LockMbdeType OpenJPAEntityManager. get LockMode(Obj ect pc);

Returnsthe level at which the given object is currently locked.

In addition to the standard Ent i t yManager . | ock(Cbj ect, LockMddeType) method, the OpenJPAENt i t yManager
exposes the following methods to lock objects explicitly:

public void | ock(Object pc);

public void | ock(Object pc, LockMbdeType npde, |ong tineout);

public void | ockAl | (Object... pcs);

public void | ockAl | (Qbject... pcs, LockMbdeType npde, |ong tineout);
public void | ockAll (Collection pcs);

public void | ockAll (Collection pcs, LockMbdeType npde, |ong tineout);

Methods that do not take alock level or timeout parameter default to the current fetch plan. The example below demonstrates
these methods in action.

Example 9.5. Locking APIs

i nport org. apache. openj pa. per si st ence. *;

Il retrieve the lock | evel of an object
OpenJPAENt i tyl\/anager oem = OpenJPAPer si st ence. cast (en);
Stock stock =

292

http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html

Runtime Extensions

LockodeType | evel = oem get Lockode(st ock);
if (level == QJenJPANbdeType WRI TE) .

oem set Optim stic(true);

oem get Transaction().begin ();

/1 override default of not |ocking during an opt trans to | ock stock object
oem | ock(stock, LockMddeType. WRI TE, 1000);

stock. set Pri ce(narket. cal cul atePrice(stock));

oem get Transaction().commit();

9.3.4.

Lock Manager

OpenJPA delegates the actual work of locking objectsto the system'sor g. apache. openj pa. ker nel . LockManager .
Thispluginis controlled by the openj pa. LockManager configuration property. Y ou can write your own lock manager, or
use one of the bundled options:

» pessimstic:Thisisanaiasfortheo rg. apache. openj pa.j dbc. ker nel . Pessi ni sti cLockManager,
which uses SELECT FOR UPDATE statements (or the database's equivalent) to lock the database rows corresponding to
locked objects. Thislock manager does not distinguish between read locks and write locks; all locks are write locks.

Thepessi m sti ¢ LockManager can be configued to additionally perform the version checking and incrementing behavior
of thever si on lock manager described below by setting its Ver si onCheckOnReadLock and Ver si onUpdat eOn-
Wit eLock properties:

<property name="openj pa. LockManager" val ue="pessi m sti c(Versi onCheckOnReadLock=t rue, Ver si onUpdat eOnW i t eLock=true)"/>

* none: Anadlasfortheor g. apache. openj pa. ker nel . NoneLockManager , which does not perform any locking at
all.

» version: Andliasfortheor g. apache. openj pa. ker nel . Ver si onLockManager . Thislock manager does not per-
form any exclusive locking, but instead ensures read consistency by verifying that the version of all read-locked instancesis
unchanged at the end of the transaction. Furthermore, awrite lock will force an increment to the version at the end of the trans-
action, even if the object is not otherwise modified. This ensures read consistency with non-blocking behavior.

Thisisthe default openj pa. LockManager settingin JPA.

In order for thever si on lock manager to prevent the dirty read phenomenon, the underlying data store's transaction
isolation level must be set to the equivalent of "read committed” or higher.

Example 9.6. Disabling Locking

<property name="openjpa. LockManager" val ue="none"/>

293

../javadoc/org/apache/openjpa/kernel/LockManager.html
../javadoc/org/apache/openjpa/jdbc/kernel/PessimisticLockManager.html
../javadoc/org/apache/openjpa/kernel/NoneLockManager.html
../javadoc/org/apache/openjpa/kernel/VersionLockManager.html

9.3.5.

Runtime Extensions

Rules for Locking Behavior

9.3.6.

Advanced persistence concepts like lazy-loading and object uniquing create several locking corner-cases. The rules below outline
OpenJPA'simplicit locking behavior in these cases.

. When an object's state isfirst read within a transaction, the object is locked at the fetch plan's current read lock level. Future
reads of additional lazy state for the object will use the same read lock level, even if the fetch plan'slevel has changed.

. When an object’s state is first modified within atransaction, the object is locked at the write lock level in effect when the ob-
ject wasfirst read, even if the fetch plan's level has changed. If the object was not read previoudly, the current write lock level
is used.

. When objects are accessed through a persistent relation field, the related objects are loaded with the fetch plan's current lock
levels, not the lock levels of the object owning the field.

. Whenever an object is accessed within atransaction, the object is re-locked at the current read lock level. The current read and
write lock levels become those that the object "remembers* according to rules one and two above.

. 1f you lock an object explicitly through the APIs demonstrated above, it isre-locked at the specified level. Thislevel aso be-
comes both the read and write level that the object "remembers" according to rules one and two above.

. When an object is already locked at a given lock level, re-locking at alower level has no effect. Locks cannot be downgraded
during atransaction.

Known Issues and Limitations

9.4.

Due to performance concerns and database limitations, locking cannot be perfect. Y ou should be aware of the issues outlined in
this section, as they may affect your application.

Typicaly, during optimistic transactions OpenJPA does not start an actual database transaction until you flush or the optimistic
transaction commits. This allows for very long-lived transactions without consuming database resources. When using the pess-
imistic lock manager, however, OpenJPA must begin a database transaction whenever you decide to lock an object during an
optimistic transaction. Thisis because the pessimistic lock manager uses database locks, and databases cannot lock rows
without a transaction in progress. OpenJPA will 1og an INFO message to the openj pa. Runt i nme logging channel when it
begins a datastore transaction just to lock an object.

In order to maintain reasonable performance levels when loading object state, OpenJPA can only guarantee that an object is
locked at the proper lock level after the state has been retrieved from the database. This means that it is technically possible for
another transaction to "sneak in" and modify the database record after OpenJPA retrieves the state, but before it locks the ob-
ject. The only way to positively guarantee that the object islocked and has the most recent state to refresh the object after lock-
ingit.

When using the pessimistic lock manager, the case above can only occur when OpenJPA cannot issue the state-loading SE-
LECT asalocking statement due to database limitations. For example, some databases cannot lock SELECTSs that usejoins.
The pessimistic lock manager will log an INFO message to the openj pa. Runt i ne logging channel whenever it cannot lock
theinitial SELECT due to database limitations. By paying attention to these |og messages, you can see where you might con-
sider using an object refresh to guarantee that you have the most recent state, or where you might rethink the way you load the
state in question to circumvent the database limitations that prevent OpenJPA fromissuing alocking SELECT in the first
place.

Savepoints

Savepoints allow for fine grained control over the transactional behavior of your application. OpenJPA's savepoint API allow you
to set intermediate rollback pointsin your transaction. Y ou can then choose to rollback changes made only after a specific save-

294

9.4.1.

Runtime Extensions

point, then commit or continue making new changes in the transaction. This feature is useful for multi-stage transactions, such as
editing a set of objects over several web pages or user screens. Savepoints also provide more flexibilty to conditional transaction
behavior, such as choosing to commit or rollback a portion of the transaction based on the results of the changes. This chapter de-
scribes how to use and configure OpenJPA savepoints.

Using Savepoints

OpenJPA's OpenJPAENt i t yManager have the following methods to control savepoint behavior. Note that the savepoints
work in tandem with the current transaction. This means that savepoints require an open transaction, and that arollback of the
transaction will rollback all of the changes in the transaction regardless of any savepoints set.

voi d set Savepoi nt (String nane);
voi d rel easeSavepoi nt (String nane);
voi d rol | backToSavepoi nt (String nane);

To set asavepoint, simply call set Savepoi nt, passing in asymbolic savepoint name. This savepoint will define a point at
which you can preserve the state of transactional objects for the duration of the current transaction.

Having set a named savepoint, you can rollback changes made after that point by calling r ol | backToSavepoi nt . This meth-
od will keep the current transaction active, while restoring all transactional instances back to their saved state. Instances that were
deleted after the save point will no longer be marked for deletion. Similarly, transient instances that were made persistent after the
savepoint will become transient again. Savepoints made after this savepoint will be released and no longer valid, although you
can still set new savepoints. Savepoints will also be cleared after the current transaction is committed or rolled back.

If asavepoint is no longer needed, you can release any resourcesit is consuming resources by calling r el easeSavepoi nt .
This method should not be called for savepoints that have been released automatically through other means, such as commit of a
transaction or rollback to a prior savepoint. While savepoints made after this savepoint will also be released, there are no other ef-
fects on the current transaction.

The following simple example illustrates setting, releasing, and rolling back to a savepoint.

Example 9.7. Using Savepoints

i mport org. apache. openj pa. per si stence. *;

OpenJPAENt i t yManager oem = QpenJPAPer si st ence. cast (en);
oem get Transaction() . begi n();

Magazi ne mag = oem fi nd(Magazi ne. cl ass, id);
mag. set PageCount (300) ;
oem set Savepoi nt (" pages");

mag. set Pri ce(mag. get PageCount () * pricePer Page);
/'l we decide to rel ease "pages"...
oem r el easeSavepoi nt (" pages”);
. and set a new savepoi nt which includes all changes
oem set Savepoi nt ("price");

mag. set Price(testPrice);

/1 we determine the test price is not good

oem rol | backToSavepoi nt ("price");

/1 had we chosen to not rel ease "pages", we nmight have rolled back to
/'l "pages" instead

/1 the price is now restored to nag.get PageCount () * pricePer Page
oem get Transaction().commit();

295

../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html

Runtime Extensions

9.4.2. Configuring Savepoints

9.5.

OpenJPA usestheor g. apache. openj pa. ker nel . Savepoi nt Manager plugin to handle perserving the savepoint state.
OpenJPA includesthe following Savepoi nt Manager plugins:

e i n-mem Thedefault. Thisisan aliasfor theor g. apache. openj pa. ker nel . | nMenor ySavepoi nt Manager . This
plugin stores al state, including field values, in memory. Due to this behavior, each set savepoint is designed for small to medi-
um transactional object counts.

e jdbc: Thisisan dliasfor theor g. apache. openj pa. j dbc. ker nel . JDBCSavepoi nt Manager . Thisplugin re-
quiresJDBC 3 andj ava. sqgl . Savepoi nt support to operate. Note that this plugin implements savepoints by issuing a
flush to the database.

« oracl e: Thisisandiasfor theor g. apache. openj pa. j dbc. sql . Or acl eSavepoi nt Manager . This plugin oper-

ates similarly to the JDBC plugin; however, it uses Oracle-specific calls. This plugin requires using the Oracle JDBC driver
and database, versions 9. 2 or higher. Note that this plugin implements savepoints by issuing a flush to the database.

MethodQL

If JPQL and SQL queries do not match your needs, OpenJPA also allows you to name a Java method to use to load a set of ob-
jects. In a MethodQL query, the query string names a static method to invoke to determine the matching objects:

i mport org. apache. openj pa. persi st ence. *;

/ the nethod query |anguage is 'openjpa. Met hodQL' .

/ set the query string to the nethod to execute, including full class nane; if
/ the class is in the candidate class' package or in the query inports, you

5 can omt the package; if the method is in the candidate class, you can onmit

—~————

the class nane and just specify the nethod nane
OpenJPAENt i t yManager oem = QpenJPAPer si st ence. cast (enf);
OpenJPAQuery g = oem creat eQuery("openjpa. Met hodQ.", "com xyz. Fi nder. get ByNane");

/] set the type of objects that the nethod returns
g. set Resul t G ass(Person. cl ass) ;

/| paranmeters are passed the same way as in standard queries
g.set Parameter ("firstName", "Fred").setParanmeter ("l ast Name", "Lucas");

/'l this executes your nethod to get the results
List results = g.getResultList();

For datastore queries, the method must have the following signature:

public static ResultObjectProvider xxx(StoreContext ctx, Cl assMetaData neta, bool ean subcl asses, Map parans, FetchConfiguration

The returned result object provider should produce objects of the candidate class that match the method's search criteria. If the re-
turned objects do not have al fields in the given fetch configuration loaded, OpenJPA will make additional trips to the datastore
as necessary to fill in the data for the missing fields.

In-memory execution is slightly different, taking in one object at atime and returning a boolean on whether the object matches
the query:

public static bool ean xxx(StoreContext ctx, C assMetaData neta, bool ean subcl asses, Object obj, Map parans, FetchConfiguration fe

296

../javadoc/org/apache/openjpa/kernel/SavepointManager
org.apache.openjpa.kernel.InMemorySavepointManager
org.apache.openjpa.jdbc.kernel.JDBCSavepointManager
org.apache.openjpa.jdbc.sql.OracleSavepointManager
../javadoc/org/apache/openjpa/lib/rop/ResultObjectProvider.html
../javadoc/org/apache/openjpa/kernel/StoreContext.html
../javadoc/org/apache/openjpa/meta/ClassMetaData.html
../javadoc/org/apache/openjpa/kernel/FetchConfiguration.html
../javadoc/org/apache/openjpa/kernel/StoreContext.html
../javadoc/org/apache/openjpa/meta/ClassMetaData.html
../javadoc/org/apache/openjpa/kernel/FetchConfiguration.html

9.6.

Runtime Extensions

In both method versions, the given par anms map contains the names and values of all the parameters for the query.

Generators

The JPA Overview's Chapter 12, Mapping Metadata [117] details using generators to automatically populate identity fieldsin
JPA.

OpenJPA represents al generatorsinternally with the or g. apache. openj pa. ker nel . Seq interface. This interface sup-
pliesall the context you need to create your own custom generators, including the current persistence environment, the JDBC
Dat aSour ce , and other essentials. Theor g. apache. openj pa. j dbc. ker nel . Abst r act JDBCSeq helpsyou create
custom JDBC-based sequences. OpenJPA also supplies the following built-in Seqs:

» t abl e: Thisis OpenJPA's default implementation. It is an alias for the
or g. apache. openj pa. j dbc. ker nel . Tabl eJDBCSeq class. The Tabl eJDBCSeq uses aspecial single-row tableto
store aglobal sequence number. If the table does not already exist, it is created the first time you run the mapping tool on a
classthat requiresit. You can also use the classs mai h method to manipulate the table; see the Tabl eJDBCSeq. nai n
method Javadoc for usage details.

This Seq has the following properties:

e Tabl e: The name of the sequence number table to use. Defaultsto OPENJPA_SEQUENCE_TABLE. If the entities are
mapped to the same table name but with different schema name within one PersistenceUnit, one OPEN-
JPA SEQUENCE_TABLE is created for each schema.

e Pri mar yKeyCol umrm: The name of the primary key column for the sequence table. Defaultsto | D.
¢ SequenceCol um: The name of the column that will hold the current sequence value. Defaults to SEQUENCE VAL UE.

e Al | ocat e: The number of values to alocate on each database trip. Defaults to 50, meaning the class will set aside the next
50 numbers each time it accesses the sequence table, which in turn means it only has to make a database trip to get new se-
quence numbers once every 50 sequence number requests.

» cl ass-tabl e: Thisisanaliasfor theor g. apache. openj pa. j dbc. ker nel . assTabl eJDBCSeq . ThisSeq is
likethe Tabl eJDBCSeq above, but maintains a separate table row, and therefore a separate sequence number, for each base
persistent class. It has al the properties of the Tabl eJDBCSeq. Itstable name defaults to OPENJPA_SEQUENCES TABLE.
It also adds the following properties:

« | gnor eUnmapped: Whether to ignore unmapped base classes, and instead use one row per |east-derived mapped class.
Defaultstof al se.

e UseAl i ases: Whether to use each class entity name as the primary key value of each row, rather than the full class name.
Defaultstof al se.

Aswith the Tabl eJDBCSeq, the Cl assTabl eJDBCSeq creates its table automatically during mapping tool runs.
However, you can manually manipulate the table through the class mai n method. See the Javadoc for the Cl assTabl eJD-
BCSeq. mai n method for usage details.

» val ue-tabl e: Thisisanaliasfor theor g. apache. openj pa. j dbc. ker nel . Val ueTabl eJDBCSeq . ThisSeq is
likethe Cl assTabl eJDBCSeq above, but has an arbitrary number of rows for sequence values, rather than a fixed pattern
of onerow per class. Its table defaults to OPENJPA_SEQUENCES_TABLE. It has al the properties of the Tabl eJDBCSeq,
plus:

e PrimaryKeyVal ue: The primary key value used by thisinstance.
Aswith the Tabl eJDBCSeq, the Val ueTabl eJDBCSeq creates its table automatically during mapping tool runs.

