Apache OpenJPA 2.2 User's Guide



Apache OpenJPA 2.2 User's Guide
Built from OpenJPA version revision 1244990.

Publication date Last updated on February 16, 2012 at 9:34 AM.
Copyright © 2006-2011 The A pache Software Foundation




I 1 1o o [ o T T 1

O oo T | PP 3
22 o P 4
2250 O I o= 0 4

2220 N ) o 4

220G T ©C0] o )Y £ o | o) PP 4
0 5t T 1 o o 1 P 4

P S 4 o L PP 4

P2 G | o OSSP 4

S 1 0= U OPPPTUPPPPNS 5

A - V- o= £ 1S = 0ot A o 6
OO g 11 oo 1 o 11
0 g 1= o =0 N o 1= NS 11

1.2, LightWeIght PEISISIENCE .. .ivuniiii et e e e e e e e e e e et e e e e e et e e et e e et e e et e e eta s e eateeeaneeenns 11

B2V VA PRSP 12
3. Java Persistence APl ATChITECIUIE .......iiii i e e e e e e et e e e e e et e et e e st e e et e eaneeees 14
TN L o= )0 1P 15
0111/ PSP 17
4.1, ReSIIICHIONS ON PErSISIENT ClaSSES .. .uuuuiiiieiii i eiiii e e e et e e e e e e e e e e e e et e e e e e et e e et e e sane e st s eeaneranneens 18
4.1.1. Default or NO-ATG CONSIIUCION ....vuuiiiieiiie e e ee e e ee e e e e e e e e e e e et e e et e e et e e et eeateeaaneesennaes 18

Nt 1o PP SPPIN 19

e G T o (= 1 ] VA T [ PP 19

I AV = Lo I = T~ Lo P 19

ST 1 g4 T= 1= (o PPN 19

T = S B = 0| A T (o SR 20

T A o 11 = o) P 21

N 0 ()Y Lo (=011 YOS 21
T I o U= 0 ] VA O = PP 22

R W T o = ] VA [T = 1 1= 23

G T ) (=0 LY O | oo PN 24
e B I @ | o= o 1Y =1 oo 24

4.3.2. USINg CallbaCk MENOAS ......ccvniiiiiciii e e e e e e e e e aa s 25

4.3.3. USING ENITY LIStENEIS ..ouuiiiiiieii e e e e e e e e e e e e et e et e e st e e et r e e e e eaneeeen 26

4.3.4. Entity Listeners HI€rarChy ..........coouiiiiiii e e e e e 27

R o 0o 11 o) 1P 27

LT Y = = - PP 28
I B O = Y T = = - PP 29

LT 0 O = ] P 29
oINPT 30

5.1.3. MaPPEU SUPEICIASS ... iiiiiii et e e e e e e e e e et e e e e et e e et e e e eaen 30

5.1.4, EMDEAAANIE ...t e e aae 30

I BT 1111 E (= 1= £ 31

TN T 0 o= 31

5.2. Field and Property MEAOAIA ... ... .couuiiii i e e e e e e e e e e e e e et e e e e aaaae 33
NN B o o) A o= P 33

I 1 - 0 [ 0| P 35

L3022 R [ o PP 35

B C = g 1= = (= o I - 1 L PPN 35

I ST = 11070 o 1= o 1 o PP 36

I TV = = o) o PPN 36

LI R = T = o PSSP 36

I I < oo B Y = TSP 37

LI S 1107 o o /= o PSP 37

5.2.9. MANY TO N ittt et 37




Apache OpenJPA 2.2 User's Guide

e B O = o= o (T Y/ o= 38

L (O R @ o1 o N 1Y =0 | PPN 39
5.2.10.1. BidireCtional REIGHONS .........uiiiiiiiieiiiiis ettt e e e e et e e e aa e e e eaan s 40

A N T @ 0T o I o= PSPPI 40
IV = 10 o T 1V - o PP 41
I T O 0 = = RSP 42
I |V = o T (Y PP 42
5.2.15. Persistent FIeld DEfAUITS ........iiieieiiii e e e 42

LR A QY S o= 1 7= PP 43
oY B o 0 11 o o PRSPPI 65
L = = T 1= Lo PRSPPI 68
L0 o= (S TS 1= 07 0| 68
L2 L] o P 74
A = 101 E= = 1= = ox o) Y 75
7.1. Obtaining an ENtityManagerFactory ..........oeiiiieiiie e e e e e e e e e e et e e e et e e et e e e e aa s 75
7.2. ObtaiNiNg ENtitYMaNA0EIS ... ccvueiiii et e e e e e e e e e e e e e et e e et e e et eeaa e e et e e et e e et r e raaas 75
7.3, PEISISEENCE COMEEXE ... iiiieiiieieii ettt ettt e e e e s et e et e e e e et e e e e et e e e et e e e e bt e e e e ta e e e e ab e e e ebbn e eeennnas 76
7.3.1. Transaction PersiStenCe COMEEXT .......iiiiiiieeiiiii et e et e et e e e e e et e e e et e e e e et e e e e ara s 76
7.3.2. Extended PersiStenCe CONEXL .........uuuiiiieiiiiei it e et et e et e et e e et e e e e et e e e e et e e e esan s 77

7.4. Retrieving Properties INFOrMELION ...........iiiiiiiiie e e e e e e e e e e et e et e e et e e e e e eaneeaen 78
7.5. Closing the EntityManagerFaClory .........ccuiiiiiiiii e e e e e e e et e e e aaas 78
7.6, PersistenCOUNITULIL ... .coieie et e et e e e e e e e e a e aar s 79
S 111441, = 0= (= 80
8.1, TranSaCtioN ASSOCIALION ....evevuueeiitt e et ettt e e e eett e e e eett e e e eett e e e eete e eeeett s e e e eete s aeeeete s eeeeett s eeeestnaeeestnaeaenes 80
8.2. Entity LifecyCle Management ... ...c..uiiiii e e e e ae 81
LG ) 1= 0o L= = 0] == 83
8.4. Entity Identity ManaQEmMENt .........uiiiiiiiiii e e e e e e e e e e e e e e e e e e e e e e a e 85
R OF o 1 I Y =07 o (= 0101 o | P 86
@ U1 YA o= o (] Y PP 87
S 11 VA oo (1 o PPN 87
8.8. Retrieving Properties INFOIMELION ...........iiiuiiiiie e e e e e e e et e e e et e e et e e e e e eanaeeeen 88
LSRN o1 1 o PPN 89
LS I = 0= 1o PP 90
LS 0 o o TN 8 == 20
9.2. The EntityTransaction INLEITACE .......covuniii e e e e e e e e aaas 91
O o O 11T SO PPTRUPPIN 93
05 N o I PP 93
O N @ 0= Y = - = o PP 93
10.1.2. REIGHON TTAVEISAl ..ottt ettt e e et e e et e e e e et e e e e et e e e e et e e e e et eas 96
10.1.3. EMBEdable TIaVErSaAl ... .ciceeeieiiiii ettt e et e e et e e et e e et 97
O s (o B o LS PTPPPIN 97
O | @ | o o) PP 98
10.1.6. POlYMOIPhIC QUETIES ....ui it e e e e e et e e e et e e et e e e e e eanes 100

O B O 1N o = =41 = £ T 100
10.1.8. QUENY HINES ..ttt e e e e e et e e e et e e e et e e e et e e e 101
10.1.8.1. LOCKING HINES ...iiiiiiiiei et e e e e e e e e e e e e et e e e e e e e et e e enneeeens 101