However, you can manually manipulate the table through the class mai n method. See the Javadoc for the Val ueTabl eJD-
BCSeq. nmai n method for usage details.

297

../javadoc/org/apache/openjpa/kernel/Seq.html
../javadoc/org/apache/openjpa/jdbc/kernel/AbstractJDBCSeq.html
../javadoc/org/apache/openjpa/jdbc/kernel/TableJDBCSeq.html
../javadoc/org/apache/openjpa/jdbc/kernel/ClassTableJDBCSeq.html
../javadoc/org/apache/openjpa/jdbc/kernel/ValueTableJDBCSeq.html

Runtime Extensions

* native: Thisisanadiasfortheor g. apache. openj pa. j dbc. ker nel . Nat i veJDBCSeq. Many databases have a
concept of "native sequences’ - a built-in mechanism for obtaining incrementing numbers. For example, in Oracle, you can
create a database sequence with a statement like CREATE SEQUENCE MYSEQUENCE . Sequence values can then be atomic-
aly obtained and incremented with the statement SELECT MYSEQUENCE. NEXTVAL FROM DUAL. OpenJPA provides sup-
port for this common mechanism of sequence generation with the Nat i veJDBCSeq, which accepts the following properties:
¢ Sequence: The name of the database sequence. Defaults to OPENJPA_SEQUENCE.

e | nitial Val ue: Theinitia sequence value. Defaultsto 1.
e | ncr enent : The amount the sequence increments. Defaults to 1.
e Al | ocat e: Some database can allocate values in-memory to service subsequent sequence requests faster.

* time: Thisisandliasfor theor g. apache. openj pa. ker nel . Ti neSeededSeq. Thistype uses an in-memory static
counter, initialized to the current time in milliseconds and monotonically incremented for each value requested. It is only suit-
able for single-JVM environments.

You can use JPA SequenceGener at or sto describe any built-in Seqs or your own Seq implementation. Set the sequen-
ceNane attribute to a plugin string describing your choice.

If specifying your own class name, you must include parentheses at the end of the class name, even if you have

no plugin properties to configure. (E.g., sequenceNanme="com exanpl e. Seql npl ()".

See Section 12.5,“ Generators” [124] in the JPA Overview for details on defining SequenceCener at or s.

See Section 2.4, “ Plugin Configuration ” [177] for plugin string formatting.

Example 9.8. Named Seq Sequence

@ntity
@abl e(nane="AUTO")
public class Author {

d
@cener at edVal ue(st rat egy=CGener ati onType. SEQUENCE, gener at or =" Aut hor Seq")
@equenceCener at or (nanme="Aut hor Seq" sequence="t abl e(Tabl e=AUTO_SEQ | ncrenent =100) ")
@col um(nanme="Al D")
private long id;

Note that if you want to use a plugin string without any arguments, you must still suffix the plugin type with () to differentiate it
from a sequence namein the SequenceGener at or . sequence attribute:

@BequenceGener at or (nanme="Aut hor Seq", sequence="table()")

OpenJPA maintains a system sequence to generate datastore identity values for classes that do not declare a specific datastore
identity strategy. Y ou can configure the system sequence through the openj pa. Sequence configuration property. This prop-
erty accepts a plugin string describing a Seq instance.

298

../javadoc/org/apache/openjpa/jdbc/kernel/NativeJDBCSeq.html
../javadoc/org/apache/openjpa/kernel/TimeSeededSeq.html

Runtime Extensions

Example 9.9. System Sequence Configuration

<property name="openj pa. Sequence" val ue="t abl e(Tabl e=OPENJPASEQ | ncr ement =100) "/ >

In JPA, set your Gener at edVal ue annotation's st r at egy attribute to AUTOto use the configured system sequence. Or, be-
cause AUTOis the default strategy, use the annotation without attributes:

@zener at edVal ue
private long id;

9.6.1.

Runtime Access

OpenJPA allows you to access named generators at runtime through the QpenJPAENt i t yManager . get NanedGener at or
method:

publ i c Generator getNamedGenerator(String nane);

9.7.

Thereturned or g. apache. openj pa. per si st ence. Gener at or isafacade over aninternal OpenJPA Seq.

The OpenJPAENt i t yManager includes additional APIsto retrieve the identity generator of any class, or the generator of any
field. With these APIs, you do not have to know the generator name. Additionally, they allow you to access the implicit generator
used by default for datastore identity classes. See the Javadoc for the OpenJPAENt i t yMan-
ager.getldentityGenerator and QpenJPAEntityManager. get Fi el dGener at or methodsfor APl details.

Transaction Events

The OpenJPA runtime supports broadcasting transaction-related events. By registering one or more

or g. apache. openj pa. event. Transact i onLi st ener s, you can receive notifications when transactions begin, flush,
rollback, commit, and more. Where appropriate, event notifications include the set of persistence-capable objects participating in
the transaction.

public void addTransactionLi stener (CObject |istener);
public void renpveTransacti onLi stener (Object |istener);

These OpenJPAENt i t yManager SPI methods allow you to add and remove listeners. These methods are outside the bounds
of the published OpenJPA APIs, and are subject to change in the future.

For details on the transaction framework, seethe or g. apache. openj pa. event package Javadoc. Also see Section 11.2, “
Remote Event Notification Framework ” [314jor a description of OpenJPA's remote event support.

299

../javadoc/org/apache/openjpa/persistence/Generator.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html
../javadoc/org/apache/openjpa/event/TransactionListener.html
../javadoc/org/apache/openjpa/event/package.html

Runtime Extensions

9.8. Non-Relational Stores

It is possible to adapt OpenJPA to access a non-relational datastore by creating an implementation of the
or g. apache. openj pa. ker nel . St or eManager interface. OpenJPA provides an abstract St or eManager implementa
tion to facilitate this process. Seethe or g. apache. openj pa. abst r act st or e package Javadoc for details.

300

../javadoc/org/apache/openjpa/kernel/StoreManager.html
../javadoc/org/apache/openjpa/abstractstore

Chapter 10. Caching

OpenJPA utilizes several configurable caches to maximize performance. This chapter explores OpenJPA's data cache, query
cache, and query compilation cache.

10.1. Data Cache

The OpenJPA data cache is an optional cache of persistent object data that operates at the Ent i t yManager Fact ory level.
This cache is designed to significantly increase performance while remaining in full compliance with the JPA standard. This

means that turning on the caching option can transparently increase the performance of your application, with no changes to your
code.

OpenJPA's data cacheis not related to the Ent i t yManager cache dictated by the JPA specification. The JPA specification

mandates behavior for the Ent i t yManager cache aimed at guaranteeing transaction isolation when operating on persistent ob-
jects.

OpenJPA's data cache is designed to provide significant performance increases over cacheless operation, while guaranteeing that
behavior will beidentical in both cache-enabled and cachel ess operation.

There are five ways to access data via the OpenJPA APIs: standard relation traversal, large result set relation traversal, queries,
looking up an object by id, and iteration over an Ext ent . OpenJPA's cache plugin accelerates three of these mechanisms. It does
not provide any caching of large result set relations or Ext ent iterators. If you find yourself in need of higher-performance Ex-

t ent iteration, see Example 10.15, “ Query Replaces Extent ” [309]

Table 10.1. Data access methods

Access method Uses cache
Standard relation traversal Yes

Large result set relation traversal No

Query Yes
Lookups by object id Yes
Iteration over an Ext ent No

When enabled, the cache is checked before making atrip to the datastore. Datais stored in the cache when objects are committed
and when persistent objects are loaded from the datastore.

OpenJPA's data cache can in both single-JVM and multi-JVM environments. Multi-JVM caching is achieved through the use of
the distributed event notification framework described in Section 11.2, “ Remote Event Notification Framework " [314pr
through custom integrations with a third-party distributed cache.

The single VM mode of operation maintains and shares a data cache across all Ent i t yManager instances obtained from a

particular Ent i t yManager Fact ory. Thisis not appropriate for use in a distributed environment, as cachesin different VMs
or created from different Ent i t yManager Fact or y objects will not be synchronized.

10.1.1. Data Cache Configuration

To enable the basic single-factory cache set the openj pa. Dat aCache property tot r ue, and set the open-
j pa. Renot eComi t Pr ovi der property tosj vm :

Example 10.1. Single-JVM Data Cache

301

Caching

<property name="openj pa. Dat aCache" val ue="true"/>
<property name="openj pa. Renot eCommi t Provi der" val ue="sjvni'/>

To configure the data cache to remain up-to-date in a distributed environment, set the openj pa. Renot eConmi t Pr ovi der
property appropriately, or integrate OpenJPA with a third-party caching solution. Remote commit providers are described in Sec-
tion 11.2, “ Remote Event Notification Framework ” [314]

OpenJPA's default implementation maintains a map of object ids to cache data. By default, 1000 elements are kept in cache.
When the cache overflows, random entries are evicted. The maximum cache size can be adjusted by setting the CacheSi ze
property in your plugin string - see below for an example. Objects that are pinned into the cache are not counted when determin-
ing if the cache size exceeds its maximum size.

Expired objects are moved to a soft reference map, so they may stick around for alittle while longer. Y ou can control the number

of soft references OpenJPA keeps with the Sof t Ref er enceSi ze property. Soft references are unlimited by default. Set to 0 to
disable soft references compl etely.

Example 10.2. Data Cache Size

<property name="openj pa. Dat aCache" val ue="true(CacheSi ze=5000, Soft ReferenceSi ze=0)"/>

Y ou can specify a cache timeout value for a class by setting the timeout metadata extension to the amount of time in milli-
seconds aclasss dataisvalid. Use avalue of -1 for no expiration. Thisis the default value.

Example 10.3. Data Cache Timeout

Timeout Enpl oyee objects after 10 seconds.

@ntity
@pat aCache(ti meout =10000)
public class Enpl oyee {

}

Entities may be explicitly excluded from the cache by providing alist of fully qualified class names in the ExcludedTypes argu-
ment. The entities provided via ExcludedTypes will not be cached regardless of the @DataCache annotation.

Example 10.4. Excluding entities

Exclude entities foo.bar.Person and foo.bar.Employee from the cache.

<property nanme="openj pa. Dat aCache" val ue="true(Excl udedTypes=f oo. bar. Per son; f oo. bar. Enpl oyee) "/ >

302

Caching

Entities may be explicitly included from the cache by providing alist of fully qualified class names in the Types argument. The
entities provided via ExcludedTypes will not cached regardless of the @DataCache annotation. Any entities which are not in-
cluded in thislist will not be cached.

Example 10.5. Including entities

Include only entity foo.bar.Full TimeEmployee from the cache.

<property nanme="openj pa. Dat aCache" val ue="true(Types=foo. bar. Ful | Ti meEnpl oyee) "/ >

Seetheor g. apache. openj pa. per si st ence. Dat aCache Javadoc for more information on the Dat aCache annota-
tion.

A cache can specify that it should be cleared at certain times rather than using data timeouts. The Evi ct i onSchedul e prop-

erty of OpenJPA's cache implementation acceptsacr on style eviction schedule. The format of this property is a whitespace-separ-
ated list of five tokens, where the * symbol (asterisk), indicates match all. The tokens are, in order:

* Minute

Hour of Day
» Day of Month
* Month

» Day of Week

For example, the following openj pa. Dat aCache setting schedules the default cache to evict values from the cache at 15 and
45 minutes past 3 PM on Sunday.

true(EvictionSchedul e=' 15,45 15 * * 1')

10.1.2. Data Cache Usage

Theor g. apache. openj pa. dat acache package defines OpenJPA's data caching framework. While you may use this
framework directly (seeits Javadoc for details), its APIs are meant primarily for service providers. In fact, Section 10.1.4, “
Cache Extension ” [308)el ow has tips on how to use this package to extend OpenJPA's caching service yourself.

Rather than use the low-level or g. apache. openj pa. dat acache package APIs, JPA users should typically access the data
cache through OpenJPA's high-level or g. apache. openj pa. per si st ence. St or eCache facade. This facade has meth-
ods to pin and unpin records, evict data from the cache, and more.

public StoreCache get StoreCache();

303

../javadoc/org/apache/openjpa/persistence/DataCache.html
../javadoc/org/apache/openjpa/datacache/package-summary.html
../javadoc/org/apache/openjpa/persistence/StoreCache.html

Caching

Y ou obtain the St or eCache through the QpenJPAENt i t yManager Fact ory. get St or eCache method.

Example 10.6. Accessing the StoreCache

i mport org. apache. openj pa. per si stence. *;

OpenJPAENt i t yManager Fact ory oenf = OpenJPAPersi st ence. cast (enf);
St or eCache cache = oenf. get StoreCache();

public void evict(COass cls, Object oid);

public void evictAll();

public void evictAll (Class cls, Object... oids);
public void evictAll (Oass cls, Collection oids);

Theevi ct methodstell the cache to release data. Each method takes an entity class and one or more identity values, and re-
leases the cached data for the corresponding persistent instances. Theevi ct Al | method with no arguments clears the cache.
Eviction is useful when the datastore is changed by a separate process outside OpenJPA's control. In this scenario, you typicaly
have to manually evict the data from the datastore cache; otherwise the OpenJPA runtime, oblivious to the changes, will maintain
its stale copy.

public void pin(Cass cls, Object oid);

public void pinAll (Cass cls, Object... oids);
public void pinAll (COass cls, Collection oids);
public void unpin(Cass cls, Object oid);

public void unpinAll(Class cls, Object... oids);
public void unpinAll(Cass cls, Collection oids);

Most caches are of limited size. Pinning an identity to the cache ensures that the cache will not kick the data for the correspond-
ing instance out of the cache, unless you manually evict it. Note that even after manual eviction, the datawill get pinned again the
next timeit is fetched from the store. Y ou can only remove a pin and make the data once again available for normal cache over-
flow eviction through the unpi n methods. Use pinning when you want a guarantee that a certain object will always be available
from cache, rather than requiring a datastore trip.

Example 10.7. StoreCache Usage

i nport org.apache. openj pa. per si st ence. *;

OpenJPAENt i t yManager Fact ory oenf = QpenJPAPer si st ence. cast (enf);
St oreCache cache = oenf. get St oreCache();

cache. pi n(Magazi ne. cl ass, popul ar Mag. getld());
cache. evi ct (Magazi ne. cl ass, changedMag. getld());

See the St or eCache Javadoc for information on additional functionality it provides. Also, Chapter 9, Runtime Extensions

304

../javadoc/org/apache/openjpa/persistence/StoreCache.html

Caching

288] discusses OpenJPA's other extensions to the standard set of JPA runtime interfaces.
The examples aboveinclude callsto evi ct to manually remove data from the data cache. Rather than evicting objects from the

data cache directly, you can also configure OpenJPA to automatically evict objects from the data cache when you use the Open-
JPAENt i t yManager 'seviction APIs.

Example 10.8. Automatic Data Cache Eviction

<property name="openj pa. Brokerlnpl" val ue="Evi ct Fr onDat aCache=true"/>

i nport org. apache. openj pa. per si st ence. *;

OpenJPAENt i t yManager oem = OpenJPAPer si st ence. cast (em);
oem evi ct (changedMag); // will evict fromdata cache al so

10.1.3. Query Cache

In addition to the data cache, the or g. apache. openj pa. dat acache package defines service provider interfacesfor a
guery cache. The query cacheis enabled by default when the data cache is enabled. The query cache stores the object ids returned
by query executions. When you run a query, OpenJPA assembles a key based on the query properties and the parameters used at
execution time, and checks for a cached query result. If one isfound, the object idsin the cached result are looked up, and the res-
ultant persistence-capabl e objects are returned. Otherwise, the query is executed against the database, and the object ids loaded by
the query are put into the cache. The object id list is not cached until the list returned at query execution timeis fully traversed.

OpenJPA exposes a high-level interface to the query cache through the
or g. apache. openj pa. per si st ence. Quer yResul t Cache class. Y ou can access this class through the Open-
JPAENt i t yManager Fact ory.

Example 10.9. Accessing the QueryResultCache

i mport org. apache. openj pa. per si stence. *;

OpenJPAENt i t yManager Fact ory oenf = OpenJPAPersi st ence. cast (enf);
Quer yResul t Cache qcache = oenf. get QueryResul t Cache();

The default query cache implementation caches 100 query executionsin aleast-recently-used cache. This can be changed by set-
ting the cache size in the CacheSi ze plugin property. Like the data cache, the query cache also has a backing soft reference
map. The Sof t Ref er enceSi ze property controls the size of thismap. It is disabled by default.

Example 10.10. Query Cache Size

305

../javadoc/org/apache/openjpa/persistence/QueryResultCache.html

Caching

<property name="openjpa. QueryCache" val ue="CacheSi ze=1000, Soft Ref erenceSi ze=100"/>

To disable the query cache completely, set theopenj pa. Quer yCache propertytof al se:

Example 10.11. Disabling the Query Cache

<property name="openj pa. QueryCache" val ue="fal se"/>

There are certain situations in which the query cache is bypassed:

» Caching isnot used for in-memory queries (queries in which the candidates are a collection instead of a class or Ext ent).

» Caching isnot used in transactions that have | gnor eChanges setto f al se and in which modifications to classesin the
query's access path have occurred. If none of the classesin the access path have been touched, then cached results are still valid
and are used.

 Caching isnot used in pessimistic transactions, since OpenJPA must go to the database to lock the appropriate rows.

» Caching is not used when the data cache does not have any cached datafor anid in aquery result.

» Queriesthat use persistence-capable objects as parameters are only cached if the parameter is directly compared to field, asin:

sel ect e from Enpl oyee e where e.conpany. address = :addr

If you extract field values from the parameter in your query string, or if the parameter is used in collection element comparis-
ons, the query is not cached.

» Queriesthat result in projections of custom field types or Bi gDeci mal or Bi gl nt eger fields are not cached.
Cache results are removed from the cache when instances of classes in a cached query's access path are touched. That is, if a
query accesses datain class A, and instances of class A are modified, deleted, or inserted, then the cached query result is dropped

from the cache.

It ispossible to tell the query cache that a class has been altered. Thisis only necessary when the changes occur via direct modi-
fication of the database outside of OpenJPA's control. Y ou can also evict individual queries, or clear the entire cache.

public void evict(Query q);
public void evictAll (Cass cls);
public void evictAll();

For JPA queries with parameters, set the desired parameter values into the Quer y instance before calling the above methods.

306

http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html

Caching

Example 10.12. Evicting Queries

i mport org. apache. openj pa. persi stence. *;

OpenJPAENt i t yManager Fact ory oenf = OpenJPAPersi st ence. cast (enf);
QueryResul t Cache gqcache = oenf. get QueryResul t Cache();

/1l evict all queries that can be affected by changes to Magazi nes
gcache. evi ct Al | (Magazi ne. cl ass) ;

/1 evict an individual query with paraneters
EntityManager em = enf.createEntityManager();
Query q = emcreateQuery(...).

set Paranmet er (0, paranval 0).

set Paraneter (1, paranval 1);
gcache. evict (q);

When using one of OpenJPA's distributed cache implementations, it is necessary to perform thisin every VM - the change noti-
fication is not propagated automatically. When using a third-party coherent caching solution, it is not necessary to do thisin every
JVM (athough it won't hurt to do so), as the cache results are stored directly in the coherent cache.

Queries can aso be pinned and unpinned through the Quer yResul t Cache. The semantics of these operations are the same as
pinning and unpinning data from the data cache.

public void pin(Qery q);
public void unpin(Query q);

For JPA queries with parameters, set the desired parameter values into the Quer y instance before calling the above methods.

The following example shows these APIsin action.

Example 10.13. Pinning, and Unpinning Query Results

i mport org. apache. openj pa. persi stence. *;

OpenJPAENt i t yManager Fact ory oenf = OpenJPAPersi st ence. cast (enf);
QueryResul t Cache gqcache = oenf. get QueryResul t Cache();
EntityManager em = enf.createEntityManager();

Query pinQuery = emcreateQuery(...).
set Paranet er (0, paranval 0).
set Paraneter (1, paranvall);

gcache. pi n(pi nQuery);

Query unpinQuery = emcreateQuery(...).
set Paranmet er (0, paranval 0).
set Paraneter (1, paranvall);

gcache. unpi n(unpi nQuery);

Pinning data into the cache instructs the cache to not expire the pinned results when cache flushing occurs. However, pinned res-
ults will be removed from the cache if an event occurs that invalidates the results.

307

http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html

Caching

Y ou can disable caching on aper-Ent i t yManager or per-Query basis:

Example 10.14. Disabling and Enabling Query Caching

i mport org. apache. openj pa. per si stence. *;

/'l tenporarily disable query caching for all queries created fromem
OpenJPAENt i t yManager oem = OpenJPAPer si st ence. cast (en);
oem get Fet chPl an (). set QueryResul t CacheEnabl ed(f al se);

/'l re-enable caching for a particul ar query
OpenJPAQuery ogq = oemcreateQuery(...);
0g. get Fet chPI an().set QueryResul t CacheEnabl ed(true);

10.1.4. Cache Extension

10.1.5.

The provided data cache classes can be easily extended to add additional functionality. If you are adding new behavior, you
should extend or g. apache. openj pa. dat acache. Dat aCachel npl . To use your own storage mechanism, extend

or g. apache. openj pa. dat acache. Abstr act Dat aCache , or implement

or g. apache. openj pa. dat acache. Dat aCache directly. If you want to implement a distributed cache that uses an un-
supported method for communications, create an implementation of

or g. apache. openj pa. event . Renot eConmi t Provi der . Thisprocessis described in greater detail in Section 11.2.2,
“ Customization ” [316]

The query cacheisjust as easy to extend. Add functionality by extending the default

or g. apache. openj pa. dat acache. Quer yCachel npl . Implement your own storage mechanism for query results by
extending or g. apache. openj pa. dat acache. Abst r act Quer yCache or implementing the

or g. apache. openj pa. dat acache. Quer yCache interface directly.

Important Notes

10.1.6.

» The default cache implementations do not automatically refresh objectsin other Ent i t yManager swhen the cacheis up-
dated or invalidated. This behavior would not be compliant with the JPA specification.

» Invoking OpenJPAENt i t yManager . evi ct does not result in the corresponding data being dropped from the data cache,
unless you have set the proper configuration options as explained above (see Example 10.8, “ Automatic Data Cache Evic-
tion " [305]). Other methods related to the Ent i t yManager cache also do not affect the data cache.

The data cache assumesthat it is up-to-date with respect to the datastore, so it is effectively an in-memory extension of the
database. To manipulate the data cache, you should generally use the data cache facades presented in this chapter.

* You must specify aor g. apache. openj pa. event . Renot eConmi t Provi der (viatheopen-

j pa. Renot eCommi t Pr ovi der property) in order to use the data cache, even when using the cache in asingle-JVM mode.
When using it in asingle-JVM context, set this property to sj vm

Known Issues and Limitations

* When using datastore (pessimistic) transactionsin concert with the distributed caching implementations, it is possible to read
stale data when reading data outside a transaction.

308

Caching

For example, if you have two WMs (JVM A and JVM B) both communicating with each other, and VM A obtains a data
store lock on a particular object's underlying data, it is possible for VM B to load the data from the cache without going to the
datastore, and therefore load data that should be locked. Thiswill only happen if VM B attemptsto read data that is already in
its cache during the period between when JVM A locked the data and JVM B received and processed the invalidation notifica-
tion.

This problem isimpossible to solve without putting together a two-phase commit system for cache notifications, which would
add significant overhead to the caching implementation. As aresult, we recommend that people use optimistic locking when
using data caching. If you do not, then understand that some of your non-transactional data may not be consistent with the data-
store.

Note that when loading objects in a transaction, the appropriate datastore transactions will be obtained. So, transactional code
will maintain its integrity.

» Ext ent sarenot cached. So, if you plan on iterating over alist of all the objectsin an Ext ent on aregular basis, you will
only benefit from caching if you do so withaQuery instead:

Example 10.15. Query Replaces Extent

i nport org. apache. openj pa. per si st ence. *;

OpenJPAENt i t yManager oem = OpenJPAPer si st ence. cast (em) ;
Ext ent extent = oem get Ext ent (Magazi ne. cl ass, fal se);

/1 This iterator does not benefit from caching...
Iterator uncachedlterator = extent.iterator();

/1 ... but this one does.

OpenJPAQuery extent Query = oem createQuery(...);

ext ent Query. set Subcl asses(fal se);

Iterator cachedlterator = extentQuery.getResultList().iterator();

10.2. Query Compilation Cache

The query compilation cache isaMap used to cache parsed query strings. As aresult, most queries are only parsed once in Open-
JPA, and cached thereafter. Y ou can control the compilation cache through the openj pa. Quer yConpi | ati onCache con-
figuration property. This property accepts a plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing the Map
used to associate query strings and their parsed form. This property accepts the following aliases:

Table 10.2. Pre-defined aliases

Alias Value

true or g. apache. openj pa. util . CacheMap

al | org. apache. openjpa.lib.util.ConcurrentHash
Map

fal se none

10.3. Query SQL Cache

309

Caching

The query SQL cacheisaMap used to cache pushed-down SQL query strings for the find operation. As aresult, the SQL queries
are only generated once in OpenJPA, and cached thereafter. This query SQL cache is shared across entity managers and the fetch
plan is part of the cache key. Y ou can control the SQL cache through the openj pa. j dbc. Quer ySQ.Cache configuration
property. This property accepts a plugin string (see Section 2.4, “ Plugin Configuration ” [177]) describing the Map used to as-
sociate query strings and their parsed form. This property accepts the following aliases:

Table 10.3. Pre-defined aliases

Alias Value

true or g. apache. openj pa. util . CacheMap

al | or g. apache. openj pa.lib.util.ConcurrentHash
Map

fal se none

310

Chapter 11. Remote and Offline Operation

The standard JPA runtime environment is local and online. It islocal in that components such asEnt i t yManager sand queries
connect directly to the datastore and execute their actions in the same JVM as the code using them. It isonline in that al changes
to managed objects must be made in the context of an active Ent i t yManager . These two properties, combined with the fact
that Ent i t yManager s cannot be serialized for storage or network transfer, make the standard JPA runtime difficult to incor-
porate into some enterprise and client/server program designs.

OpenJPA extends the standard runtime to add remote and offline capabilities in the form of enhanced Detach and Attach APIs
and Remote Commit Events. The following sections explain these capabilitiesin detail.

11.1. Detach and Attach

The JPA Overview describes the specification's standard detach and attach APIsin Section 8.2, “ Entity Lifecycle Management
" [68]. This section enumerates OpenJPA's enhancements to the standard behavior.

11.1.1. Detach Behavior

In JPA, objects detach automatically when they are serialized or when a per sistence context ends. The specification does not
define any way to explicitly detach objects. The extended OpenJPAENt i t yManager , however, allows you to explicitly detach
objects at any time.

public Cbject detach(Ooject pc):
public Object[] detachAll (Object... pcs):
public Collection detachAll (Collection pcs):

Each detach method returns detached copies of the given instances. The copy mechanism is similar to serialization, except that
only certain fields are traversed. We will see how to control which fields are detached in a later section.

When detaching an instance that has been modified in the current transaction (and thus made dirty), the current transaction is
flushed. This means that when subsequently re-attaching the detached instances, OpenJPA assumes that the transaction from
which they were originally detached was committed; if it has been rolled back, then the re-attachment process will throw an op-
timistic concurrency exception.

Y ou can stop OpenJPA from assuming the transaction will commit in the following ways :

» InvokeEntityTransaction. set Rol | backOnl y prior to detachingyour objects. Setting the Rol | backOnl y flag
prevents OpenJPA from flushing when detaching dirty objects; instead OpenJPA just runsits pre-flush actions (see the Open-
JPAENt i t yManager . pr eFl ush Javadoc for details).

This allows you to use the same instances in multiple attach/modify/detach/rollback cycles.
» Make your modifications outside of atransaction (with Nont r ansact i onal Wi t e enabled) before detaching.

e Setfl ushBef or eDet ach tofalse(see Conpati bility. set Fl ushBef or eDet ach Javadoc). Thisoption issimil-
ar to the first option, but does not affect the current transaction.

11.1.2. Attach Behavior

When attaching, OpenJPA uses severa strategies to determine the optimal way to merge changes made to the detached instance.
Asyou will see, these strategies can even be used to attach changes made to a transient instance which was never detached in the

311

../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html
../javadoc/org/apache/openjpa/conf/Compatibility.html

Remote and Offline Operation

first place.

« If theinstance was detached and detached state is enabled, OpenJPA will use the detached state to determine the object's ver-
sion and primary key values. In addition, this state will tell OpenJPA which fields were loaded at the time of detach, and in
turn where to expect changes. Loaded detached fields with null values will set the attached instance's corresponding fields to
null.

« If theinstance hasaVer si on field, OpenJPA will consider the object detached if the version field has a non-default value,
and new otherwise. Similarly, if the instance has Gener at edVal ue primary key fields, OpenJPA will consider the object
detached if any of these fields have non-default values, and new otherwise.

When attaching null fields in these cases, OpenJPA cannot distinguish between afield that was unloaded and one that was in-
tentionally set to null. In this case, OpenJPA will use the current detach state setting to determine how to handle null fields:
fields that would have been included in the detached state are treated as loaded, and will in turn set the corresponding attached
field to null.

« If neither of the above cases apply, OpenJPA will check to see if an instance with the same primary key values existsin the
database. If so, the object is considered detached. Otherwise, it is considered new.

These strategies will be assigned on a per-instance basis, such that during the attachment of an object graph more than one of the
above strategies may be used.

If you attempt to attach a versioned instance whose representation has changed in the datastore since detachment, OpenJPA will
throw an optimistic concurrency exception upon commit or flush, just asif anormal optimistic conflict was detected. When at-
taching an instance whose database record has been deleted since detaching, or when attaching a detached instance into a man-
ager that has a stale version of the object, OpenJPA will throw an optimistic concurrency exception from the attach method. In
these cases, OpenJPA setsthe Rol | backOnl y flag on the transaction.

11.1.3. Defining the Detached Object Graph

When detached objects |ose their association with the OpenJPA runtime, they also lose the ability to load additional state from the
datastore. It isimportant, therefore, to populate objects with all the persistent state you will need before detaching them. While
you are free to do this manually, OpenJPA includes facilities for automatically populating objects when they detach. The open-

j pa. Det achSt at e configuration property determines which fields and relations are detached by default. All settings are re-
cursive. They are:

1. | oaded: Detach dl fields and relations that are already loaded, but don't include unloaded fields in the detached graph. This
isthe default.

2. f et ch- gr oups: Detach al fields and relations in the current fetch configuration. For more information on custom fetch
groups, see Section 5.7, “ Fetch Groups” [243].

3. al | : Detach all fields and relations. Be very careful when using this mode; if you have a highly-connected domain model, you
could end up bringing every object in the database into memory!

Any field that is not included in the set determined by the detach mode is set to its Java default value in the detached instance.

Theopenj pa. Det achSt at e option isactually aplugin string (see Section 2.4, “ Plugin Configuration ” [177]) that allows

you to also configure the following options related to detached state:

* Det achedSt at eFi el d: Asdescribed in Section 11.1.2, “ Attach Behavior ” [311] above, OpenJPA can take advantage of
adetached state field to make the attach process more efficient. Thisfield is added by the enhancer and is not visible to your
application. Set this property to one of the following values:

312

Remote and Offline Operation

e transi ent : Use atransient detached state field. This gives the benefits of a detached state field to local objectsthat are
never serialized, but retains serialization compatibility for client tiers without access to the enhanced versions of your
classes. Thisis the defaullt.

e true: Useanon-transient detached state field so that objects crossing serialization barriers can still be attached efficiently.
This requires, however, that your client tier have the enhanced versions of your classes and the OpenJPA libraries.

« f al se: Do not use adetached state field.

Y ou can override the setting of this property or declare your own detached state field on individual classes using OpenJPA's
metadata extensions. See Section 11.1.3.1, “ Detached State Field ” [313)elow.

» Det achedSt at eManager : Whether to use a detached state manager. A detached state manager makes attachment much
more efficient. Like a detached state field, however, it breaks serialization compatibility with the unenhanced class if it isn't
transient.

This setting piggybacks on the Det achedSt at eFi el d setting above. If your detached state field is transient, the detached
state manager will also be transient. If the detached state field is disabled, the detached state manager will aso be disabled.
Thisistypicaly what you'll want. By setting Det achedSt at eFi el d to true (or transient) and setting this property to false,
however, you can use a detached state field without using a detached state manager. This may be useful for debugging or for
legacy OpenJPA users who find differences between OpenJPA's behavior with a detached state manager and OpenJPA's older
behavior without one.