10.1.8.2. LOCK TimMEOUL HIML ... ieeiiieeeiiis et e et e e e e et e e e e e e 102

10.1.8.3. QuEry TimMEOUL HINE ....uuuiiiiiii et e et e e et e e e et aeeeeaeaeeees 102

10.1.8.4. RESUIL St SIZE HINE ..oevviiiiiiii e e et e e e et e e e et aeees 102

10.1.8.5. 150l@tion LEVEl HINt ..oouuniiiii et e et e e e e e e ene e ees 102

10.1.8.6. Other Fetchplan HINS ........oiiiiiiiiie e e e e e e eaaeees 102

10.1.8.7. Database-SpeCifiC HINES .....iiiiiii e e e e aeas 102

10.1.8.8. Named QUENY HINES ...oouuuiiiiiii et e et e e e et e e et a e e e antnaeees 102

10.1.8.9. Handling of Multiple Similar Query HintS ..........ooiiiiiiiiii e 103




Apache OpenJPA 2.2 User's Guide

050 e T @ o (= 1T oo P 103
JO. 100, AQGIrEOAIES .. .ueuiiieetete et a 103
O A =0 1= o B 0 PSP 104
10.1.12. DEELE BY QUENY ..evuiieiiiii et eeit e ettt e e e ettt e e et e e ettt s e e e ettt e e e eataeeeestnteeeestnaeeeestnneeeestnnaaaes 104
10.1.13. UPELE BY QUETY ..evnieeeiiiiee ettt e ettt e et e e et e e e e e e e et s e e e et e e e e et e e e e et e e e e et e eeeernnas 105
10.2. JPQL Language REFEIENCE ......cuiiiiiei e et e e e e e e e e e et e et e e e e e e e eans 105
10.2.1. JPQL StALEMENT TYPES tovtueetirtnieeeetiteeeett e eeeett s eeeett e eeett e e eettaeaeestnaeeeettnaeeeestnaeeeesenaaaanes 105
10.2.1.1. JPQL SEl@Ct SEAEMENT ..oeeveiieieiii ettt e e e et e e et e e et eeeaae s 106
10.2.1.2. JPQL Update and Delete StatemMENtS .......covuiiiiieiiii e e e e e e 106
10.2.2. JPQL Abstract Schema Types and QUEY DOMAINS ..........ovevnieiinieiiii e e e e e e e e e 106
10.2.2.1. JPQL ENtity NAMIMNG .ceevvieeiiiiieee et e e e e e e et e e et e e e e et e e e e aea s 107
10.2.2.2. JPQL SChema EXAMPIE ......uuuiiiiiiieiee ettt e e e e aees 107
10.2.3. JPQL FROM Clause and Navigational DeClarationsS ............cceveiiiieiiiieiiiieeiiieee e e e 108
10.2.3.1. JPQL FROM TAENLTIEIS cevviieeiiii et e e e e e e e enenns 108
10.2.3.2. JPQL Identification VariableS .........ccovuiiiiiii e 111
10.2.3.3. JPQL RaANQGE DECIAIatioNS .....ccuuuiiinieiii e e et e e e e e e e e e e e e e et e e eaneeeanes 112
10.2.3.4. JPQL Path EXPrESSIONS .. .ceeutuiieiiiiiieeeiitiiee ettt s e e eeti s e e e eat s e e e eatn s eeeestn s eeeeatnaeeeestnaaaeens 112
02 ST | @ EN o 11 PP 114
10.2.3.5.1. JPQL Inner Joins (Relationship JOINS) ......cevreiiiieiieeeiieesiieeeieesieeeaeesaneenen 115

10.2.3.5.2. JPQL OULEr JOIMNS ....evvuneeiiiiieeeiii e e et e e e e e e e e et e e et e e e et e e e eaen s 116

10.2.3.5.3. JPQL FELCH JOINS ..vuiiiiiiii et e e e e e aeans 116

10.2.3.6. JPQL Collection Member DECIarations ...........ccuuieiiiiieiiieieii e eei e e e e e e e eeaens 116
10.2.3.7. JPQL FROM Clause and SQL .....cccuuiiiiiiiiieeeiiiiieeeeii e eeeii e e eetiseeeesin e eeesinaeeeesinnaaees 117
10.2.3.8. JPQL POlYMOIPNISM ...iiiiiii e e e e e e e e e e e e e e e e e aeaas 117
10.2.4. JPQL WHERE ClAUSE ... .cevuiieiiii ettt e e e et a e e et s e e et e e e et e e e eaan s 117
10.2.5. JPQL Conditional EXPrESSIONS .....ucvutiiiiiieeiieeeitie et e st e e e e e et e e st e e et e eat e e et e et e astneeaneeanns 118
02T I | @ | I 1= - PP 118
10.2.5.2. JPQL ldentification VariableS .........ccovuiiiiiicii e 118
10.2.5.3. JPQL Path EXPrESSIONS .. .cevvtuietiiiiieeetitiieeeeit s e e e ett s e e e ett s e eeeatn s eeeestnseeeestnaaeeesenaeaaees 119
10.2.5.4. JPQL INPUL PaIraMELENS ....uuueiiiiiie et e et s ettt e et e e e e e et e e e et e e e e et e e e eaeanes 119
10.2.5.4.1. JPQL Positional ParameterS ............evuuuieiiiieiiieeeiiiee e e e e e e e e e e e e eanees 119

10.2.5.4.2. JPQL NamMed Parameters ..........viviiuiniiiiiiiiieeeiiii e et e e e e e eae e eaaenas 119

10.2.5.5. JPQL Conditional EXpression COmMPOSItION ..........ccceuuieiriieeiiieeiii e eeiee e eeanaeeanneenens 119
10.2.5.6. JPQL Operators and Operator PreCEAENCE .......uvivii e e e 120
10.2.5.7. JPQL COmMPariSon EXPrESSIONS .......uuiiiunieiiieiiiiieeiie e e e e e e e e e e e e e et e e e eaaes 120
10.2.5.8. JPQL BEIWEEN EXPIESSIONS ...evuuiiiieiiieeiineeiineeeitieeateestaeestnaestnaestteeanaesnnaertaersaares 121
10.2.5.9. JPQL [N EXPIrESSIONS . .cvuiiiiiieeiieeiii et eeet e st e e et e e st e e e e et eeat e e st e e st eeaneeanneeeenns 122
10.2.5.10. JPQL LiKE EXPIESSIONS ... cvuuiiiiieiiiieiiiieeie e e e e e et e e e e e e e e e e e et e e e et e e et e e eaneeeees 122
10.2.5.11. JPQL Null CompariSon EXPrESSIONS .......cuuuiiiiieeiiieeiieeiieeeieesiee et eeaneeesteeeneesanns 123
10.2.5.12. JPQL Empty Collection Comparison EXPreSSiONS ........ccuueirieeiiieeiiieeeieesiieeaneeannens 123
10.2.5.13. JPQL Collection Member EXPreSSIONS .......ccuuiiiinieriieeeiiieeeieeeieesinsesanaeesnneesineesnaaees 124
10.2.5.14. JPQL EXIStS EXPrESSIONS ....uuiiiieiiiiieiiiee ettt eeeiie e et e e et e e et e e et e eat e e et e e et e eatneeeaneeenns 124
10.2.5.15. JPQL All OF ANY EXPrESSIONS .....cvviieiii e e e e e e e e e e e e e e e e e e e eaens 124
10.2.5.16. JPQL SUDGUETIES .....vueeietiteeeetiee et et s ettt e e e et s e e e et e e e e et e e e e et e e e eate e e e eatnaeeenanns 125
10.2.6. JPQL SCalar EXPrESSIONS .. .cuuuiiiieiiiie et e et et e e e e e e e e e et e e et e e e e e et e e et e e et e e eaa e eaaneeaens 126
10.2.6.1. ArithmEtiC EXPrESSIONS ....uiivuiiiieeii et et e e e e e e e e e e e e e e et e et e e et e e et e eeanaeeees 126
10.2.6.2. String, Arithmetic, and Datetime Functional EXPresSsionS .........cccuuveviiieeiieeiiiieeiineennneens 126
10.2.6.2.1. JPQL String FUNCLIONS .....ccvuniiii e e e e e e e e e e 126

10.2.6.2.2. JPQL Arithmetic FUNCLIONS .......c.uiiiiiiii e e 127

10.2.6.2.3. JPQL Datetime FUNCLIONS .......ccuuiiiiiiii e e e e e e e 127

10.2.6.3. CaSe EXPIESSIONS ...uuuiiiieiiteeiieeei e e e e e e e e e e e e et e e et e et e e et e e et eeaa e eat e eeaneaennaas 127
10.2.6.4. ENtity TYPE EXPrESSIONS .....cvuueeiiiieiiieeeie e e e e e e e e e e e e e e e e e e e e et e e st e eeanaeeaes 128
10.2.7. JPQL GROUP BY, HAVING ....ciiiiiieiiiiii ettt e e e et e e e e e eaanns 129
10.2.8. JPQL SELECT ClAUSE .. cevvtuiieiiii ettt e et s e et e et e e et s e e et e e e et e e e et e e e eranaas 130




Apache OpenJPA 2.2 User's Guide

10.2.8.1. JPQL Result Type of the SELECT ClaUSE .....cevvvviieeiiiiiieeeeiie e 131

10.2.8.2. JPQL CONStrUCtOr EXPIrESSIONS .. .cvuiiiieiiieeiiieteieeeteesiseete e st eeat e e e e estnaeesnaeaaneenen 132

10.2.8.3. JPQL Null Valuesin the Query RESUIT .........oooiiiiiieiiiiie e 132

10.2.8.4. JPQL Embeddablesin the Query RESUIt ............ociiiiiiiiiiiiiiee e 132

10.2.8.5. JPQL AQQregate FUNCLIONS ........ivueieiiiieeii e e e e e e e e e e e e e e e et e e e aeeeanaes 133

10.2.8.5.1. JPQL Aggregate EXaMPIES ... coouuiiiiieii e 134

10.2.8.5.2. JPQL Numeric Expressionsinthe SELECT Clause.........ccooevvviveiiiieiiiieciieeennnn, 134

10.2.9. JPQL ORDER BY ClAUSE ... eiittiieeiiiiie ettt e ettt e e et s e e e et e e e et e e e et e e aeaen e 134
10.2.10. JPQL Bulk Update and DEIBLE ......cccuveieiiiiiiee ettt e e e 136
10.2.11. JPQL NUI VBIUES ..ottt ettt e et e e et e e et e e e et eeeernn s 137
10.2.12. JPQL Equality and Comparison SEMaNtiCS ........ceuuuiiiinieiiieiiieei e e e e e e e e e et e e e eanns 137
O TN o @ 2 ] N PP 137

TN o O ) = T TP 142
11.1. Constructing @ CriterTaQUETY ......ccuueiuiieiii et e et e et e e e e e e e et e e et e e et e e et e eat e e st e eean e esneeennaaennaees 142
11.2. EXECULING @ CriteriaQUETY ....civuiiiii e e et e et e e e e e e e e e e e e e et e e et e e et e e aa e e et e e ean e e etn e eatneeannnas 143
R 1 S Yo g I (ol O ) = - AN . PP 143
11.4. Generation of Canonical MetaMoOdel ClaSSES ........cvvuuiiiiiiiii e 143
12, SOQL QUEKTES ..ottt ettt ettt e e ettt e e ettt e e ettt e e e ettt e e e ettt e e e ettt e e e ettt e e ettt e e e et e e e et e e e aa e e e an e aennen 145
12.1. Creating SQL QUENIES ..u.iiueiiii et e e et e e e e e e e e e et e e et e e et e e et e e et e e e ta e et e e ean e e et aeeaneeanaees 145
12.2. Retrieving Persistent Objects With SQL ........iiiiiiiiiiiiii e e e e e e 145
G/ F=To o T o LY== = 147
35 O I o = TSP 148
72 U o (0TI @) 11 =1 o) P 150
G T R o 11 410 T PR 150
T I o T 1] VA Y=o o1 o 151
GRS 1< o = = (o] £ T PP 154
13.5.1. SEOUENCE GENEIGION . ...vuiieeie ittt e e e et e e e e e e e e e e e e e e e e e e e eas 154
13.5.2. TADIE GENEIALON ...eieiii ettt r et e e e e et e e e et e e e et e e e et e e e eran s 154
ST - 0 1 o TSP 155

G G T 1 010 1) =T ot TSP 157
T 00 IS T T | = o] = PP 157
GG I I N0 | g 1 = o (=SSP 158

13.6.1.2. DiSAOVANEAGES ..vuueeeirtieeeiiii e ettt e et ettt e et et s e e eat e e e eat e e e eet e e e eatn e e e eaanneeeesaneeeennns 158

GG T2 o1 ¢ 1= o PSSP 158
13.6.2. 0. ACQVANTAGES .. .eeeveiieeeeie ettt ettt e et e et e et e et e et e e et e e e e aaees 160

G I B TE= o |V g = o L= PP 161

R A I o L= = O = PPN 161
G T I I Ao |V 4 1 = o (=SSP 162

G T A B TE= o |V g = o L= PP 162

13.6.4. PULING it All TOGEINEY .. oevn i e e e e e e e e e e e e aaeees 162

I B = 1 411 = (o P 165
HECTE I =T o I 1Y T o1 1o [P 168
TS I = TS Tl 1V = 1o ' 1 Vo PP 168
G 3 0 I 2 1 ST 168

G S I A o 11 4 = 1= o PP 168

TS0 O T = 1010 o = I 3/ == 169

13.8.1.4. The Updated MapPingS .. ..ccuueiriieiiiieeiiee e e e e e e e s e et e et e e et e e st e e st e e s e e eaaneeaens 169

13.8.2. SECONAAIY TaADIES .uu i et e e e e e e e e e e e e aa 171
HECTR G TC T 01070 (o (=0 1Y/ =0 1] o PN 172
13.8.4. DITECL REIBIIONS .. .eeeiiieieeii ettt e et e e e et e e e et e e e et e e e et aas 175
G S ST o1 I 1= o = PP 179
13.8.6. BidireCtional Maping ......oceuueiuuieiiiee e e e e e e e e et e e e e et e e et e e e e at e e et e e et e e at e eanas 182
HCTE S A V=" o Y, = o1 o 182

13.9. The COmMPIELE MaPPINGS ..ovuueiiteiii e et et e e e e e e et e e e e e et e e et e e et e e et e e et e eetn e et eran e estneesnnnas 183

Vi



Apache OpenJPA 2.2 User's Guide

I o o 11 =T o PPN 187
I = 1< 1 g T [ PP 188
OO 1 oo [0 1o T TSP 196
N 111 g0 =0 AN o 1= oo P 196
b2 @0 g o U =i o) o T 197
225 I [ oo [0 o 1o o T PP 197
2220 =0 10110 0 =Y @0 1o U= 4 o] o [N 197
2.3. Command Ling CoNfIgUIBLION ........cuuueeiiieeie e e e e e e e e e e e e e e et s e et e et e e et e e st e e et aeeaaeeaneeennns 197
N 5t B oo (3 o4 0 111 o S 198