* AccessUnl oaded: Whether to allow access to unloaded fields of detached objects. Defaults to true. Set to false to throw an
exception whenever an unloaded field is accessed. This option is only available when you use detached state managers, as de-
termined by the settings above.

Example 11.1. Configuring Detached State

<property name="openj pa. DetachState" val ue="fetch-groups(DetachedSt ateFi el d=true)"/>

You can aso alter the set of fields that will be included in the detached graph at runtime. QpenJPAENt i t yManager s expose
the following APIsfor controlling detached state:

public DetachStateType getDetachState();
public void setDetachStat e(DetachSt ateType type);

The Det achSt at eType enum contains the following values:

enum Det achSt at eType {
FETCH_GROUPS,
LOADED,
ALL

11.1.3.1. Detached State Field

313

../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html

Remote and Offline Operation

When the detached state field is enabled, the OpenJPA enhancer adds an additional field to the enhanced version of your class.
Thisfield of type Obj ect . OpenJPA usesthisfield for bookkeeping information, such as the versioning data needed to detect
optimistic concurrency violations when the object is re-attached.

It is possible to define this detached state field yourself. Declaring this field in your class metadata prevents the enhancer from
adding any extrafieldsto the class, and keeps the enhanced class serialization-compatible with the unenhanced version. The de-
tached state field must not be persistent. See Section 6.4.1.3, “ Detached State” [253] for details on how to declare a detached
state field.

i nport org. apache. openj pa. per si st ence. *;

@ntity
public class Magazi ne
inpl ements Serializable {

private String nane;
@et achedState private Object state;

11.2. Remote Event Notification Framework

The remote event notification framework allows a subset of the information available through OpenJPA's transaction events (see
Section 9.7, “ Transaction Events” [299]) to be broadcast to remote listeners. OpenJPA's data cache, for example, uses remote
events to remain synchronized when deployed in multiple JVMs.

To enable remote events, you must configurethe Ent i t yManager Fact ory touseaRenot eConmi t Provi der (seebe-
low).

When aRenot eConmi t Provi der isproperly configured, you can register Renot eConmi t Li st ener sthat will be alerted
with alist of modified object ids whenever a transaction on a remote machine successfully commits.

11.2.1. Remote Commit Provider Configuration

OpenJPA includes built in remote commit providers for IMS and TCP communication.

11.2.1.1. IMS

The JMS remote commit provider can be configured by setting the openj pa. Renot eConmi t Pr ovi der property to contain
the appropriate configuration properties. The JIMS provider understands the following properties:

» Topi c: Thetopic that the remote commit provider should publish notifications to and subscribe to for notifications sent from
other WMs. Defaultsto t opi ¢/ OpenJPAConmi t Pr ovi der Topi ¢

e Topi cConnecti onFact ory: The JNDI name of aj avax. j ms. Topi cConnect i onFact ory factory to use for find-
ing topics. Defaultstoj ava: / Connect i onFact ory. This setting may vary depending on the application server in use;
consult the application server's documentation for details of the default INDI name for the
j avax. j ms. Topi cConnect i onFact ory instance. For example, under Weblogic, the INDI name for the TopicConnec-
tionFactory isj avax. j ns. Topi cConnecti onFactory.

» Excepti onReconnect At t enpt s: The number of timesto attempt to reconnect if the JIMS system notifies OpenJPA of a
serious connection error. Defaults to 0, meaning OpendPA will log the error but otherwise ignore it, hoping the connection is
still valid.

» *: All other configuration properties will be interpreted as settings to pass to the JINDI | ni t i al Cont ext on construction.
For example, you might set thej ava. nam ng. provi der. url| property to the URL of the context provider.

314

../javadoc/org/apache/openjpa/event/RemoteCommitListener.html

Remote and Offline Operation

To configure afactory to use the IMS provider, your properties might ook like the following:

Example 11.2. JMS Remote Commit Provider Configuration

<property name="openj pa. Renot eConmi t Pr ovi der "
val ue="j nms(Excepti onReconnect At t enpt s=5)"/>

Because of the nature of IMS, it isimportant that you invoke Ent i t yManager Fact ory. cl ose when finished with
afactory. If you do not do so, a daemon thread will stay up in the VM, preventing the VM from exiting.

11.2.1.2. TCP

The TCP remote commit provider has several options that are defined as host specifications containing a host name or |1P address
and an optional port separated by a colon. For example, the host specification sat ur n. bea. com 1234 representsan | net -
Addr ess retrieved by invoking | net Addr ess. get ByNane(" sat urn. bea. comt') and aport of 1234.

The TCP provider can be configured by setting the openj pa. Renot eCommi t Pr ovi der plugin property to contain the ap-

propriate configuration settings. The TCP provider understands the following properties:

e Port: The TCP port that the provider should listen on for commit notifications. Defaults to 5636.

* Addr esses: A semicolon-separated list of |P addresses to which notifications should be sent. No default value.

e NunBr oadcast Thr eads: The number of threadsto create for the purpose of transmitting events to peers. You sould in-
crease this value as the number of concurrent transactions increases. The maximum number of concurrent transactionsisa
function of the size of the connection pool. See the MaxAct i ve property of open-

j pa. Connecti onFact or yProperti es in Section 4.1, “ Using the OpenJPA DataSource” [203]. Setting avalue of 0
will result in behavior where the thread invoking commi t will perform the broadcast directly. Defaultsto 2.

* RecoveryTi meM I | i s: Amount of timeto wait in milliseconds before attempting to reconnect to a peer of the cluster
when connectivity to the peer islost. Defaults to 15000.

» Maxl dl e: The number of TCP sockets (channels) to keep open to each peer in the cluster for the transmission of events. De-
faultsto 2.

» MaxAct i ve: The maximum allowed number of TCP sockets (channels) to open simultaneously between each peer in the
cluster. Defaultsto 2.

To configure afactory to use the TCP provider, your properties might look like the following:

Example 11.3. TCP Remote Commit Provider Configuration

<property nanme="openj pa. Renot eConmi t Provi der"
val ue="t cp(Addr esses=10. 0. 1. 10; 10. 0. 1. 11; 10. 0. 1. 12; 10. 0. 1. 13) "/ >

315

Remote and Offline Operation

11.2.1.3. Common Properties

In addition to the provider-specific configuration options above, all providers accept the following plugin properties:

e Transnit Persi st edoj ect | ds: Whether remote commit events will include the object ids of instances persisted in the
transaction. By default only the class names of types persisted in the transaction are sent. This resultsin smaller events and
more efficient network utilization. If you have registered your own remote commit listeners, however, you may require the per-
sisted object ids as well.

To transmit persisted object idsin our remote commit events using the IM S provider, we modify the previous example as fol-
lows:

Example 11.4. JMS Remote Commit Provider transmitting Persisted Object | ds

<property name="openj pa. Renot eConmi t Pr ovi der"
val ue="j ms(Excepti onReconnect At t enpt s=5, Transmi t Persi st edObj ectlds=true)"/>

11.2.2. Customization

Y ou can devel op additional mechanisms for remote event notification be by creating an implementation of the Renot eCom
mi t Provi der interface, possibly by extending the Abst r act Renot eCommi t Provi der abstract class..

316

../javadoc/org/apache/openjpa/event/RemoteCommitProvider.html
../javadoc/org/apache/openjpa/event/RemoteCommitProvider.html
../javadoc/org/apache/openjpa/event/AbstractRemoteCommitProvider.html

Chapter 12. Distributed Persistence
Chapter 12. Distributed Persistence

12.1.

The standard JPA runtime environment works with a single database instance. OpenJPA can be extended via plug-in to work with
multiple databases within the same transaction without any change to the existing application. This capability of OpenJPA for
distributed database environment is called Sice and is explained in the following sections.

Overview

Enterprise applications are increasingly deployed for distributed database environments. The reasons for distributed, often hori-
zontally-partitioned database environment can be to counter massive data growth, to support multiple external clients on a hosted
platform or many other practical scenarios that can benefit from data partitioning.

Any JPA-based user application has to address serious technical and conceptual challenges to directly interact with a set of phys-
ical databases within a single transaction. Slice encapsulates the complexity of distributed database environment via the abstrac-
tion of virtual database which internally manages multiple physical databases. We refer each physical database instance as dlice.
Virtualization of distributed databases makes OpenJPA object management kernel and the user application to work in the same
way asin the case of asingle physical database.

12.2. Salient Features

12.2.1. Transparency

The existing application or the persistent domain model requires no change to upgrade from a single database to a distributed
database environment.

12.2.2. Custom Distribution Policy

User application decides how the newly persistent instances be distributed across the database dlices. The data distribution policy
across the slices may be based on the attribute of the dataitself. For example, all Customer whose first name begins with charac-
ter 'A" to 'M" will be stored in one slice while names beginning with 'N' to 'Z' will be stored in another slice.

This custom data distribution policy is specified by implementing
or g. apache. openj pa. slice. Di stributionPoli cy interface by the user application.

Slice tracks the original database for existing instances. When an application issues a query, the resultant instances can be loaded
from different slices. Thistracking isimportant as subsequent update to any of these instances is committed to the appropriate
original database dlice.

Y ou can find the original slice of an instance pc by the static utility method Sl i cePer si st ence. get Sl i ce(pc) .
This method returns the slice identifier string associated with the given managed instance. If the instance is not being
managed then the method return null because any unmanaged or detached instance is not associated with any slice.

Currently, there is no provision for migrating an existing instance from one slice to another.

317

Distributed Persistence

12.2.3. Heterogeneous Database

Each slice can be configured independently with its own JDBC driver and other connection parameters. Hence the target database
environment can constitute of heterogeneous databases.

12.2.4. Parallel Execution

All database operations such as query, commit or flush operatesin parallel across the database slices. The execution threading
policy is configurable.

12.2.5. Distributed Query

The queries are executed across all slices and the results are merged into asingle list. The query result that includes ORDER BY
clause are sorted correctly by merging results from each individual slice.

The queries that specify an aggregate projection such as COUNT() , MAX() , M N() and SUM) are correctly evaluated only if
they return asingle result.

The aggregate operation AVQE() is not supported.

12.2.6. Targeted Query

Y ou can target the query only to a subset of slices rather than all dices by setting a hint. The hint key open-
j pa. hint.slice. Target issetonany query and hint value is comma-separated list of dlice identifiers. The following ex-
ampl e shows how to target a query only to slice" One"

EntityManager em= ...;
em get Transaction() . begi n();

String hint = "openjpa.hint.slice.Target";
Query query = em createQuery("SELECT p FROM PCbj ect").setHint(hint, "One");
List result = query.getResultList();

/1 verify that each instance is originaing fromthe given slice
for (Cbject pc : result) {

String sliceOigin = SlicePersistence.getSlice(pc);

assert True ("One", sliceOrigin);

12.2.7. Distributed Transaction

The database dlices participate in a global transaction provided each slice is configured with a XA-compliant JDBC driver, even
when the persistence unit is configured for RESOURCE L OCAL transaction.

If any of the configured slicesis not XA-compliant and the persistence unit is configured for RESOURCE L OCAL trans-
action then each slice is committed without any two-phase commit protocol. If commit on any slice fails, then atomic
nature of the transaction is not ensured.

318

Distributed Persistence

12.2.8. Collocation Constraint

No relationship can exist across database slices. In O-R mapping parlance, this condition translates to the limitation that the clos-
ure of an object graph must be collocated in the same database. For example, consider adomain model where Person relates to
Adress. Person X refersto Address A while Person Y refers to Address B. Collocation Constraint means that both X and A must
be stored in the same database slice. Similarly Y and B must be stored in asingle dlice.

Slice, however, helpsto maintain collocation constraint automatically. The instances in the closure set of any newly persistent in-

stance reachable via cascaded relationship is stored in the same slice. The user-defined distribution policy requires to supply the
slice for the root instance only.

12.3. Usage

Sliceis activated via the following property settings:

12.3.1. How to activate Slice Runtime?

The basic configuration property is

<property nanme="openj pa. Broker Factory" val ue="slice"/>

Thiscritical configuration activates a specialized factory class aliased as sl i ce to create object management kernel that can
work against multiple databases.

12.3.2. How to configure each database slice?

Each database dlice isidentified by alogical name unique within a persistent unit. The list of the slicesis specified by open-
j pa. slice. Nanmes property. For example, specify three slicesnamed " One” , " Two" and " Thr ee" asfollows:

<property nanme="openj pa.slice. Nanes" val ue="One, Two, Three"/>

This property is not mandatory. If this property is not specified then the configuration is scanned for logical slice names. Any
property " abc" of theformopenj pa. sl i ce. XYZ. abc will register adlice with logical name " XYZ" .

The order of the namesiis significant when no openj pa. sl i ce. Mast er property is not specified. Then the persistence unit is
scanned to find all configured slice names and they are ordered alphabetically.

Each database slice properties can be configured independently. For example, the following configuration will register two slices
with logical name One and Two.

<property name="openj pa.slice. One. Connecti onURL" val ue="j dbc: nysql:|ocal host//slicel"/>
<property name="openj pa.slice. Two. Connecti onURL" val ue="j dbc: nmysql : | ocal host//slice2"/>

Any OpenJPA specific property can be configured per slice basis. For example, the following configuration will use two different
JDBC driversfor slice One and Two.

319

Distributed Persistence

<property nanme="openj pa.slice. One. Connecti onDriver Nane" val ue="com nysql.jdbc.Driver"/>
<property name="openj pa.slice. Two. Connecti onDri ver Nane" val ue="com nysql . dbc.j dbc2. optional . Mysql XADat aSour ce"/ >

Any property if unspecified for a particular slice will be defaulted by corresponding OpenJPA property. For example, consider
following three dices

<property name="openj pa. slice. One. Connecti onURL" val ue="j dbc: nysql : | ocal host//slicel"/>
<property name="openj pa. slice. Two. Connecti onURL" val ue="] dbc: nmysql : | ocal host//slice2"/>
<property name="openj pa. slice. Three. Connecti onURL" val ue="] dbc: oracl e: | ocal host//slice3"/>
<property nanme="openj pa. Connecti onDri ver Name" val ue="com nysql . j dbc. Driver"/>

<property nanme="openj pa.slice. Three. Connecti onDriver Name" val ue="oracle.jdbc.Driver"/>

In thisexample, Thr ee will use slice-specificor acl e. j dbc. Dri ver driver while slice One and Two will use the driver
com nysql . j dbc. Dri ver asspecified by openj pa. Connecti onDri ver Nane property value.

12.3.3. Implement DistributionPolicy interface

Slice needs to determine which slice will persist a new instance. The application can only decide this policy (for example, all Pur-
chaseOrders before April 30 goesto slice One, all the rest goesto slice Two). This iswhy the application has to implement
or g. apache. openj pa. slice. Di stributionPolicy and specify the implementation class in configuration

<property name="openj pa.slice.DistributionPolicy" value="com acne. foo. M/Optimi al Di stributionPolicy"/>

Theinterface or g. apache. openj pa. sli ce. Di stri buti onPol i cy issimplewith asingle method. The complete list-
ing of the documented interface follows:

publ i
/ *
Gets the nanme of the slice where a given instance will be stored.

interface DistributionPolicy {

c
*
*
*
* @aram pc The new y persistent or to-be-nmerged object.
* @aram slices name of the configured slices.

* @aram cont ext persistence context managi ng the given instance.
*

* @eturn identifier of the slice. This nanme nust match one of the
* configured slice nanes.

* @ee DistributedConfiguration#getSliceNames()

*/

String distribute(Object pc, List<String> slices, Object context);

While implementing a distribution policy the most important thing to remember is collocation constraint. Because Slice can not
establish or query any cross-database relationship, all the related instances must be stored in the same database dice. Slice can de-
termine the closure of aroot object by traversal of cascaded relationships. Hence user-defined policy has to only decide the data-
base for the root instance that is the explicit argument to Ent i t yManager . per si st () call. Slicewill ensure that all other re-
lated instances that gets persisted by cascade is assigned to the same database slice as that of the root instance. However, the user-
defined distribution policy must return the same dice identifier for the instances that are logically related but not cascaded for
persist.