A = 1N o1 T @011 To 0= 1 Lo o 199
A @ o= g N e (070 = 4 11 200
2.5.1. OPENJPAAULOCIEAN ......iiiieiiieei et e et e e e e e e e e e e e et e e et e e et e e et e e et eean e e et e e et e errnaes 200
2.5.2. 0PENJPAAULODEIACK ... ...iii i e e 200
2.5.3. 0PN PABIOKEIFACIONY .. .cvuiciii i e e e e e e e et e et s e e e e eeaen 201
2.5.4. 0penjPa.BroKerImMpl ..o 201
2.5.5. 0PENPACAIIDACKS .. ..uuiii e 201
2.5.6. OPEN PACIBSSRESOIVES ....iuuiiiiiieii et e e e e e e e e e e et e e et e e et e e e et e ra e e raans 201
2.5.7. 0penjPa.CompPatibiliTy .......oieiiiii e 202
2.5.8. 0penjpa.ConnECtiONDIIVEINGITIE ........ciii i e e e e e e e e e et e e et e e et e e aaeeanaees 202
2.5.9. 0penjpa.ConneCtiON2DIIVEINGIMIE .......iiii e e e e e e e e e e e e e e e e et e e et e asanaes 202
2.5.10. 0penjpa.CONNECHIONFBCIONY ....ivuuiiiieeei e i et e e e e e e e e e e et e e et e e et e e st e e et e e e tn e eaneeaanns 202
2.5.11. openjpa.CoNNECLIONFACIONYZ ......u.iiii et e e e e et e e e e e e e e e et e e e e e e et e eannaas 203
2.5.12. openjpa.ConnectioNFaCIONYNGITIE ........iiii e e e e e e e e et e et e e aaeeeanas 203
2.5.13. 0penjpa.ConnectioNFaCtONY2NaIME .......ccuu i e e e e e e e et e et e e e e eaans 203
2.5.14. openjpa.ConNeCtioNFaCtONYMOOE .......ccouu i e e e e e e aan s 203
2.5.15. openjpa.ConnectiONFaCtOryPrOPEITIES ... ..cvu i e e e e e e ean e 204
2.5.16. openjpa.ConnectiONFaCtOry2PrOPEITIES ... ....iiiii i eii e e e e e e e e e e e e et e e e e e aaeees 204
2.5.17. openjpa.CoNNECHIONPESSWOIT ........c..uiiiiieeii e et e e e e e e e e e e e e e et e e et e e e e e et e eanaeeanns 204
2.5.18. 0penjpa.ConNECtioN2PassWOrd ...........oceuuieiiiieiii e e e e e e e e e e e e e aaas 204
2.5.19. 0penjpa.ConNECiONPIOPEITIES .......iiii e e e e e e e e e e et e e et e e e e aaeeeeas 205
2.5.20. 0penjpa.CoNNECtiON2PTOPEITIES ... cvvi it e e e e e e e e e e e e e e et eeean e eanaas 205
2.5.21. openjpa.ConnECtiONURL .........ciiutiiiiii e e e e e e e e e e et e e et e e et e e e e e eaen 205
2.5.22. openjpa.ConNECLION2URL ........ccouuiiiii e e e e e e e e e e e e et e e et e e et e e et eeaneees 205
2.5.23. 0penjpa.ConNECtiONUSEINGIME ......cuuiiiiieeii e e e e e e e e e e e e et e e e e et e e ean e eenaas 206
2.5.24. openjpa.ConNECtiON2USEINGITIE ... ..uuuiiii et ee e e e e e e e e e e e e e e et e e et e e e e eenaas 206
2.5.25. 0penjpa.ConNeCtioNRELAINMOUE .........covuuiiiiiii e e e e et e e e eanas 206
2.5.26. 0peNPADEIACACKNE .......iiii e e 206
2.5.27. openjpa.DataCaCheManager .........covuiiiiiiii e 206
2.5.28. openjpa.DataCaCheMOOE .........ccouiiiii e 207
2.5.29. openjpa.DataCaChETiMEOUL .........ccuuiiiii e e e e e e e e e e e e e aeaas 207
2.5.30. OPENJPADEIACNSEALE ... ..euiiii e e e 207
2.5.31. openjpa.DYNaMiCDEIASIIUCES ... ...uiiiieiii e e e e e e e e e e e e e e e et e e et e e et e e et e e et e eranaeeees 207
2.5.32. OpeNPA.FEIChBAICNSIZE ... ..u i 208
2.5.33. 0peNPa.ENCIYPLONPIOVIAEY .. ...uiiiii e e e e e e e e 208
2.5.34. OPENJPAFEICGIOUDS .....u.iiiieii et e et e e e e e e e e e e e e et e e e et e e et e eeaas 208
2.5.35. 0penjpa.FIUShBEFOrEQUENTES .......uiiiii e e e e e e e e e et e e et e e e e e eaes 208
2.5.36. OpENPAIGNOTECNANGES .. .ivt i eiii et e 209
2.5.37. OPENJPAI ...eeiii e 209
2.5.38. openjpalNitialiZEEAQEITY .......oieiie e 209
2.5.39. OpeNPa I NSEIUMENEALION .....ieueeii e e e e e e e e e e e e e e e e e et e e aaneeeenns 210
2.5.40. OpENPAINVErSEMBNGOET ......ciiueiiieeei ettt et e e e e e e e e et e e et e e et e e et e e et e eat e e et e eetn e eanaees 210
2.5.41. 0peNPA.LOCKIMANAGES .. .ouuiiii e e 210
2.5.42. 0peNPALOCKTIMEOUL ....uuiiiiiii e e e e e e e e e e e e e e et e e aan e eenaas 210
ARG T o o ] o= T oo [ 211

Vii



Apache OpenJPA 2.2 User's Guide

2.5.44. openjpa.ManagedRUNTIME ........uuiiiii e e e e e e e e et e et e e et e e e e eeaans 211
2.5.45. OPENIPAIMAPPING ....eitneiiietie et et e e e e e e e e e e e e e e e et a e r e a e aan 211
2.5.46. openjpa.MaxFetChDEPLN ... ... e 211
2.5.47. OpeNjPA.MELADALAFACIONY ... ivvuiiii i eii e et e e e e e e e e e e e e e e a e aaa e 212
2.5.48. 0penjpa.MetaDataREPOSITONY ....cvvuiiii i eeii e e e e e e e e e e e e e e et e e e e r e a e e aan 212
2.5.49. openjpa.MUItItRreaded ..........ccooviii e 212
2.5.50. OPENIPAOPLIMISIIC .ivuuiiii et e e e e e e e e e e e e e e e e et e e et e et e e et e e e eaans 212
2.5.51. openjpa.OrphanedK EYACHION ........cciuiiiii e e e e e e e e e e aes 213
2.5.52. openjpa.NontransaCtioNalREAA ..........ccouiiiiiiiii e 213
2.5.53. openjpa.NoNtransaCtioNaIVWIITE ........ciuu i e e e e e e e 213
2.5.54. OpENPA.PIOXYIMBNGOET ......ceriieiii e ee e et e e e e e e e e e e e e e e e e e e e e a e 213
2.5.55. 0penjpa.POStLOAdONMEIGE .. ...uiiiieiei e e e e e e e e e e e e e e e et aaaee 213
2.5.56. OPENPA.QUEINYCECNE ....uiii i e et et e e e e e e e e e e e e r e aa 214
2.5.57. openjpa.QUEryCompilatioNCache ...........ciuiiiiii e 214
2.5.58. 0penjpa.REAALOCKLEVEL ...... oo e 214
2.5.59. openjpa.ReMOtECOMMILPIOVITEN ... ... e e e e e e eeas 214
2.5.60. OPENPARESIOTESIALE .. ..vuiieiiii e et e e e e e e e e e e e e e r e 215
2.5.61. OPENJPAREIAINSIAIE ... . cevuiiii e e e e e e e e e e e et e e e e e et e e et e e et e et e et e e e aans 215
2.5.62. openjpa.RetryClassREGISIIAION ... .....iieiieii e e e e 215
2.5.63. openjpa.RUNtiMEUNENNENCEACIASSES ... ....uiiiiiciiee e e e e e e e e e e e e aes 215
2.5.64. openjpa.DynamiCENNANCEMENTAGENT ........iiiiieie e e e e e e e e e e e e e aens 216
2.5.65. 0penjpa.SaVEPOINEMANAGES ... .c.ueiii i eiei e e e e e e e e e e e e et e et e e et e e e e et e e e aaaas 216
2.5.66. OPEN PO SEUUENCE .. evutiitneei ettt et e et e e et e e e e e et e e et e e et e e s ta e e et e e st e eatn e eaa e etn e eeteeranaeeras 216
2.5.67. OPENPA.SPECITICAIION ....uiiii it e e e e e e e e e e e e e e aaaae 217
2.5.68. openjpa. TranSaCliONMOUOE ..........uiiiiiiii e e e e e e e e e e e e et e et eaanaas 217
2.5.69. 0penPA.WIITELOCKLEVEL ... .cooei e e e e e e e e et e eaaeees 217

2.6. OPENIPA IDBC PrOPEITIES ... iitiiiie ettt et e et e et et e e e e e e e e e e e et e e et e e e et e et e e et e e et e stn s eeanneeannaaes 217
2.6.1. openjpa.jdbC.CoNNECLIONDECOIALONS ... .u.vvtieeitieeeii ettt e e et e e et e e st e et e e et e e et e e e e eaa e eatneesaneeeees 218
2.6.2. 0penjPajdDC.DBDICHONAY .....u.iieieiiiie e e e e e e e e e e e e e e e e e et e e et e et e e eanas 218
2.6.3. 0penpa.jdDC.DIIVErDEASOUICE .......ccvieiii e e e e e e e e e e e e et e e e et e e et e e aaneeeenns 218
2.6.4. openjpa.jdbC.EagerFetChMOOE ........coouiiii e 218
2.6.5. 0penjpajdbC.FELChDITECION .......uuiii e e e e e e e e e e e e aanas 219
2.6.6. 0PENPAJADC.IDBCLISIENENS ... civiieiii i eei e e e et e e e e e e e e et e e e et e e aan e aenas 219
2.6.7. 0PENPAJADC.LRSSIZE ... cevi it 219
2.6.8. openjpa.jdbC.MappiNgDEfBLITS .......cc.uiiiii e 220
2.6.9. 0penjpa.jdbC.MapPPRINGFACIONY ....vvu it e e e e e e e e e e e e e e e e e e st e e et e e et e e et e e aaeeaens 220
2.6.10. openjpa.jdbc.QUENYSQLCECNE ......cvvi i e 220
2.6.11. OpeN P aDC. RESUITSEITYPE ....ceii et e e e e e e e e e e e et e eeen s 220
2.6.12. 0peN|PajabC.SCHEMA ... ... it 220
2.6.13. openjpa.jdbC.SChEMEFACIONY .........uuiiii e e e e e e e e e e e e 221
2.6.14. opeNPaJabC.SCHEMES .. ... i e 221
2.6.15. 0PN P abC. SQLIFACIONY ....iiieeii i ee e e e e e e e e e e e e e e e et e e e e e et e e et e e e e e eeaen 221
2.6.16. openjpa.jdbc.SUBCIasSFELCAMOOE ..........ceviiii e 221
2.6.17. openjpa.jdbc.SynchronNiZEMaPPINGS ... ...vuiii e e e e e e e e e e e e e e e et e e e e eenaas 222
2.6.18. openjpa.jdbc. TranSaCtioNISOIALION ..........ccvuuieiii e e e e e e e e e e e e e eanas 222
2.6.19. openjpa.jdbC.UpdateMaNaQES .........ociuuiiii i e e et e e a e 222
2.6.20. Compatibility With SPECITICAION ........iiiiiii e 223

G oo o1 1o = 1o 2N 0 o 1] oo PPNt 224
G350 R oo o 1 1o [ a3 T~ 224
G @ o= g N N I o 1 o [ 225
G B TT=" o 1T 0o oo o1 1o [ 226
13 S o 7 P 226
RN o7z o X @) 01T 0] 13 I (o 1 0T SN 227
TSI N | 1 Q- Y= 10 (1 I oo T 1 oo PP 227

viii



Apache OpenJPA 2.2 User's Guide

3G TS I N PP 227
I R O 1= o B o PP 228
G S @ o= g N AN o ] PP 228
GRS 50 I @ o T 11 =i o o P 229
3.8.2. Developing CUSIOM GUAITING ....covuiriiieii e e e e e e e e e e e e e et e e e eenaas 229
| = PSR 231
4.1, USING the OPENIPA DalaSOUICE .....uuiiieieiiieeie et e e e e e e e e e e et e et e e et e e et e et e eateeaanaestnaeesnaeeanaees 231
4.1.1. Optiona ConNECLION POOIING .......cviuiiiiiei e e e e e e e e e e e e et e e e e e aaaees 231
4.1.2. Configuring the OpPenJPA DalaSOUICE ........ciuuuiiiieiiii et et e e e e e e e e e e e et e e e eaaaeeeen 231
4.1.3. Configuring Apache CommONS DBCP .........cciuiiiiii e e e e e 232

4.2. USINg @ Third-Party DalaSOUICE .........ciuuuieiieeiiieiieeei e et e et e e s e e et e et e e et e e et e eata e et e ean e eatnaeennnns 232
4.2.1. Managed and XA DalaSOUICES .......ccuueiiiieiiiieeiie et e e e e e ie e et e et e e e e et e e et e st eeateaaaeeeenns 233
4.2.2. Setting the DataSource af FUNLIME ........iiiui e e e e e e e e e et e et e et e e e eeanns 233
4.2.2.1. Using different DataSources for each EntityManager ..........cooovvvveviiiiiiiiieiiieece e, 234

42210 BENEFITS oovuiiiiii e 234

N 2 W 11411 = 1o PRSPPI 234

4.2.2.1.3. Error Nanaling .......oiiiiiie e 235

4.3. RUNEIME ACCESS 10 DAIASOUICE ... .. eiiieiieeeiiie ettt e et s e et st e e et e e e et s e e et e e e e et e e e eatn e e e eenn s aeeeenns 235
E R DT = o 7= = I o] 0 AP 236
R I 12 B Tex o) = Y . 0] 0= (== 237
4.4.2. FirebirdDiCtionary PrOPErtiES .......ccuuiiiiieiii e e e e e e e e e e e e e et e et e e aa e e aenaes 246
4.4.3. MySQLDICHONAY PrOPEITIES ... cvve it e e e e et e e e eanas 246
4.4.4. OracleDicCtionary PrOPEMiES ......ciiu i e e e e e e e et e et e e e e e e eens 246
4.4.5. SyhaseDiCtioNary PrOPEITIES .......ccuuuiiiiii et e e e e e e e e e e e e e et e e e eaaaees 247
ST ] Y . o o= = PP 247
4.4.7. Delimited 1dentifiers SUPPOIT ... .c.uuiiiiiei e e e e e e e e et e e st e e et eeaaeeaens 247

4.5, Setting the TransaCtion 1S0IatioN .........c.uuiiiiiii e e e e e e et e e e e aa s 248
4.6. Setting the SQL JOIN SYNEAX .....iiuiiiiiiie e e e e e e e e e e e e e e st e e et e e et e eat e e et e e et e ean e eanneeennns 248
4.7. AcCCeSSING MUIIPIE DEIADASES ......ciiiiieii e e e e e e e e e et e et e e et e e et e e e e aan s 249
4.8. Configuring the Use of JIDBC CONNECLIONS ........cvvueiiiieeii e ee e e e e e e e s e e et e e e e e et e e et e e e eeeneee 249
4.9, Statement BalChing .........oiiuiiiii e e 251
400, Large RESUIT SEES ...uuiiiiiiii e et e e e e e e e e e e e e e e e e r e aa s 252
T B = = U S o 11 0= PP 253
4.12. SChEMA REFIECHION .....iiiiii e e e e et e e e e et e e e e et e e e e et e e e eett e eeeeteaeeeees 254
et TS o g 1= 0 T PR 254

L S o g 1= 00T T = o o) YRS 254

TS g 1= 12 T I oo PP 255
414, XML SChemMa FOIMEL ... coeiiiiee et e e et e e e et e e e et e e e eaan s 258
I o= S T = LA O = LTSRS 260
oI I = S B = 0 O = T SRR 260
I = 010 g ToTc 0T | PP 260
5.2.1. ENhancing at BUIld TimME ...uuiiiiiii e e e e e e e e e e e e et e e e e eeas 261
5.2.2. Enhancing JPA ENtities 0N DEPIOYMENT ........uuiiiiie e e e e e e e aens 262
5.2.3. ENhanCing @l RUNIIME .....oouniiiie et e e e e e e e e e et e et e e et e e st e e et eeaneeaen 262
5.2.4. Enhancing Dynamically at RUNIIME .......c.uiiiiiii e e e e e e e e eaaas 262
5.2.5. Omitting the OPENJPA @NNANCES .......ouuiiiii i e e e e e e e e e e e e e et e e e e eeaes 263

G V= T (= o B 01 = - o N 264
Y@ o)1= o o (= 1) Y 265
I DT = = (o) £ 1o L= o Y/ 265
5.4.2. Entities as [dentity FIElaS ........iiiiiiiiicie e e 265
5.4.3. Application [dentity TOOI .......ccouniiiiiiiiii e e e e e e e 267
5.4.4. Autoassign / ldentity Strafegy CaVEALS ........cvvunieiiiieiiiee e e e e e e e e e e e e e e e e eaen 268

I V= g T= T (= o B 0 V= £ - N 269
T = S B = 0| T (o PP 270




Apache OpenJPA 2.2 User's Guide

0 B =S (o 1 o S - (= S 270
2 Y/ o T oo = To B @ o = 4 1 oo N 270
5.6.3. Calendar Fields and TiMEZONES .......eviuuinieiiiiie ettt e et e e et e et e e e et e e e e et 270
SN 1 R = o =P 271
5.6.4.1. SMAIMT PIOXIES .vvvvutiiiieeeeieetiitie s e e e e e et e s e e e e et e ettt s e e e e e e eae st s eeeeaeeastttnseaeeeeeennes 271

5.6.4.2. Large RESUIT SEL PrOXIES ...uuiiiiiiii it e e e e e et e e aens 271

R e R @0 (o) . o) (=T PP 272

5.6.4.4. SEN@AliZAION 1.vvvveiiii e e ee et e e e e e e e et e aaaaaaaae 273

ST o 1< 10 T2 1o SRS 273
5.6.5.1. EXIErNGl VAUES ....covviiiiiiii ettt e s e e e e e e et e n e e e e e e e an s 276

I A = (o (oo £ 276
I 5 T O o I = (o T (010 = S 276
5.7.2. Custom Fetch Group ConfigUration ...........cccuueiiiieiie e e e e e e e e e s e e e e et eeaneeeeas 278
5.7.3. Per-field Fetch CONfigUIation ............oiiiuiiiiiii e e e e e e e e et e et e e e e e eenas 279
B.7.4. IMPlemMENtation NOLES ......iiiiiiii e e e e e e e e e e e et e e et e e et e e et e e et e aaanaees 280

Lo =T (= gl = (v o1 o Vo PPN 280
5.8.1. Configuring Eager FELChING .........ooiiiiii e 281
5.8.2. Eager Fetching Considerations and LimitationS ..........c.ccuviiiiiiiiii i e 282