320

Distributed Persistence

The propertiesto configure Slice can be classified in two broad groups. The global properties apply to all the slices, for example,
the thread pool used to execute the queriesin parallel or the transaction manager used to coordinate transaction across multiple
dlices. The per-dlice properties apply to individual slice, for example, the JIDBC connection URL of adlice.

12.4. Global Properties

12.4.1. openjpa.slice.DistributionPolicy

This mandatory plug-in property determines how newly persistent instances are distributed across individual slices. The value of
this property is afully-qualified class name that implementsor g. apache. openj pa. sl i ce. Di stri buti onPol i cy in-
terface.

12.4.2. openjpa.slice.Lenient

This boolean plug-in property controls the behavior when one or more slice can not be connected or unavailable for some other
reasons. If t r ue, the unreachable dlices areignored. If f al se then any unreachable slice will raise an exception during startup.

By default thisvalueissettof al se i.e. al configured slices must be available.

12.4.3. openjpa.slice.Master

This plug-in property can be used to identify the name of the master slice. Master sliceis used when a primary key isto be gener-
ated from a database sequence.

By default the master diceisthefirst dicein thelist of configured slice names.

Currently, there is no provision to use sequence from multiple database slices.

12.4.4. openjpa.slice.Names

This plug-in property can be used to register the logical slice names. The value of this property is comma-separated list of dlice
names. The ordering of the namesin thislist is significant because DistributionPolicy receives the input argument of the slice
names in the same order.

If logical slice names are not registered explicitly viathis property, then al logical slice names available in the persistence unit
are registered. The ordering of the slice names in this case is al phabetical.

If logical slice names are registered explicitly viathis property, then any logical dlice that is available in the persistence unit but
excluded from thislist isignored.

12.4.5. openjpa.slice.ThreadingPolicy

This plug-in property determines the nature of thread pool being used for database operations such as query or flush on individual
slices. The value of the property isafully-qualified class name that implements

java. util.concurrent. Execut or Servi ce interface. Two pre-defined pools can be chosen viatheir aliases namely

fi xed or cached.

The pre-defined dlias cached activates a cached thread pool. A cached thread pool creates new threads as needed, but will re-
use previously constructed threads when they are available. This pool is suitable in scenarios that execute many short-lived asyn-
chronous tasks. The way Slice uses the thread pool to execute database operationsis akin to such scenario and hencecached is
the default value for this plug-in property.

321

../javadoc/org/apache/openjpa/slice/DistributionPolicy.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ExecutorService.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/Executors.html#newCachedThreadPool()

Distributed Persistence

Thef i xed dlias activates afixed thread pool. The fixed thread pool can be further parameterized with Cor ePool Si ze,
Maxi munPool Si ze, KeepAl i veTi me and Rej ect edExecut i onHandl er . The meaning of these parameters are de-
scribed in JavaDoc. The users can exercise finer control on thread pool behavior viathese parameters. By default, the core pool
sizeis 10, maximum pool sizeisalso 10, keep alivetime is 60 seconds and rejected execution is aborted.

Both of the pre-defined aliases can be parameterized with afully-qualified class name that implements
java.util.concurrent. ThreadFact ory interface.

12.4.6. openjpa.slice.TransactionPolicy

12.5

This plug-in property determines the policy for transaction commit across multiple slices. The value of this property is afully-
qualified class name that implementsj avax. t ransacti on. Tr ansact i onManager interface.

Three pre-defined policies can be chosen by their aliases namely def aul t , xa andj ndi .

Thedef aul t policy employs a Transaction Manager that commits or rolls back transaction on individual slices without a two-
phase commit protocol. It does not guarantee atomic nature of transaction across all the slices because if one or more slice failsto
commit, there is no way to rollback the transaction on other slices that committed successfully.

The xa policy employs a Transaction Manager that that commits or rolls back transaction on individual slices using atwo-phase
commit protocol. The prerequisite to use this schemeiis, of course, that all the slices must be configured to use XA-compliant JD-
BC driver.

Thej ndi policy employs a Transaction Manager by looking up the INDI context. The prerequisite to use this transaction man-
ager is, of course, that al the slices must be configured to use XA-compliant JDBC driver.

This INDI based policy is not available currently.

Per-Slice Properties

Any OpenJPA property can be configured for each individua slice. The property name is of the form open-
jpa.slice.[Logical slice nanme].[QpenJPA Property Nane] . For example open-

j pa.slice. One. Connecti onURL where One isthelogical slice name and Connect i onURL isan OpenJPA property
name.

If aproperty is not configured for a specific dlice, then the value for the property equals to the corresponding openj pa. * prop-
erty.

322

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/Executors.html#newFixedThreadPool(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.AbortPolicy.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ThreadFactory.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/transaction/TransactionManager.html

Chapter 13. Third Party Integration

OpenJPA provides a number of mechanisms for integrating with third-party tools. The following chapter will illustrate these in-
tegration features.

13.1. Apache Ant

Ant isavery popular tool for building Java projects. It is similar to the make command, but is Java-centric and has more modern
features. Ant is open source, and can be downloaded from Apache's Ant web page at http://jakarta.apache.org/ant/ . Ant has
become the de-facto standard build tool for Java, and many commercial integrated development environments provide some sup-
port for using ant build files. The remainder of this section assumes familiarity with writing Ant bui | d. xm files.

OpenJPA provides pre-built Ant task definitions for all bundled tools:

Enhancer Task

» Application Identity Tool Task
* Mapping Tool Task

» Reverse Mapping Tool Task

» Schema Tool Task

The source code for all the ant tasks is provided with the distribution under the sr ¢ directory. This allows you to customize vari-
ous aspects of the ant tasks in order to better integrate into your development environment.

13.1.1. Common Ant Configuration Options

All OpenJPA tasks accept anested conf i g element, which defines the configuration environment in which the specified task
will run. The attributes for the conf i g tag are defined by the JDBCConf i gur at i on bean methods. Note that excluding the
conf i g element will cause the Ant task to use the default system configuration mechanism, such as the configuration defined in
theor g. apache. openj pa. xm file

Following is an example of how to use the nested conf i g taginabui | d. xm file:

Example 13.1. Using the <config> Ant Tag

<mappi ngt ool >
<fileset dir="${basedir}">
<include name="**/nodel /*.java" />

</fileset>

<confi g connecti onUser Name="scott" connecti onPassword="ti ger"
connecti onURL="j dbc: oracl e: t hi n: @at urn: 1521: sol arsi d"
connectionDriverName="oracl e.j dbc.driver.OacleDriver" />

</ mappi ngt ool >

Itisalso possible to specify apr operti es or properti esFi | e attribute on the conf i g tag, which will be used to locate a
properties resource or file. The resource will be loaded relative to the current CLASSPATH.

323

http://jakarta.apache.org/ant/
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html

Third Party Integration

Example 13.2. Using the Properties Attribute of the <config> Tag

<mappi ngt ool >
<fileset dir="${basedir}">
<i ncl ude name="**/nodel /*.java"/>
</fileset>
<confi g properti es="openj pa-dev. xm "/>
</ mappi ngt ool >

Example 13.3. Using the PropertiesFile Attribute of the <config> Tag

<mappi ngt ool >
<fileset dir="${basedir}">
<i nclude name="**/nodel /*.java"/>
</fileset>
<config propertiesFile="../conf/openjpa-dev.xm"/>
</ mappi ngt ool >

Tasks also accept anested cl asspat h element, which you can use in place of the default classpath. The cl asspat h argu-
ment behaves the same as it does for Ant's standard j avac element. It is sometimes the case that projects are compiled to a sep-
arate directory than the source tree. If the target path for compiled classesis not included in the project's classpath, then a

cl asspat h element that includes the target class directory needs to be included so the enhancer and mapping tool can locate
the relevant classes.

Following is an example of using acl asspat h tag:

Example 13.4. Using the <classpath> Ant Tag

<openj pac>
<fileset dir="${basedir}/source">
<i ncl ude name="**/nodel /*.java" />
</fileset>
<cl asspat h>
<pat hel ement | ocati on="${basedir}/cl asses"/>
<pat hel enent | ocati on="${basedir}/source"/>
<pat hel enent pat h="${j ava. cl ass. path}"/>
</ cl asspat h>
</ openj pac>

Finally, tasks that invoke code-generation tools like the application identity tool and reverse mapping tool accept a nested code-
f or mat element. See the code formatting documentation in Section 2.3.1, “ Code Formatting” [176] for alist of code format-
ting attributes.

Example 13.5. Using the <codeformat> Ant Tag

324

Third Party Integration

<rever semappi ngt ool package="com xyz.jdo" directory="${basedir}/src">
<codef ormat tabSpaces="4" spaceBef oreParen="true" braceOnSaneLi ne="fal se"/>
</ rever senmappi ngt ool >

13.1.2. Enhancer Ant Task

The enhancer task allows you to invoke the OpenJPA enhancer directly from within the Ant build process. The task's parameters
correspond exactly to the long versions of the command-line arguments to the
or g. apache. openj pa. enhance. PCEnhancer .

The enhancer task acceptsanested f i | eset tag to specify the files that should be processed. Y ou can specify . j ava or
. ¢l ass files. If you do not specify any files, the task will run on the classeslisted in your per si st ence. xml or open-
j pa. Met aDat aFact or y property.

Following is an example of using the enhancer task inabui | d. xm file:

Example 13.6. Invoking the Enhancer from Ant

<t arget nane=" "enhance" >

<!-- define the openjpac task; this can be done at the top of the -->
<l-- build.xm file, so it wi 1 be avallable for all targets
<t askdef name="openj pac" cl assname="org. apache. openj pa. ant. PCEnhancerTask />
<!-- invoke enhancer on all .java files bel ow the nodel directory -->
<openj pac>

<fileset dir=".">

<i ncl ude name="**/nodel /*.java" />
</fileset>
</ openj pac>
</target>

13.1.3. Application Identity Tool Ant Task

The application identity tool task allows you to invoke the application identity tool directly from within the Ant build process.
The task's parameters correspond exactly to the long versions of the command-line arguments to the
or g. apache. openj pa. enhance. Appl i cati onl dTool .

The application identity tool task acceptsanested f i | eset tag to specify the files that should be processed. Y ou can specify
.javaor. cl ass files. If you do not specify any files, the task will run on the classes listed in your per si st ence. xnl file
or openj pa. Met aDat aFact ory property.

Following is an example of using the application identity tool task inabui | d. xm file:

Example 13.7. Invoking the Application I dentity Tool from Ant

<target nane="appi ds">

<l-- define the appidtool task; this can be done at the top of -->
<l-- the build.xm file, so it wll be available for all targets --
<t askdef name="appi dt ool " cl assname=" or g. apache. openj pa. ant. Appl i cati onl dTool Task"/ >
<!-- invoke tool on all .jdo files below the current directory -->
<appi dt ool >
<fileset dir=".">

325

Third Party Integration

<i nclude name="**/nodel /*.java" />
</fileset>
<codef or mat spaceBef or eParen="true" braceOnSaneLi ne="fal se"/>
</ appi dt ool >
</target>

13.1.4. Mapping Tool Ant Task

The mapping tool task allows you to directly invoke the mapping tool from within the Ant build process. It is useful for making
sure that the database schema and object-relational mapping datais always synchronized with your persistent class definitions,
without needing to remember to invoke the mapping tool manually. The task's parameters correspond exactly to the long versions
of the command-line argumentsto theor g. apache. openj pa. j dbc. met a. Mappi ngTool .

The mapping tool task acceptsanestedf i | eset tag to specify the files that should be processed. Y ou can specify . j ava or
. ¢l ass files. If you do not specify any files, the task will run on the classeslisted in your per si st ence. xm fileor open-
j pa. Met aDat aFact or y property.

Following isan example of abui | d. xm target that invokes the mapping tool:

Example 13.8. Invoking the Mapping Tool from Ant

<target name="refresh">

<I'-- define the mappi ngtool task; this can be done at the top of -->
<!-- the build.xm file, so it will be available for all targets -->
<t askdef name="mappi ngt ool " cl assname="or g. apache. openj pa.j dbc. ant. Mappi ngTool Task"/>
<l-- add the schema conponents for all .jdo files below the -->
<!-- current directory -->
<mappi ngt ool acti on="buil dSchema" >
<fileset dir=".">

<i ncl ude name="**/*_jdo" />
</fileset>
</ mappi ngt ool >
</target>

13.1.5. Reverse Mapping Tool Ant Task

The reverse mapping tool task allows you to directly invoke the reverse mapping tool from within Ant. While many users will
only run the reverse mapping process once, others will make it part of their build process. The task's parameters correspond ex-
actly to the long versions of the command-line arguments to the

or g. apache. openj pa. j dbc. net a. Rever seMappi ngTool .

Following is an example of abui | d. xnl target that invokes the reverse mapping tool:

Example 13.9. Invoking the Reverse Mapping Tool from Ant

<target name="reversemap">
<I-- define the reversemappi ngtool task; this can be done at the top of -->
<I-- the build.xm file, soit will be available for all targets -->
<taskdef name="reversenmappi ngt ool "
cl assname="or g. apache. openj pa. j dbc. ant . Rever seMappi ngTool Task"/ >

<I-- reverse map the entire database -->
<rever semappi ngt ool package="com xyz. nodel " directory="%${basedir}/src"

326

Third Party Integration

cust om zer Properti es="${basedir}/conf/reverse. properties">
<codef ormat tabSpaces="4" spaceBef oreParen="true" braceOnSaneLi ne="fal se"/>
</ rever senmappi ngt ool >
</target>

13.1.6. Schema Tool Ant Task

The schematool task allows you to directly invoke the schematool from within the Ant build process. The task's parameters cor-
respond exactly to the long versions of the command-line arguments to the
or g. apache. openj pa. j dbc. schenma. SchenaTool .

Following is an example of abui | d. xnl target that invokes the schematool:

Example 13.10. Invoking the Schema Tool from Ant

<target name="schem">

<I-- define the schematool task; this can be done at the top of -->
<I-- the build.xm file, soit will be available for all targets -->
<t askdef name="schematool " cl assnane="org. apache. openj pa. j dbc. ant. SchenmaTool Task"/>
<I-- add the schema conponents for all .schema files bel ow the -->
<I-- current directory -->
<schemat ool action="add">
<fileset dir=".">

<i ncl ude name="**/*_schema" />
</fileset>
</ schemat ool >
</target>

327

Chapter 14. Optimization Guidelines

There are numerous techniques you can use in order to ensure that OpenJPA operatesin the fastest and most efficient manner.
Following are some guidelines. Each describes what impact it will have on performance and scal ability. Note that general
guidelines regarding performance or scalability issues are just that - guidelines. Depending on the particular characteristics of
your application, the optimal settings may be considerably different than what is outlined below.

In the following table, each row islabeled with alist of italicized keywords. These keywords identify what characteristics the row
in question may improve upon. Many of the rows are marked with one or both of the performance and scalability labels. Itisim-
portant to bear in mind the differences between performance and scalability (for the most part, we are referring to system-wide
scalability, and not necessarily only scalability within asingle JVM). The performance-related hints will probably improve the
performance of your application for a given user load, whereas the scalability-related hints will probably increase the total num-
ber of usersthat your application can service. Sometimes, increasing performance will decrease scalability, and vice versa. Typic-
ally, options that reduce the amount of work done on the database server will improve scalability, whereas those that push more
work onto the server will have a negative impact on scalability.

Table 14.1. Optimization Guidelines

Plugin in a Connection
Pool

performance, scalability

OpenJPA's built-in datasource does not perform connection pooling or prepared statement caching.
Plugging in athird-party pooling datasource may drastically improve performance.

Optimize databasein-
dexes

performance, scalability

The default set of indexes created by OpenJPA's mapping tool may not always be the most appropriate
for your application. Manually setting indexesin your mapping metadata or manually manipulating
database indexes to include frequently-queried fields (as well as dropping indexes on rarely-queried
fields) can yield significant performance benefits.

A database must do extrawork on insert, update, and delete to maintain an index. This extrawork will
benefit selects with WHERE clauses, which will execute much faster when the termsin the WHERE
clause are appropriately indexed. So, for aread-mostly application, appropriate indexing will slow
down updates (which arerare) but greatly accelerate reads. This means that the system as awhole will
be faster, and also that the database will experience less |oad, meaning that the system will be more
scalable.