LT 1V 1= - o PSSP 283
LI = oo == W= (o YA 283
S VL= o o e W L= o101 ] (oY 283
6.3. Additional JPA MELAHAIA ... ...eevvveeei e e e et e e e e e e e e e e e e e e e e e e et r e e e e e e e e et aaeaees 284
(SR I D T = = (o) {1 1o L= o1 1§/ 284
SRS g (o o= (I = £ o] o 284
6.3.3. PerSiStent FIEld ValUES ......cooiieiiiii it e e et e e e e e e et e s e e e e e e aaarnnnas 284
6.3.4. Persistent ColleCtion FIElAS .........oiiiiiiiiiii e e e e 285
6.3.5. PerSiStent Map FIEIOS .....uuuiiiii i e e aeaaaaan 285

6.4, Metadata EXIENSIONS .......uiiiiiiiieiei ettt e e et e et e e e et r e e et e e e e at e e e e et e e e e et 285
L O = o [ 1= T PR 285
e = o o1 oL PN 286

S B DT - - o: oL PSPPSR 286

ISR D= - 'ex g (<o 1S - (< 286

L T o (= 1 o = PSP 286
ST T I o= 0 L= | USSP 286

B W o= o = (o I (o U o 287

B.4.2.3. L RS L.ttt e e e — e e e e e et e aaaaaaarr—_ 287

6.4.2.4. INVErSE-LOGICA .. .ouiiiiiiiiii e e 287

ORI = = o S 287

ST T Y/ o TP 287

Oy B 1= 14 = (PP 288

T - ox (oY PSSP 288

6.4.2.9. EXIErNGl VAUES ....covviiiiiiii et e et e s e e e e e e et e e e e e e e 288

LG T T 1 o= 288
L Y I = 1= 1 o = PR 289

281, K=o o 1 o 290
5 O o = (o I 1Y =T o1 o T 290
7.1.1. Using the Mapping TOO! .......ciuuiiiiiiii e e e e e e e e e e e e et e e et e e et e e s at e eeaaneeaanaes 291
7.1.2. GENErating DDL SQL ...uuuuiiieeiiieiiii e e s e e e et ettt e e s e e e e e e e et a s e e e e e eeaa it a e e e e e aeeaataaaaeeaaeeanane 292
7.1.3. RUNIME FOrWard MapPinNg .....ceuuieiieii e eee e e et e e e e e et e e e et e e st e e st e e et e e et e e et e sanaasanaes 292

A = Y= 6= =l V=" o] o1 o PPN 293
7.2.1. Customizing REVEISE MaDPING ...vuueiieeiiieiiiie et e e e e e e et e e e e e et e et e et e e et e e et e e e an e eaneeaenns 295

7.3. Meet-in-the-Middle MaPPIiNG .....uuiiiiieiii e e e e e e e e e et e e e et e e et e e e e eeanaes 297
Y=o o T o B = 1 297
A Y=o o T o o (o Y P 299




Apache OpenJPA 2.2 User's Guide

AT Lo S = g = o [N o 1] PR 300
A A X o [ T g = N Y = o o o P 301
7.7.1. Datastore 1dentity MapPinNg ... ...uoeeuieii e e e e e e e e e e e et e e et e e et e e et e e e e anaaes 302
7.7.2. SUrrOgate VersioN MaPPING «..cvvueerneiiieeieee e e s e s e e eaa e e st e e st e e et eean e estnaesaneestnaeesnaeeanaees 302
7.7.3. MUItI-COolUMN MBPPINGS «.evteeiieeiii et e e e e e e e e e e e e et e e et e e st e e et e e eta e eateeaneeetnaeeanaees 303
7.7.4. JoiN Column AHDULE TaIgELS ....vuiie it e e e e e e e e et e et e eane s 303

A A =007 0 o (=0 IV =0 1 o P 304
A ST @ o = 1 o PP 305
7.7.6.1. CoNtaNE TahlE ..ooiiiii i 305

7.7.6.2. Element JOiN COIUMNS ....c.uuuiiiiiiie et e e e e et e e e e eae s 306

7.7.6.3. Order COIUMMN ...oouuieiiii e et e ettt s e e e et e e e e et e e e eeat e e e eese e eeeenenaeeeees 306

7.7.7. One-Sided OnNe-Many MapPiNg ......oceuueeeunieiiiie et e e e e e e e e e e e s e e eata e e et e e et s e sanaeraneenen 306
A 8= T Y - o LSRR 307
T.7.8.1. KEY COIUMIS ...uuiiiiiiiii e e e e e e e e e e e e e e e et e e et e e e at e eaaneeaens 307

7.7.8.2. K&Y JOIN COIUMNS ....iiiiiiii i e e e e e e e e et e e e et e e et e e eanaees 308

7.7.8.3. Key Embedded Mapping .......oiiunieiiieiiii e ee e e e e e e e e e e e e et e e et e st e e et e e aan e 308

7784 EXAMPIES ...oiiiiiiiii e e e ettt e e e e ettt e et e e e e e e et e e e e e e e e et a e e e e e e et e e eaaaaanana, 308

7.7.9. INAEXES ANA CONSITAINTS ... eeeevtiieeeeti ettt e e et e e et e e e et r e e e et a e e e et aeeeateaeeeate e e e eatn e aennnns 309
A e N TR o L=t SR 309

P A A o = Lo oI (=, PN 309

7.7.9.3. UNIQUE CONSITAINTS ....evuueiiieiiiieeiie e e e et se st e et s e e st e e et e e et e e et eeat e eatneeaanaestn e raneeenns 310

A A5 L0 QY o 18 a0 1Y, = o1 oo P 310
A N R I B (= o 1o SN 315

TV o) 11 0o I 14T = 4 o] 315
AT T - o L= = G O SRR 315

FA S Y= o) o T o L= 15 o] 316
A O P = o [ =T PR 316
7.9.1.1. SUDCIEASS FELCH IMOOE ... e aeaees 316

A T S - 1 =o|YPSSPUPRR 316

7.9.1.3. DISCHIMINGLOr SLALBOY .vuevvnerrteitie ettt ieeeie e et e e et eeat e e st e e et e e et e et e eetaestaeernaersneens 316

A Y= o S (= (= )Y/ S 316

A ST o I (= 1 Yo = PP 316
7.9.2.1. BEager FEICN MO .. .couiiiiiicii e e e e e e e e e e aeas 317

AR I3 \\[o g oo 1Y 4270 o] o 1o 317

FA R R O - = X O] 1= - PP 317

P I S - (=o|YPSSPUPRR 317

50 O O H 1= (o g T/ =0 1 o P 317
50O B B O (o g O P 1Y o oo 318
7.10.2. Custom Discriminator and VErsion SIrat@Qi€S ... ...uevuueiiinieiiieeiiiieeiieeeee e e e e e e e e e eanas 318
7.10.3. CustOM Field MapPinNg .....oveinieiieiiiie e e e e e e e e e e e e e e e et e e e et e e et e e aaneeeenas 318
7.10.3. 1. VaAlUE HBNAIE'S ...ttt e e e e et e e et e e e e e s 318

O T = Lo B 1 =0 ]SSP 318

450 T TC T @0 1o 1= 4 o] 1 N 318

8 T g == I =Y £ P 319
LI 1= o)/ 1 01 0| 320
ST = ox (0 VA 1= o [0/ 1101 0| A 320
8.1.1. Standalone DEPIOYMENT ......uiiiiieiii e e e e e e e e e e e e e e e et e et e e et e et e e e aaes 320
8.1.2. EntityManager INJECHION ... .cuuuiii i ciii e e e e e e e e e e e e e e e e et e e e e ean s 320

8.2. Integrating with the TransaCtion ManNaQEr ..........oovuiiiiii i e e e e e e e e eanees 320
SR A N I -1 = o 1 L PSP PPR 321
8.3.1. Using OpenPA With XA TranSaCtioNS .........cccvuuieiiiieiiii e e e e e e e e e e e e e e eenaas 321

S N 1] 4TI = S o PP 322
LN Y oo = o (1 = PSP 322
9.1.1. BroKer FINAZAHON .....uuuiiiiiii ettt e e et e e et e e et e eeaa s 322

Xi



Apache OpenJPA 2.2 User's Guide

9.1.2. Broker Customization and BEVICHON ..........uuiiiiiiiiieiiiin e e et e e e e e e e e e eeees 322

SN N g (= =T PR 323
9.2.1. OpenJPAENtItYMaNagerFaCttory ......cvvu e e e e 323
0.2.2. OPENIPAENTTYIMBNAOET . ...uiiiiieiiiei et e e e e e e e e e e e et e e et e e et e e et e e et e e et e raneenes 323
R R @ o= N o @ 1 YU 323
S (= g | PSPPI 324

S TS (0] = O g 1 TP 324
9.2.6. QUENYRESUITCACKE .....uiiii e e e e e e e e e e e e e et e e 324
9.2.7. FEICHPIAN ...t 324
9.2.8. OpenJPAENLILY TIANSACION .....ciuuiiii et ee et e e e e e e e e e e e e e e e e et e e et eeaa e e et e esanaaeenaes 324
0.2.9. OPENIPAPEISISIENCE . .tuuiiiiieiit et et e et e e et e e e e e e e et e et et e et e et e e e e aaa 325

LS I @ o] =lox o (1 o P 325
9.3.1. Configuring Default LOCKING .......uoiiuiiiiieiiie e e e e e e e e e et e e e e aane s 325
9.3.2. Configuring LOCK LEVEIS af RUNIIME ......iiiiiiii i e e e e e e e e e e e e e e e e et e e eaaeeees 325
LSRRG @ 1= ox fl Moo (1 0 A P 326
LS o o Q| - o = P 327
9.3.5. RUIES for LOCKING BENAVIOT .......ciitiiiii e e e e e e e e e e e e e e e eaen 328
9.3.6. KNown 1SSUES and LiMITAHIONS .......uuiiiiiiiiiei it e e e e e e e 328

S Y= oo (= 329
9.4.1. USING SAVEPOINES ...uuiiiteiitieeii e e e e e e e e e et e e e et e e e e e et s e et e e et e e et e e st e e e ta e eaneean e setnaesanaeenns 329
9.4.2. ConfigurinNg SAVEPOINES ......uuiiiueiiieiie et e e e e s e e et e et e e et e eat e e et e e et e e st eeaanaestnaeesnaeesnaees 330

ST 1V = 1o o [ | PP 330
S N €T 0T = (0] £ TP 331
O.6.1. RUNEIME ACCESS .. .eiittiieeiiti e ettt e e ettt e e e ettt e e e ettt e et et e e e e et e e e e ettt e e e ett e e eeeat e aeaettneeeesen s 333

O.7. TraNSACHION EVENES ....uuuiiiiii et e e e e ettt e e e et e e e e ettt e e e ettt e e eebt s e e eettn s eeeentnaeaeees 334
9.8, NON-REIBIIONGL SEOIES .. .iiiitieieiii ettt e e e e et e et et e e e e et e e e e ata e e e eebn e eaennnnaeeennns 334
0 = 1 oo 335
L0 B - = o o= PP 335
10.1.1. Data Cache CoNfigUIation ............iiiiiieiii e e e e e e e e e e e e et e e et e e e e e e eeaes 335
10.1.1.1. Distributing instances across cache PartitionS ...........cccceuiiiiiieeeiiieiin e e e 338

10.1.2. Data CaCthE USAQE . ..ouuiiiiieii e e et e e e e e e e e e e et e e et e e et e e et e e e e eeaneeeen 338
10.1.2.1. Using the JPA standard Cache interface ..........cccuiviiiiiiiiiicice e 338

10.1.2.2. Using the OpenJPA StoreCache EXIENSIONS .......cvvvuieiiiieiiieeieeei e e e e e e e e e aaneees 339

L0 e R O IS 1 1 =SSP 340
O @ = Y o o= PP 341
O T O o Tl 4 (=20 o o PSP 344
TO.1.6. IMPOITANT NOTES ...eiiitie e e e e e e e e e e e et e e e aneen 345
10.1.7. Known 1SSUES and LiMItAlIONS .......uuuiiiiiiieiiiis et e et e et e e s e e e s e e eaen e e e eenes 345

10.2. Query Compilation CaAChE .......ciuiiiii e e e e e e e e e e 346
O = = o= = o IS I - o SN 346
T s Y/ oo g T = (oY o L= 349
12. Remote and OFffliNg OPEralion ........cuuuiiiiieiiii et e e e e e e e e e et e e et e e et e e et e e et e e et e eaaeeaaeeetneeeanaaees 350
12.1. DetaCh @nd AEBCN ...uiiiei e a et e aaaan 350
12.1.1. DEtACN BENAVIOK . .oiitiieiiii et e e e et e e e et e e e et e et e s 350
12.1.2. AtEBCH BENAVION «..eviiiiiii ettt e et e e e et r e e e et e e e e ett e e e e eraaeaaee 350
12.1.3. Defining the Detached Object Graph .............oiiiiiiiii e 351
12.1.3.1. DEaChOd SEALE ....vuuieeiiiiieee ittt et e ettt e e e et e e e e et e e e e at e e e eatnnaaeee 351

12.1.3.2. Detached State FIeld .....c.uuiiiiiiiieece e 353

12.2. Remote Event NOtification FrameWOrk ...........ovoiiiiiiiiiiiii e e e 353
12.2.1. Remote Commit Provider Configuration ..............ieiiiiiiiiiieiie e ee e e e e e eaa e 353
122,00 IM S ittt a e 354

2 R I = P 354

12.2.1.3. COMIMON PrOPEITIES .. .cvuiiiiiieii e e e e e e e e e e e e e e e ean s 355

B R O (o]0 112 1o P 355

Xii



Apache OpenJPA 2.2 User's Guide

13. Slice: DiStriDULE PEIrSISIENCE .....eeiiiiieeiei et e e et e e e et e e ettt e e e et e e e e et e e e e et e e e e enan s 356
30 @ = 4T T P 356

S 1= g 0 =PRI 356

G Tt T I = 0T T < oY PP 356

SIS o oo PR 356

IS e R B TE ] o 01 = IO L= o PR 356

13.2.4, Data DiStIIBULION ...uuiieiiiiec e e e et e e et e e e e et e e e eaba e eae 357

TSI DT = W (= o [T o) o P 358

13.2.6. HEterogeneouUs Dat@haSe ........ccuuuiiiiiieiiii et e e e aaas 358

13.2.7. Distributed TranSaCtION ........ieiiiiiie e e et e et e e e et e e e e era s 358

13.2.8. COllOCATON CONSITAINE ...euvuieeiiii e ee e e e ettt e e e et e e e et e e e eatnaeeeeatn s e eeestnaeeeestnaaaaes 359

T O U1 o S SPPPTTSPPRN 359
13.3.1. How to activate SliCe RUNLIME? ........uiiiiiiiiee e e et e et e e e eara e eeees 359

13.3.2. How to configure each datahase SlICE? .......ccoviiiiiiii e 359

13.3.3. Implement DistributionPoliCy INtEIfaCe .........ccuuiiiii e 360

13.3.4. Implement ReplicationPoliCy INEITACE ........vuiiiiici e e 361

13.4. Configuration PrOPEITIES .......ciiiiiiii e e e e e e e e e et e e e e et e e et e e et e e et s e et e e e e e et e e eaneeeannes 361
T Bt I 1 o o= ] o 1= 4 1= 361

13.4.1.1. openjpa.dice.DistribUtioNPOlICY .........iviiiiiiiie e 361

13.4.1.2. 0penPASiCELENIENT ...t e e 361

13.4.1.3. 0PN PASHICEIMASIEN ....iii i 362

13.4.1.4. 0PN PASHICEINGIMES ....iii e e e e 362

13.4.1.5. openjpa.dice.ThreadingPOlICY ........ccvuuiiiiii e e e e 362

13.4.1.6. openjpa.slice.TranSaCtioNPOlICY ..........oviiuieiii et e e e e e e e e e e 362

T A o = S ol (] 0 1= 4 1= 363

7 T o T YA ) = = o 364
T A o o = A | P 364
14.1.1. Common Ant Configuration OPLIONS ..........cciuuieeiiie i e e e e e e e e e e e e e e eenees 364

O o g 0 o= N oA 1= SRR 365

14.1.3. Application Identity TOOI ANt TASK ...cvvuuiiiiiiiiie e e e e e 366

IV - o o T o I 0o AN L A = N 367

14.1.5. Reverse Mapping TOO!l ANE TaSK .....ciuuiiii e e e e e e e e e e e e e e e e e aaaees 367

TS w4 1< 0= B oo Y o A = PR 368

14.2. Apache ComMONS DBCP ...ttt et e e e e e e et e e et e e et e e et e e et e e eanaeeaneeeen 368
14.2.1. Apache Commons DBCP Configuration OPLioNS ...........ccceuuiiiiiieiiiieeii e e e e e e e 368

ST @11 43Tz (o g I C UKo L= T =P 370
T gt 407 1= o) o S SUPPTP 374
250 I @ o T 18 = o) o PN 374
16.1.1. IMX Platform MBean Enablement .........cooouiiiiiiiiiiieie e 374