Bear in mind that over-indexing is a bad thing, both for scalability and performance, especialy for ap-
plications that perform lots of inserts, updates, or deletes.

JVM optimizations

performance, reliability

Manipulating various parameters of the Java Virtual Machine (such as hotspot compilation modes and
the maximum memory) can result in performance improvements. For more details about optimizing
the VM execution environment, please see ht-

tp://java.sun.com/docs/hotspot/Per for manceFAQ.html.

Usethe data cache

performance, scalability

Using OpenJPA's data and query caching features can often result in a dramatic improvement in per-
formance. Additionally, these caches can significantly reduce the amount of load on the database, in-
creasing the scalability characteristics of your application.

Set Lar geTr ansac-
tiontotrue, or set
Popul at e-

Dat aCache tofalse

performance vs. scalab-
ility

When using OpenJPA's data caching features in atransaction that will delete, modify, or create avery
large number of objectsyou can set Lar geTr ansact i on to true and perform periodic flushes dur-
ing your transaction to reduce its memory requirements. See the Javadoc: OpenJPAEnNtityM an-

ager .setTrackChangesByType. Note that transactions in large mode have to more aggressively flush
items from the data cache.

If your transaction will visit objects that you know are very unlikely to be accessed by other transac-
tions, for example an exhaustive report run only once a month, you can turn off population of the data
cache so that the transaction doesn't fill the entire data cache with objects that won't be accessed again.
Again, see the Javadoc: OpenJPAENtityM anager .setPopulateDataCache

Run the OpenJPA en-

OpenJPA performs best when your persistent classes have been run through the OpenJPA post-

328

http://java.sun.com/docs/hotspot/PerformanceFAQ.html
http://java.sun.com/docs/hotspot/PerformanceFAQ.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html

Optimization Guidelines

hancer on your persist-
ent classes, either at
build-time or deploy-
time.

performance, scalabil-
ity, memory footprint

compilation bytecode enhancer. When dealing with enhanced classes, OpenJPA can make a number of
assumptions that reduce memory footprint and accel erate persistent data access. When evaluating
OpenJPA's performance, build-time or deploy-time enhancement should be enabled. See Section 5.2,

“ Enhancement " [228] for details.

Disablelogging, per-
formancetracking

performance

Developer options such as verbose logging and the IDBC performance tracker can result in serious
performance hits for your application. Before evaluating OpenJPA's performance, these options should
all be disabled.

Set | gnor eChanges
totrue, or set Fl ush-
Bef or eQueri es to
true

performance vs. scalab-
ility

When both the openj pa. | gnor eChanges and openj pa. Fl ushBef or eQueri es properties
are set to false, OpenJPA needs to consider in-memory dirty instances during queries. This can some-
times result in OpenJPA needing to evaluate the entire extent objects in order to return the correct
query results, which can have drastic performance consequences. If it is appropriate for your applica-
tion, configuring FI ushBef or eQuer i es to automaticaly flush before queriesinvolving dirty ob-
jects will ensure that this never happens. Setting | gnor eChanges to false will result in asmall per-
formance hit even if FI ushBef or eQueri es istrue, asincremental flushing is not as efficient
overall asdelaying al flushing to a single operation during commit.

Setting | gnor eChanges tot r ue will help performance, since dirty objects can be ignored for
gueries, meaning that incremental flushing or client-side processing is not necessary. It will also im-
prove scalability, since overall database server usage is diminished. On the other hand, setting | g-
nor eChanges tof al se will have anegative impact on scalability, even when using automatic
flushing before queries, since more operations will be performed on the database server.

Configureopen-

j pa. Connect i onRe
t ai nMode appropri-
ately

performance vs. scalab-
ility

The Connect i onRet ai nMbde configuration option controls when OpenJPA will obtain a connec-
tion, and how long it will hold that connection. The optimal settings for this option will vary consider-
ably depending on the particular behavior of your application. Y ou may even benefit from using dif-
ferent retain modes for different parts of your application.

The default setting of on- dermand minimizes the amount of time that OpenJPA holds onto a data-
store connection. Thisis generally the best option from a scalability standpoind, as database resources
are held for aminimal amount of time. However, if you are not using connection pooling, or if your
Dat aSour ce isnot efficient at managing its pool, then this default value could cause undesirable
pool contention.

Useflat inheritance

performance, scalability
vs. disk space

Mapping inheritance hierarchies to a single database table is faster for most operations than other
strategies employing multiple tables. If it is appropriate for your application, you should use this
strategy whenever possible.

However, this strategy will require more disk space on the database side. Disk spaceis relatively inex-
pensive, but if your object model is particularly large, it can become a factor.

High sequenceincre-
ment

performance, scalability

For applications that perform large bulk inserts, the retrieval of sequence numbers can be a bottleneck.
Increasing sequence increments and using table-based rather than native database sequences can re-
duce or eliminate this bottleneck. In some cases, implementing your own sequence factory can further
optimize sequence number retrieval.

Use optimistic transac-
tions

performance, scalability

Using datastore transactions transates into pessimistic database row locking, which can be a perform-
ance hit (depending on the database). If appropriate for your application, optimistic transactions are
typicaly faster than datastore transactions.

Optimistic transactions provide the same transactional guarantees as datastore transactions, except that
you must handle a potential optimistic verification exception at the end of atransaction instead of as-
suming that a transaction will successfully complete. In many applications, it is unlikely that different
concurrent transactions will operate on the same set of data at the same time, so optimistic verification
increases the concurrency, and therefore both the performance and scalability characteristics, of the
application. A common approach to handling optimistic verification exceptionsis to simply present
the end user with the fact that concurrent modifications happened, and require that the user redo any
work.

329

Optimization Guidelines

Use query aggregates
and projections

performance, scalability

Using aggregates to compute reporting data on the database server can drastically speed up queries.
Similarly, using projections when you are interested in specific object fields or relations rather than the
entire object state can reduce the amount of data OpenJPA must transfer from the database to your ap-
plication.

Always close resour ces

scalability

Under certain settings, Ent i t yManager s, OpenJPA Ext ent iterators, and Quer y results may be
backed by resourcesin the database.

For example, if you have configured OpenJPA to use scrollable cursors and lazy object instantiation
by default, each query result will hold open aResul t Set object, which, in turn, will hold open a
St at enent object (preventing it from being re-used). Garbage collection will clean up these re-
sources, so it is never necessary to explicitly close them, but it is always faster if it is done at the ap-
plication level.

Use detached state
manager s

performance

Attaching and even persisting instances can be more efficient when your detached objects use de-
tached state managers. By default, OpenJPA does not use detached state managers when serializing an
instance acrosstiers. See Section 11.1.3, “ Defining the Detached Object Graph ” [312] for how to
force OpenJPA to use detached state managers across tiers, and for other options for more efficient at-
tachment.

The downside of using a detached state manager acrosstiersis that your enhanced persistent classes
and the OpenJPA libraries must be available on the client tier.

UtilizetheEnti ty-
Manager cache

performance, scalability

When possible and appropriate, re-using Ent i t yManager sand setting the Ret ai nSt at e config-
uration optiontot r ue may result in significant performance gains, sincethe Ent i t yManager's
built-in object cache will be used.

Enable multithreaded
operation only when
necessary

performance

OpenJPA respectsthe openj pa. Mul ti t hr eaded option in that it does not impose as much syn-
chronization overhead for applications that do not set thisvaluetot r ue. If your application is guaran-
teed to only use single-threaded access to OpenJPA resources and persistent objects, leaving this op-
tionasf al se will reduce synchronization overhead, and may result in a modest performance in-
crease.

Enable large data set
handling

performance, scalability

If you execute queries that return large numbers of objects or have relations (collections or maps) that
arelarge, and if you often only access parts of these data sets, enabling lar ge result set handling
where appropriate can dramatically speed up your application, since OpenJPA will bring the data sets
into memory from the database only as necessary.

Disablelarge data set
handling

performance, scalability

If you have enabled scrollable result sets and on-demand loading but do you not require it, consider
disabling it again. Some JDBC drivers and databases (SQL Server for example) are much slower when
used with scrolling result sets.

UsetheDynanmi c-
SchemaFact ory

performance, validation

If you areusing an openj pa. j dbc. SchenmaFact ory setting of something other than the default
of dynami c, consider switching back. While other factories can ensure that object-relational mapping
information is valid when a persistent classisfirst used, this can be a slow process. Though the valida-
tionis only performed once for each class, switching back to the Dynam cSchemaFact ory canre-
duce the warm-up time for your application.

Do not use XA transac-
tions

performance, scalability

XA transactions can be orders of magnitude slower than standard transactions. Unless distributed
transaction functionality is required by your application, use standard transactions.

Recall that XA transactions are distinct from managed transactions - managed transaction services
such as that provided by EJB declarative transactions can be used both with XA and non-XA transac-
tions. XA transactions should only be used when a given business transaction involves multiple differ-
ent transactional resources (an Oracle database and an IBM transactional message queue, for ex-
ample).

Use Set sinstead of
Li st/ Col | ecti ons

performance, scalability

Thereisasmall amount of extra overhead for OpenJPA to maintain collections where each element is
not guaranteed to be unique. If your application does not require duplicates for a collection, you
should always declare your fieldsto be of type Set, SortedSet, HashSet, or TreeSet.

330

Optimization Guidelines

Use query parameters
instead of encoding
search datain filter
strings

performance

If your queries depend on parameter data only known at runtime, you should use query parameters
rather than dynamically building different query strings. OpenJPA performs aggressive caching of
query compilation data, and the effectiveness of this cache is diminished if multiple query filters are
used where a single one could have sufficed.

Tuneyour fetch
groups appropriately

performance, scalability

The fetch groups used when loading an object control how much datais eagerly loaded, and by exten-
sion, which fields must be lazily loaded at a future time. The ideal fetch group configuration loads all
the data that is needed in one fetch, and no extrafields - this minimizes both the amount of data trans-
ferred from the database, and the number of trips to the database.

If extrafields are specified in the fetch groups (in particular, large fields such as binary data, or rela-
tionsto other persistence-capable objects), then network overhead (for the extra data) and database
processing (for any necessary additional joins) will hurt your application's performance. If too few
fields are specified in the fetch groups, then OpendPA will have to make additional trips to the data-
base to load additional fields as necessary.

Use eager fetching

performance, scalability

Using eager fetching when loading subclass data or traversing relations for each instance in alarge
collection of results can speed up data loading by orders of magnitude.

Disable BrokerImpl fi-
nalization

performance, scalability

Outside of aJava EE 5 application server or other JPA persistence container, OpenJPA's EntityMan-
agers use finalizers to ensure that resources get cleaned up. If you are properly managing your re-
sources, thisfinalization is not necessary, and will introduce unneeded synchronization, leading to
scalability problems. Y ou can disable this protective behavior by setting the open-

j pa. Broker | npl property tonon-fi nal i zi ng. See Section 9.1.1, “ Broker Finalization”
[288] for details.

Preload M etaDataRe-
pository

scalability

By default, the MetaDataRepository is lazily loaded which means that fair amounts of locking is used
to ensure that metadata is processed properly. Enabling preloading allows OpenJPA to load metadata
upfront and remove locking. See Section 6.2, “ M etadata Repository” [251] for details.

331

Appendix 1. JPA Resources

* EJB 3JSR page

e Sun EJB page

* javax.persistence Javadoc
* OpenJPA Javadoc

» Locally mirrored JPA specification

332

http://java.sun.com/aboutJava/communityprocess/jsr/jsr_220_dataobj.html
http://java.sun.com/products/ejb
http://java.sun.com/javaee/5/docs/api/index.html
../javadoc/index.html

Appendix 2. Supported Databases

Following is atable of the database and JDBC driver versions that are supported by OpenJPA.

Table2.1. Supported Databases and JDBC Drivers

Database Name Database Version JDBC Driver Name JDBC Driver Version
Apache Derby 10.1.2.1 Apache Derby Embedded JD- (10.1.2.1
BC Driver
Borland Interbase 7.1.0.202 Interclient 451
Borland JDataStore 6.0 Borland JDataStore 6.0
DB2 8.1 IBM DB2 JDBC Universal 1.0.581
Driver
Empress 8.62 Empress Category 2 JDBC 8.62
Driver
Firebird 15 JayBird JCA/JDBC driver 101
H2 Database Engine 1.0 H2 1.0
Hypersonic Database Engine {1.8.0 Hypersonic 1.8.0
Informix Dynamic Server 9.30.UC10 Informix JDBC driver 2.21.3C2
InterSystems Cache 50 Cache JDBC Driver 50
Microsoft Access 9.0 (ak.a. "2000") DataDirect SequeLink 5.4.0038
Microsoft SQL Server 9.00.1399 (SQL Server 2005) |SQL Server 1.0.809.102
Microsoft Visual FoxPro 7.0 DataDirect SequeLink 5.4.0038
MySQL 3.23.43-log MySQL Driver 3.0.14
MySQL 5.0.26 MySQL Driver 3014
Oracle 8.1,9.2,10.1 Oracle IDBC driver 10.2.0.1.0
Pointbase 4.4 Pointbase JDBC driver 4.4 (4.4)
PostgreSQL 721 PostgreSQL Native Driver 8.1
PostgreSQL 8.1.5 PostgreSQL Native Driver 8.1
Sybase Adaptive Server Enter- |12.5 jConnect 55(5.5)
prise

2.1. Apache Derby

Example 2.1. Example propertiesfor Derby

openj pa. Connecti onDri ver Nane: org. apache. der by. j dbc. EnmbeddedDri ver
openj pa. Connecti onURL: j dbc: der by: DB_NAME; cr eat e=t rue

333

Supported Databases

2.2. Borland Interbase

Example 2.2. Example propertiesfor I nterbase

openj pa. ConnectionDriver Nane: interbase.interclient.Driver
openj pa. Connecti onURL: jdbc:interbase:// SERVER NAVE: SERVER PORT/ DB_PATH

2.2.1. Known issues with Interbase

* Interbase does not support record locking, so datastore transactions cannot use the pessimistic lock manager.

* Interbase does not support the LOVNER, SUBSTRI NG , or | NSTR SQL functions>

2.3. JDataStore

Example 2.3. Example properties for JDataStore

openj pa. Connecti onDri ver Nane: com borl and. dat ast ore. j dbc. Dat aSt oreDri ver
openj pa. Connecti onURL: j dbc: borl and: dsl ocal : db-j dat ast ore. j ds; creat e=true

2.4. IBM DB2

Example 2.4. Example propertiesfor IBM DB2

openj pa. Connecti onDri ver Name: com i bm db2.jcc. DB2Dri ver
openj pa. Connecti onURL: j dbc: db2:// SERVER_NAME: SERVER_PORT/ DB_NAME

2.4.1. Known issues with DB2

* Floats and doubles may lose precision when stored.
e Empty char values are stored as NULL.

» Fields of type BLOB and CLOB are limited to 1M. This number can be increased by extending DB2Di ct i onary.

334

2.5.

Supported Databases

» Explicit creation of indexes specified by the OpenJPA @Index annotation will fail on DB2 for iSeries if the default schema
used by the JDBC driver does not exist. If adefault schemais not specified on the connection, the iSeries will default to the
user profile name. If a schema of that name does not exist, DB2 on iSeries will not create the schema, resulting in afailure
when creating the index. The failure message will look similar to: "[SQL0204] USERNAME in QSY Stype *LIB not found.”
To work around thisissue, specify adefault schema on the JIDBC URL or data source property and make sure that schema ex-
ists or create a schema which matches the user profile of the connection.

» Useof DB2 on Z/OS with the IBM JCC driver requires the DESCSTAT subsystem parameter value to be set to 'YES. If this
parameter is set to 'NO', the mapping tool will fail with a persistence exception containing this text: “Invalid parameter: Un-
known column name TABLE_SCHEM". After changing the value of DESCSTAT, DB2 metadata tables must be recreated by
running the DSNTIIMS job. See DB2 for z/OS documentation for additional information.

Empress

Example 2.5. Example properties for Empress

openj pa. Connecti onDri ver Nane: enpress.jdbc. enpressDriver
openj pa. Connecti onURL: j dbc: enpress:// SERVER=your ser ver; PORT=6322; DATABASE=your db

2.5.1.

Known issues with Empress

2.6.

» Empress enforces pessimistic semantics (lock on read) when not using Al | owConcur r ent Read property (which bypasses
row locking) for Enpr essDi cti onary.

 Only the category 2 non-local driver is supported.

H2 Database Engine

Example 2.6. Example propertiesfor H2 Database Engine

openj pa. Connecti onDri ver Nane: org. h2.Driver
openj pa. Connecti onURL: j dbc: h2: DB_NAME

2.6.1.

Known issues with H2 Database Engine

2.7.

» H2 does not support crossjoins

Hypersonic

335

Supported Databases

Example 2.7. Example propertiesfor Hypersonic

openj pa. Connecti onDri ver Nane: org. hsqgl db. j dbcDri ver
openj pa. Connecti onURL: j dbc: hsql db: DB_NAME

2.7.1. Known issues with Hypersonic

» Hypersonic does not support pessimistic locking, so non-optimistic transactions will fail unlessthe Si mul at eLocki ng
property is set for the openjpa.jdbc.DBDictionary

2.8. Firebird

Example 2.8. Example propertiesfor Firebird

openj pa. Connecti onDri ver Nane: org.firebirdsql.jdbc. FBDriver
openj pa. Connecti onURL: jdbc: firebirdsql://SERVER_NAME: SERVER PORT/ DB_PATH

2.8.1. Known issues with Firebird

* Firebird does not support auto-increment columns.

* Firebird does not support the LONER, SUBSTRI NG , or | NSTR SQL functions.

2.9. Informix

Example 2.9. Example propertiesfor Informix Dynamic Server

openj pa. Connecti onDri ver Name: com i nform x.jdbc. |fxDriver
openj pa. Connecti onURL: \
jdbc:inform x-sqli://SERVER NAME: SERVER PORT/ DB_NAME: | NFORM XSERVER=SERVER | D

2.9.1. Known issues with Informix

336

Supported Databases

¢ None

2.10. InterSystems Cache

Example 2.10. Example propertiesfor | nter Systems Cache

openj pa. Connecti onDri ver Nane: com i ntersys.jdbc. CacheDriver
openj pa. Connecti onURL: j dbc: Cache: // SERVER_NAME: SERVER_PORT/ DB_NAME

2.10.1. Known issues with InterSystems Cache

 Support for Cacheis done via SQL access over JDBC, not through their object database APIs.

2.11. Microsoft Access

Example 2.11. Example propertiesfor Microsoft Access

openj pa. Connecti onDri ver Name: com ddt ek. j dbc. sequel i nk. SequeLi nkDri ver
openj pa. Connecti onURL: j dbc: sequel i nk:// SERVER_NAVME: SERVER _PORT

2.11.1. Known issues with Microsoft Access

* Using the Sun JDBC-ODBC bridge to connect is not supported.

2.12. Microsoft SQL Server

Example 2.12. Example propertiesfor Microsoft SQL Server

openj pa. Connecti onDri ver Name: com mi crosoft.sql server.jdbc. SQLServerDri ver
openj pa. Connecti onURL: \
j dbc: sql server:// SERVER _NAME: 1433; Dat abaseNane=DB_NANE; sel ect Met hod=cur sor ; sendSt ri ngPar anet er sAsUni code=f al se

337

Supported Databases

2.12.1. Known issues with SQL Server

2.13.

» SQL Server date fields are accurate only to the nearest 3 milliseconds, possibly resulting in precision loss in stored dates.
e The ConnectionURL must always containthe" sel ect Met hod=cur sor " string.
» AddingsendSt ri ngPar anet er sAsUni code=f al se to the ConnectionURL may significantly increase performance.

e The Microsoft SQL Server driver only emulates batch updates. The DataDirect JDBC driver has true support for batch updates,

and may result in asignificant performance gain.

* Floats and doubles may lose precision when stored.
e TEXT columns cannot be used in queries.

» When using a SQL Server instance that has been configured to be case-sensitive in schema names, you need to set the

"schemaCase=preserve" parameter in the openjpa.jdbc.DBDictionary property.

» SQL Server 2005 does not support native sequences. If you would like to use generated values with SQL Server you should

use GenerationType.lDENTITY, GenerationType. TABLE, or GenerationType. AUTO.

Microsoft FoxPro

Example 2.13. Example propertiesfor Microsoft FoxPro

openj pa. Connecti onDri ver Nane: com ddt ek. j dbc. sequel i nk. SequeLi nkDri ver
openj pa. Connecti onURL: j dbc: sequel i nk:// SERVER_NAME: SERVER_PCORT

2.13.1. Known issues with Microsoft FoxPro

* Using the Sun JDBC-ODBC bridge to connect is not supported.

2.14. MySQL

Example 2.14. Example propertiesfor MySQL

openj pa. Connecti onDri ver Nane: com nysql . jdbc. Driver
openj pa. Connecti onURL: j dbc: nysql : // SERVER_NAVE/ DB_NAME

2.14.1. Known issues with MySQL

338

2.15.

Supported Databases

» The default table types that MySQL uses do not support transactions, which will prevent OpenJPA from being able to roll back
transactions. Use the | nnoDB table type for any tables that OpenJPA will access.

» MySQL does not support sub-selectsin versions prior to 4.1, and are disabled by default. Some operations (such as the
i sEnpt y() method in aquery) will fail dueto this. If you are using MySQL 4.1 or later, you can lift this restriction by set-
ting the Suppor t sSubsel ect =t r ue parameter of the openjpa.jdbc.DBDictionary property.

* Rollback dueto database error or optimistic lock violation is not supported unless the table type is one of the MySQL transac-
tional types. Explicit callstor ol | back() before atransaction has been committed, however, are always supported.

* Floats and doubles may lose precision when stored in some datastores.

» When storing afield of typej ava. mat h. Bi gDeci mal , some datastores will add extraneous trailing O characters, causing
an equality mismatch between the field that is stored and the field that is retrieved.

» Some version of the MySQL JDBC driver have a bug that prevents OpenJPA from being able to interrogate the database for
foreign keys. Version 3.0.14 (or higher) of the MySQL driver isrequired in order to get around this bug.

Oracle

Example 2.15. Example propertiesfor Oracle

openj pa. Connecti onDri ver Nanme: oracle.jdbc.driver. O acl eDriver
openj pa. Connecti onURL: j dbc: oracl e: t hi n: GBERVER_NAME: 1521: DB_NAME

2.15.1. Using Query Hints with Oracle

Oracle has support for "query hints', which are formatted comments embedded in SQL that provide some hint for how the query
should be executed. These hints are usually designed to provide suggestions to the Oracle query optimizer for how to efficiently
perform a certain query, and aren't typically needed for any but the most intensive queries.

Example 2.16. Using Oracle Hints

Query query = emcreateQuery(...);
query. set Hi nt(openj pa. hint. Oracl eSel ectH nt™, "/*+ fi rst_rows(100) */");
List results = query.getResultList();

2.15.2. Known issues with Oracle

» The Oracle JDBC driver has significant differences between different versions. It isimportant to use the officially supported
version of the driver (10.2.0.1.0), which is backward compatible with previous versions of the Oracle server. It can be down-
loaded from http://www.or acle.com/technology/softwar e/tech/java/sqlj_jdbc/htdocs/jdbc101040.html.

339

http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc101040.html

Supported Databases

» For VARCHAR fields, nul | and ablank string are equivalent. This means that an object that stores anull string field will
have it get read back as ablank string.

» Oracle corp's JDBC driver for Oracle has only limited support for batch updates. The result for OpenJPA is that in some cases,
the exact object that failed an optimistic lock check cannot be determined, and OpenJPA will throw an Opt i i sti cVeri -
ficati onExcepti on with morefailed objects than actually failed.

 Oracle cannot store numbers with more than 38 digits in numeric columns.

* Floats and doubles may lose precision when stored.

» CLOB columns cannot be used in queries.

2.16. Pointbase

Example 2.17. Example propertiesfor Pointbase

openj pa. Connecti onDri ver Name: com poi nt base. j dbc. j dbcUni versal Dri ver
openj pa. Connecti onURL: \
j dbc: poi nt base: DB_NAME, dat abase. home=poi nt basedb, cr eat e=t r ue, cache. si ze=10000, dat abase. pagesi ze=30720

2.16.1. Known issues with Pointbase

» Fieldsof type BLOB and CLOB are limited to 1M. Set the Bl obTypeNane and/or Cl obTypeNanmne properties of the
openj pa. j dbc. DBDi cti onary setting to override.

2.17. PostgreSQL

Example 2.18. Example properties for PostgreSQL

openj pa. Connecti onDri ver Name: org. postgresql.Driver
openj pa. Connecti onURL: j dbc: postgresql://SERVER_NAME: 5432/ DB_NAME

2.17.1. Known issues with PostgreSQL

* Floats and doubles may lose precision when stored.
» PostgreSQL cannot store very low and very high dates.

» Empty string/char values are stored as NULL.

Supported Databases

2.18. Sybase Adaptive Server

Example 2.19. Example propertiesfor Sybase

openj pa. Connecti onDri ver Nane: com sybase. j dbc2.j dbc. SybDri ver
openj pa. Connecti onURL: \
j dbc: sybase: Tds: SERVER _NAME: 4100/ DB_NANME?Ser vi ceNanme=DB_NAVE&BE_AS JDBC_COMVPLI ANT_AS PCSSI BLE=t r ue

2.18.1. Known issues with Sybase

» The"DYNAM C_PREPARE" parameter of the Sybase JDBC driver cannot be used with OpenJPA.

 Datastore locking cannot be used when manipulating many-to-many relations using the default OpenJPA schema created by
the schematool, unless an auto-increment primary key field is manually added to the table.

* Persisting a zero-length string results in a string with a single space characted being returned from Sybase, Inc.'s JDBC driver.

» TheBE_AS_JDBC_COWMPLI ANT_AS_POSSI BLE isrequired in order to use datastore (pessimistic) locking. Failure to set
this property may lead to obscure errorslike" FOR UPDATE can not be used in a SELECT which is not
part of the declaration of a cursor or which is not inside a stored procedure. "

» Applications performing update/insert data of the BigDecimal java type may fail with OptimisticException if the data exceeds
the scale or precision of the column on Sybase. To avoid this problem, applications can specify the precision and scale for the
numeric type by setting numericTypeName="NUMERIC(p,s)' for the column type mapped by the BigDecimal javatype. See
openjpa.jdbc.DBDictionary for more detail. Alternatively, application can set the precision and scale using the standard
Col umm annotation, described in Section 12.3, “ Column ” [121].

341

	Apache OpenJPA User's Guide
	Table of Contents
	Part 1. Introduction
	Chapter 1. OpenJPA
	1.1. About This Document

	Part 2. Java Persistence API
	Chapter 1. Introduction
	1.1. Intended Audience
	1.2. Lightweight Persistence

	Chapter 2. Why JPA?
	Chapter 3. Java Persistence API Architecture
	3.1. JPA Exceptions

	Chapter 4. Entity
	4.1. Restrictions on Persistent Classes
	4.1.1. Default or No-Arg Constructor
	4.1.2. Final
	4.1.3. Identity Fields
	4.1.4. Version Field
	4.1.5. Inheritance
	4.1.6. Persistent Fields
	4.1.7. Conclusions

	4.2. Entity Identity
	4.2.1. Identity Class
	4.2.1.1. Identity Hierarchies

	4.3. Lifecycle Callbacks
	4.3.1. Callback Methods
	4.3.2. Using Callback Methods
	4.3.3. Using Entity Listeners
	4.3.4. Entity Listeners Hierarchy

	4.4. Conclusions

	Chapter 5. Metadata
	5.1. Class Metadata
	5.1.1. Entity
	5.1.2. Id Class
	5.1.3. Mapped Superclass
	5.1.4. Embeddable
	5.1.5. EntityListeners
	5.1.6. Example

	5.2. Field and Property Metadata
	5.2.1. Transient
	5.2.2. Id
	5.2.3. Generated Value
	5.2.4. Embedded Id
	5.2.5. Version
	5.2.6. Basic
	5.2.6.1. Fetch Type

	5.2.7. Embedded
	5.2.8. Many To One
	5.2.8.1. Cascade Type

	5.2.9. One To Many
	5.2.9.1. Bidirectional Relations

	5.2.10. One To One
	5.2.11. Many To Many
	5.2.12. Order By
	5.2.13. Map Key
	5.2.14. Persistent Field Defaults

	5.3. XML Schema
	5.4. Conclusion

	Chapter 6. Persistence
	6.1. persistence.xml
	6.2. Non-EE Use

	Chapter 7. EntityManagerFactory
	7.1. Obtaining an EntityManagerFactory
	7.2. Obtaining EntityManagers
	7.3. Persistence Context
	7.3.1. Transaction Persistence Context
	7.3.2. Extended Persistence Context

	7.4. Closing the EntityManagerFactory

	Chapter 8. EntityManager
	8.1. Transaction Association
	8.2. Entity Lifecycle Management
	8.3. Lifecycle Examples
	8.4. Entity Identity Management
	8.5. Cache Management
	8.6. Query Factory
	8.7. Closing

	Chapter 9. Transaction
	9.1. Transaction Types
	9.2. The EntityTransaction Interface

	Chapter 10. JPA Query
	10.1. JPQL API
	10.1.1. Query Basics
	10.1.2. Relation Traversal
	10.1.3. Fetch Joins
	10.1.4. JPQL Functions
	10.1.5. Polymorphic Queries
	10.1.6. Query Parameters
	10.1.7. Query Hints
	10.1.7.1. Locking Hints
	10.1.7.2. Result Set Size Hint
	10.1.7.3. Isolation Level Hint
	10.1.7.4. Other Fetchplan Hints
	10.1.7.5. Oracle Query Hints
	10.1.7.6. Named Query Hints

	10.1.8. Ordering
	10.1.9. Aggregates
	10.1.10. Named Queries
	10.1.11. Delete By Query
	10.1.12. Update By Query

	10.2. JPQL Language Reference
	10.2.1. JPQL Statement Types
	10.2.1.1. JPQL Select Statement
	10.2.1.2. JPQL Update and Delete Statements

	10.2.2. JPQL Abstract Schema Types and Query Domains
	10.2.2.1. JPQL Entity Naming
	10.2.2.2. JPQL Schema Example

	10.2.3. JPQL FROM Clause and Navigational Declarations
	10.2.3.1. JPQL FROM Identifiers
	10.2.3.2. JPQL Identification Variables
	10.2.3.3. JPQL Range Declarations
	10.2.3.4. JPQL Path Expressions
	10.2.3.5. JPQL Joins
	10.2.3.5.1. JPQL Inner Joins (Relationship Joins)
	10.2.3.5.2. JPQL Outer Joins
	10.2.3.5.3. JPQL Fetch Joins

	10.2.3.6. JPQL Collection Member Declarations
	10.2.3.7. JPQL Polymorphism

	10.2.4. JPQL WHERE Clause
	10.2.5. JPQL Conditional Expressions
	10.2.5.1. JPQL Literals
	10.2.5.2. JPQL Identification Variables
	10.2.5.3. JPQL Path Expressions
	10.2.5.4. JPQL Input Parameters
	10.2.5.4.1. JPQL Positional Parameters
	10.2.5.4.2. JPQL Named Parameters

	10.2.5.5. JPQL Conditional Expression Composition
	10.2.5.6. JPQL Operators and Operator Precedence
	10.2.5.7. JPQL Between Expressions
	10.2.5.8. JPQL In Expressions
	10.2.5.9. JPQL Like Expressions
	10.2.5.10. JPQL Null Comparison Expressions
	10.2.5.11. JPQL Empty Collection Comparison Expressions
	10.2.5.12. JPQL Collection Member Expressions
	10.2.5.13. JPQL Exists Expressions
	10.2.5.14. JPQL All or Any Expressions
	10.2.5.15. JPQL Subqueries
	10.2.5.16. JPQL Functional Expressions
	10.2.5.16.1. JPQL String Functions
	10.2.5.16.2. JPQL Arithmetic Functions
	10.2.5.16.3. JPQL Datetime Functions

	10.2.6. JPQL GROUP BY, HAVING
	10.2.7. JPQL SELECT Clause
	10.2.7.1. JPQL Result Type of the SELECT Clause
	10.2.7.2. JPQL Constructor Expressions
	10.2.7.3. JPQL Null Values in the Query Result
	10.2.7.4. JPQL Aggregate Functions
	10.2.7.4.1. JPQL Aggregate Examples

	10.2.8. JPQL ORDER BY Clause
	10.2.9. JPQL Bulk Update and Delete
	10.2.10. JPQL Null Values
	10.2.11. JPQL Equality and Comparison Semantics
	10.2.12. JPQL BNF

	Chapter 11. SQL Queries
	11.1. Creating SQL Queries
	11.2. Retrieving Persistent Objects with SQL

	Chapter 12. Mapping Metadata
	12.1. Table
	12.2. Unique Constraints
	12.3. Column
	12.4. Identity Mapping
	12.5. Generators
	12.5.1. Sequence Generator
	12.5.2. TableGenerator
	12.5.3. Example

	12.6. Inheritance
	12.6.1. Single Table
	12.6.1.1. Advantages
	12.6.1.2. Disadvantages

	12.6.2. Joined
	12.6.2.1. Advantages
	12.6.2.2. Disadvantages

	12.6.3. Table Per Class
	12.6.3.1. Advantages
	12.6.3.2. Disadvantages

	12.6.4. Putting it All Together

	12.7. Discriminator
	12.8. Field Mapping
	12.8.1. Basic Mapping
	12.8.1.1. LOBs
	12.8.1.2. Enumerated
	12.8.1.3. Temporal Types
	12.8.1.4. The Updated Mappings

	12.8.2. Secondary Tables
	12.8.3. Embedded Mapping
	12.8.4. Direct Relations
	12.8.5. Join Table
	12.8.6. Bidirectional Mapping
	12.8.7. Map Mapping

	12.9. The Complete Mappings

	Chapter 13. Conclusion

	Part 3. Reference Guide
	Chapter 1. Introduction
	1.1. Intended Audience

	Chapter 2. Configuration
	2.1. Introduction
	2.2. Runtime Configuration
	2.3. Command Line Configuration
	2.3.1. Code Formatting

	2.4. Plugin Configuration
	2.5. OpenJPA Properties
	2.5.1. openjpa.AutoClear
	2.5.2. openjpa.AutoDetach
	2.5.3. openjpa.BrokerFactory
	2.5.4. openjpa.BrokerImpl
	2.5.5. openjpa.ClassResolver
	2.5.6. openjpa.Compatibility
	2.5.7. openjpa.ConnectionDriverName
	2.5.8. openjpa.Connection2DriverName
	2.5.9. openjpa.ConnectionFactory
	2.5.10. openjpa.ConnectionFactory2
	2.5.11. openjpa.ConnectionFactoryName
	2.5.12. openjpa.ConnectionFactory2Name
	2.5.13. openjpa.ConnectionFactoryMode
	2.5.14. openjpa.ConnectionFactoryProperties
	2.5.15. openjpa.ConnectionFactory2Properties
	2.5.16. openjpa.ConnectionPassword
	2.5.17. openjpa.Connection2Password
	2.5.18. openjpa.ConnectionProperties
	2.5.19. openjpa.Connection2Properties
	2.5.20. openjpa.ConnectionURL
	2.5.21. openjpa.Connection2URL
	2.5.22. openjpa.ConnectionUserName
	2.5.23. openjpa.Connection2UserName
	2.5.24. openjpa.ConnectionRetainMode
	2.5.25. openjpa.DataCache
	2.5.26. openjpa.DataCacheManager
	2.5.27. openjpa.DataCacheTimeout
	2.5.28. openjpa.DetachState
	2.5.29. openjpa.DynamicDataStructs
	2.5.30. openjpa.FetchBatchSize
	2.5.31. openjpa.FetchGroups
	2.5.32. openjpa.FlushBeforeQueries
	2.5.33. openjpa.IgnoreChanges
	2.5.34. openjpa.Id
	2.5.35. openjpa.InverseManager
	2.5.36. openjpa.LockManager
	2.5.37. openjpa.LockTimeout
	2.5.38. openjpa.Log
	2.5.39. openjpa.ManagedRuntime
	2.5.40. openjpa.Mapping
	2.5.41. openjpa.MaxFetchDepth
	2.5.42. openjpa.MetaDataFactory
	2.5.43. openjpa.MetaDataRepository
	2.5.44. openjpa.Multithreaded
	2.5.45. openjpa.Optimistic
	2.5.46. openjpa.OrphanedKeyAction
	2.5.47. openjpa.NontransactionalRead
	2.5.48. openjpa.NontransactionalWrite
	2.5.49. openjpa.ProxyManager
	2.5.50. openjpa.QueryCache
	2.5.51. openjpa.QueryCompilationCache
	2.5.52. openjpa.ReadLockLevel
	2.5.53. openjpa.RemoteCommitProvider
	2.5.54. openjpa.RestoreState
	2.5.55. openjpa.RetainState
	2.5.56. openjpa.RetryClassRegistration
	2.5.57. openjpa.RuntimeUnenhancedClasses
	2.5.58. openjpa.SavepointManager
	2.5.59. openjpa.Sequence
	2.5.60. openjpa.TransactionMode
	2.5.61. openjpa.WriteLockLevel

	2.6. OpenJPA JDBC Properties
	2.6.1. openjpa.jdbc.ConnectionDecorators
	2.6.2. openjpa.jdbc.DBDictionary
	2.6.3. openjpa.jdbc.DriverDataSource
	2.6.4. openjpa.jdbc.EagerFetchMode
	2.6.5. openjpa.jdbc.FetchDirection
	2.6.6. openjpa.jdbc.JDBCListeners
	2.6.7. openjpa.jdbc.LRSSize
	2.6.8. openjpa.jdbc.MappingDefaults
	2.6.9. openjpa.jdbc.MappingFactory
	2.6.10. openjpa.jdbc.QuerySQLCache
	2.6.11. openjpa.jdbc.ResultSetType
	2.6.12. openjpa.jdbc.Schema
	2.6.13. openjpa.jdbc.SchemaFactory
	2.6.14. openjpa.jdbc.Schemas
	2.6.15. openjpa.jdbc.SQLFactory
	2.6.16. openjpa.jdbc.SubclassFetchMode
	2.6.17. openjpa.jdbc.SynchronizeMappings
	2.6.18. openjpa.jdbc.TransactionIsolation
	2.6.19. openjpa.jdbc.UpdateManager

	Chapter 3. Logging
	3.1. Logging Channels
	3.2. OpenJPA Logging
	3.3. Disabling Logging
	3.4. Log4J
	3.5. Apache Commons Logging
	3.5.1. JDK 1.4 java.util.logging

	3.6. Custom Log

	Chapter 4. JDBC
	4.1. Using the OpenJPA DataSource
	4.2. Using a Third-Party DataSource
	4.2.1. Managed and XA DataSources

	4.3. Runtime Access to DataSource
	4.4. Database Support
	4.4.1. DBDictionary Properties
	4.4.2. MySQLDictionary Properties
	4.4.3. OracleDictionary Properties

	4.5. Setting the Transaction Isolation
	4.6. Setting the SQL Join Syntax
	4.7. Accessing Multiple Databases
	4.8. Configuring the Use of JDBC Connections
	4.9. Statement Batching
	4.10. Large Result Sets
	4.11. Default Schema
	4.12. Schema Reflection
	4.12.1. Schemas List
	4.12.2. Schema Factory

	4.13. Schema Tool
	4.14. XML Schema Format

	Chapter 5. Persistent Classes
	5.1. Persistent Class List
	5.2. Enhancement
	5.2.1. Enhancing at Build Time
	5.2.2. Enhancing JPA Entities on Deployment
	5.2.3. Enhancing at Runtime
	5.2.4. Omitting the OpenJPA enhancer

	5.3. Managed Interfaces
	5.4. Object Identity
	5.4.1. Datastore Identity
	5.4.2. Entities as Identity Fields
	5.4.3. Application Identity Tool
	5.4.4. Autoassign / Identity Strategy Caveats

	5.5. Managed Inverses
	5.6. Persistent Fields
	5.6.1. Restoring State
	5.6.2. Typing and Ordering
	5.6.3. Calendar Fields and TimeZones
	5.6.4. Proxies
	5.6.4.1. Smart Proxies
	5.6.4.2. Large Result Set Proxies
	5.6.4.3. Custom Proxies

	5.6.5. Externalization
	5.6.5.1. External Values

	5.7. Fetch Groups
	5.7.1. Custom Fetch Groups
	5.7.2. Custom Fetch Group Configuration
	5.7.3. Per-field Fetch Configuration
	5.7.4. Implementation Notes

	5.8. Eager Fetching
	5.8.1. Configuring Eager Fetching
	5.8.2. Eager Fetching Considerations and Limitations

	Chapter 6. Metadata
	6.1. Metadata Factory
	6.2. Metadata Repository
	6.3. Additional JPA Metadata
	6.3.1. Datastore Identity
	6.3.2. Surrogate Version
	6.3.3. Persistent Field Values
	6.3.4. Persistent Collection Fields
	6.3.5. Persistent Map Fields

	6.4. Metadata Extensions
	6.4.1. Class Extensions
	6.4.1.1. Fetch Groups
	6.4.1.2. Data Cache
	6.4.1.3. Detached State

	6.4.2. Field Extensions
	6.4.2.1. Dependent
	6.4.2.2. Load Fetch Group
	6.4.2.3. LRS
	6.4.2.4. Inverse-Logical
	6.4.2.5. Read-Only
	6.4.2.6. Type
	6.4.2.7. Externalizer
	6.4.2.8. Factory
	6.4.2.9. External Values

	6.4.3. Example

	Chapter 7. Mapping
	7.1. Forward Mapping
	7.1.1. Using the Mapping Tool
	7.1.2. Generating DDL SQL
	7.1.3. Runtime Forward Mapping

	7.2. Reverse Mapping
	7.2.1. Customizing Reverse Mapping

	7.3. Meet-in-the-Middle Mapping
	7.4. Mapping Defaults
	7.5. Mapping Factory
	7.6. Non-Standard Joins
	7.7. Additional JPA Mappings
	7.7.1. Datastore Identity Mapping
	7.7.2. Surrogate Version Mapping
	7.7.3. Multi-Column Mappings
	7.7.4. Join Column Attribute Targets
	7.7.5. Embedded Mapping
	7.7.6. Collections
	7.7.6.1. Container Table
	7.7.6.2. Element Join Columns
	7.7.6.3. Order Column

	7.7.7. One-Sided One-Many Mapping
	7.7.8. Maps
	7.7.9. Indexes and Constraints
	7.7.9.1. Indexes
	7.7.9.2. Foreign Keys
	7.7.9.3. Unique Constraints

	7.7.10. XML Column Mapping
	7.7.11. Stream LOB Support

	7.8. Key Columns
	7.9. Key Join Columns
	7.10. Key Embedded Mapping
	7.11. Examples
	7.12. Mapping Limitations
	7.12.1. Table Per Class

	7.13. Mapping Extensions
	7.13.1. Class Extensions
	7.13.1.1. Subclass Fetch Mode
	7.13.1.2. Strategy
	7.13.1.3. Discriminator Strategy
	7.13.1.4. Version Strategy

	7.13.2. Field Extensions
	7.13.2.1. Eager Fetch Mode
	7.13.2.2. Nonpolymorphic
	7.13.2.3. Class Criteria
	7.13.2.4. Strategy

	7.14. Custom Mappings
	7.14.1. Custom Class Mapping
	7.14.2. Custom Discriminator and Version Strategies
	7.14.3. Custom Field Mapping
	7.14.3.1. Value Handlers
	7.14.3.2. Field Strategies
	7.14.3.3. Configuration

	7.15. Orphaned Keys

	Chapter 8. Deployment
	8.1. Factory Deployment
	8.1.1. Standalone Deployment
	8.1.2. EntityManager Injection

	8.2. Integrating with the Transaction Manager
	8.3. XA Transactions
	8.3.1. Using OpenJPA with XA Transactions

	Chapter 9. Runtime Extensions
	9.1. Architecture
	9.1.1. Broker Finalization
	9.1.2. Broker Customization and Eviction

	9.2. JPA Extensions
	9.2.1. OpenJPAEntityManagerFactory
	9.2.2. OpenJPAEntityManager
	9.2.3. OpenJPAQuery
	9.2.4. Extent
	9.2.5. StoreCache
	9.2.6. QueryResultCache
	9.2.7. FetchPlan
	9.2.8. OpenJPAEntityTransaction
	9.2.9. OpenJPAPersistence

	9.3. Object Locking
	9.3.1. Configuring Default Locking
	9.3.2. Configuring Lock Levels at Runtime
	9.3.3. Object Locking APIs
	9.3.4. Lock Manager
	9.3.5. Rules for Locking Behavior
	9.3.6. Known Issues and Limitations

	9.4. Savepoints
	9.4.1. Using Savepoints
	9.4.2. Configuring Savepoints

	9.5. MethodQL
	9.6. Generators
	9.6.1. Runtime Access

	9.7. Transaction Events
	9.8. Non-Relational Stores

	Chapter 10. Caching
	10.1. Data Cache
	10.1.1. Data Cache Configuration
	10.1.2. Data Cache Usage
	10.1.3. Query Cache
	10.1.4. Cache Extension
	10.1.5. Important Notes
	10.1.6. Known Issues and Limitations

	10.2. Query Compilation Cache
	10.3. Query SQL Cache

	Chapter 11. Remote and Offline Operation
	11.1. Detach and Attach
	11.1.1. Detach Behavior
	11.1.2. Attach Behavior
	11.1.3. Defining the Detached Object Graph
	11.1.3.1. Detached State Field

	11.2. Remote Event Notification Framework
	11.2.1. Remote Commit Provider Configuration
	11.2.1.1. JMS
	11.2.1.2. TCP
	11.2.1.3. Common Properties

	11.2.2. Customization

	Chapter 12. Distributed Persistence
	12.1. Overview
	12.2. Salient Features
	12.2.1. Transparency
	12.2.2. Custom Distribution Policy
	12.2.3. Heterogeneous Database
	12.2.4. Parallel Execution
	12.2.5. Distributed Query
	12.2.6. Targeted Query
	12.2.7. Distributed Transaction
	12.2.8. Collocation Constraint

	12.3. Usage
	12.3.1. How to activate Slice Runtime?
	12.3.2. How to configure each database slice?
	12.3.3. Implement DistributionPolicy interface
	12.3.4.

	12.4. Global Properties
	12.4.1. openjpa.slice.DistributionPolicy
	12.4.2. openjpa.slice.Lenient
	12.4.3. openjpa.slice.Master
	12.4.4. openjpa.slice.Names
	12.4.5. openjpa.slice.ThreadingPolicy
	12.4.6. openjpa.slice.TransactionPolicy

	12.5. Per-Slice Properties

	Chapter 13. Third Party Integration
	13.1. Apache Ant
	13.1.1. Common Ant Configuration Options
	13.1.2. Enhancer Ant Task
	13.1.3. Application Identity Tool Ant Task
	13.1.4. Mapping Tool Ant Task
	13.1.5. Reverse Mapping Tool Ant Task
	13.1.6. Schema Tool Ant Task

	Chapter 14. Optimization Guidelines

	Appendix 1. JPA Resources
	Appendix 2. Supported Databases
	2.1. Apache Derby
	2.2. Borland Interbase
	2.2.1. Known issues with Interbase

	2.3. JDataStore
	2.4. IBM DB2
	2.4.1. Known issues with DB2

	2.5. Empress
	2.5.1. Known issues with Empress

	2.6. H2 Database Engine
	2.6.1. Known issues with H2 Database Engine

	2.7. Hypersonic
	2.7.1. Known issues with Hypersonic

	2.8. Firebird
	2.8.1. Known issues with Firebird

	2.9. Informix
	2.9.1. Known issues with Informix

	2.10. InterSystems Cache
	2.10.1. Known issues with InterSystems Cache

	2.11. Microsoft Access
	2.11.1. Known issues with Microsoft Access

	2.12. Microsoft SQL Server
	2.12.1. Known issues with SQL Server

	2.13. Microsoft FoxPro
	2.13.1. Known issues with Microsoft FoxPro

	2.14. MySQL
	2.14.1. Known issues with MySQL

	2.15. Oracle
	2.15.1. Using Query Hints with Oracle
	2.15.2. Known issues with Oracle

	2.16. Pointbase
	2.16.1. Known issues with Pointbase

	2.17. PostgreSQL
	2.17.1. Known issues with PostgreSQL

	2.18. Sybase Adaptive Server
	2.18.1. Known issues with Sybase