16.2. Custom Providers and INSIIUMENTS ... oieutiiiiiii et e e et e e et e e et e e e et e e eenanas 374

A o] o 1= 1o =P 376
O s o U o/ =< PP 379
S 0010 0 = o [T T o7 = PP 380
P2 O = 4T 1 O 380

2.2. Verified Dat@hase M@ITIX .....uueeiiiiieeeei ettt e e et s e e e et s e e e et a e e e et e e e e rt e e eeat e aae 380

2.3. Compatible Datalase IMALIIX ......ciiueeiiee ettt e e e e e e e e e e e e et e e et e et e e et e e e e eaen 380

2.4, UNverified Database IMAIIX .....ooeveue e e et e e et e e et e e e et e e e et e e e 381

2.5, APACNE DY .oeiiiiiii e e 382

2 = To P o g1 = 7= = PP 382
2.6.1. KNown iSSUES With INLEIDESE .......uiiiiiiieiei e e et e e e b e e e 382

F2 BN B T = S (o T PP 382

2.8, IBIM DB2 ..ottt e e e e et e et e e et e e et a et 382
2.8.1. KNOWN ISSUES WIith DB2 .. .cceiiiiiiiiiiee et e e et e e et e e et e e e eaan s 382

P T 0] o == T PRSPPI 383

Xiii



Apache OpenJPA 2.2 User's Guide

2.9.1. KNOWN ISSUES With EMPIESS ....uuiiiiiiiii e e e et e e e e e e e e e e e e et e et e e e e eens 383

2.10. H2 Database ENQINE .....ieuniiiiiii e e e e e e e et e e e e e e e e e e et e e et e e et e e eta e e et e eaaeeetnaeranaees 383
2.10.1. Known issues with H2 Datahase ENQINE ........ovvuiiiiii e e e e e 383

250 Y7o 1= £ o) 1T o 384
2.11.1. KNOWN iSSUES With HYPEISONIC ....iiii i e e e e e e e e e e et e e e e aanes 384

B T = 1 (o P SSPPPPPRT 384
2.12.1. KNown iSsUES With FITEITd ... ..couuniiiiiiiee e e et 384

P20 G 01 (11 T TP 384
2.13.1. KNown issueS With INFOMMIX ...oouuuiiiiiieec e e e 384

A gl | (=S BT - o = = Y 385
2.14.1. KNOWN iSSUES WIth INQIES .vuuiiiiii e e e e e e e e e e e et e et eeeaeeean s 385

2.15. INErSYStEMS CaCR ... e e 385
2.15.1. Known issues with InterSystems Cache ..........c.uiiiiiiiiiiiiii e 385

P Y T (0 o A AN e === PR 385
2.16.1. KNown iSSUES With MiCIrOSOft ACCESS ....uuiiiiiiiieiiiii e ettt e et eeeaa e 385

A o (0 o SO IS Y= 385
2.17.1. KNOWN iSSUES With SQL SEIVEY ....covuiiiii e e e e e e e e e e 386

P S Y T (0o A e ) o T PP 386
2.18.1. Known issues With MiCroSOft FOXPIO ......ccouuuiiiiiiii e 386

B2 T Y 386
2.19.1. Using Query Hints With MYSQL ....uuuiiieiiiiiiiiiiies e e e e ee e ettt s s e e e e e et s e s e e e e e e eeaataa s e e aeaeeeanes 387
2.19.2. KNown iSSUES WIth MYSQL ....iviiiiiiiii e e e e e e e et e et e eeen s 387

2.20. OFACIE ..ot e et e e et e e e et e e e et e e et aaanes 387
2.20.1. Using Query HIintS With OraCle .........oovuiiiii e e e 387
2.20.2. KNOWN 1SSUES WIth OFaClIE ....cevviiiiiiii et e et e et eeeaa e e eees 388

A o 11 0 = 389
2.21.1. KNnown issUeS With POINTDASE ......cocvveiiii e e e e 389

R o (o (= O | P 389
2.22.1. KNown issues With POSIGrESQL .........iiiiniiiiiii e e e e e e e e e e e e e e eeanas 389

b T 1=V o o ] PSR 389
2.23.1. M-type tables vs. D-type tablES .......covuniiii i 390
2.23.2. Concurrency Control MECHANISIM .. ..uu.iiii e e e e e e e e e e e et e e et e e e eeanaas 390

2.24. Syhase AGaDEIVE SEIVEY ....ouuiiiiii et e e e e e e e e e e e e e 390
2.24.1. KNOWN iSSUES WIth SYDASE . .iuuiiiii i e e e e e e e e e e e eaen 390

I Y/ T = (o g W @0 =T [= = 0] 391
I @ 1= g N 0 0 391
00 0 O 1 oo 010 ] o 1 == P 391
TN o = 0] = === (P 391

I N D 1= o ST 0= Y o PP 391

3.1.1.3. Use of private persistent ProParti€S .......ciuuuieiinieiiieeiieeeiee e e e e e e e e e e e e eaneees 391

3.1.1.4. QUENY.SEIPAraMELEN() ..uevvnieii i eei e 392

3.1.1.5. Seriaization Of ENLITIES ....uiiiiiiiiee et e et e et 392

3.1.1.6. openjpajdbCc.QUErYSQLECACKHE .......uiiiiii e 392

3.1.2. Disabling AutoOff Collection Tracking .........ccouuiiiiiiiiiii e 392
3.1.3. Internal Behavioral DiffErenCES .......uiiieiiiieii e e s 392
3.1.3.1. PreUpdate/PostUpdate Life Cycle Calbacks ...........ccoevviiiiiiiiiii e 393

3.1.3.2. createEntityManagerFactory EXCEPLIONS ..........iiiiiieiiieiiii e e e e e e e e 393

3.1.3.3. openjpa.QueryCache defalllt ............coovuiiiiii i 393

I @)1= g N O S 393
3.2.1. INCOMPELIDIHTITIES .. .iee i e e e e e e e e e e e e e e e 393
3.2.1.1. dlocationSize Property of SEqQUENCE GENEIAON ........uevvuneiiiieeeieeiieeeeeeeee e e e e eaneens 393

3.2.1.2. MetaModel AttribULES fOr ATTAYS ...covvuiiiiieii e e e e 394

3.2.1.3. SUPPOItSSELCIOD PrOPEIY. .vuiiii i eiii e e e e e e e e e e ees 394

3.2.1.4. useNativeSequenceCache PrOPEITY. .......iiiiii e e e 394

Xiv



Apache OpenJPA 2.2 User's Guide

3.2.1.5. Cascade persist BEhaVIor ........ccoun i

XV



List of Tables

2.1, PerSistenCe IMECNANISITIS .......ieiiiti ettt ettt e et ettt e et et b e ettt e e e et et e e ettt e et e e e e e e e et e e e eaaas 12
10.1. Interaction of ReadLockMode hint and LOCKIMBNAGES .........ciiiitiieiiiii ettt e e et e eer e 101
2.1. Standard JPA Properties and OPenIPA @QUIVBIENTS ..........iiiiiiiiiiii ettt e e e e e e eaan s 200
4.1. Default delimiters for delimited THeNtITIErS ........ oo e 248
4.2. OpenJPA AULOMELIC FIUSN BENAVIOL ......ieiiieiiii ettt ettt e et eeeae s 250
5.1, EXTEINEIIZEN OPLIONS ... eieeiiieeeii ettt ettt e ettt e ettt e ettt b oo et eh e et e e e et a et e ah et e b e e enaas 273
I = oo 4 A @ o 1] o 0 TP PP PP TUPPPTRRPPPPN 274
10.1. Data @CCESS MELNOMS ... .ceetueiiit ettt ettt ettt et e ettt e ettt oo e ettt e e ettt et e et e bt e e e eebe s e e et et reeeesbanaeeenbnnaeeene 335
10.2. Pre-defiNed @lIASES ........iiiiii ettt 346
10.3. Pre-defiNed @lIASES ........iiiiiii et 347
15.1. OPtiMIZatioN GUIETINES ......cceeuiieeeit et ettt e ettt e et et e et et e et e e e e e e e r e e e eba e e eenanas 370
2.1. Supported Dataases anNd JDBEC DIIVELS .........iiiiii ettt ettt ettt ettt et e e e et et e eb et e s e e ennans 380
2.2. Compatible Databases and JDBC DIIVENS ... ..c.uuuiiiiiiieeeei ettt e et e et e et et e e e b e e e 381
2.3. Unverified Databases and JDBC DIVEIS .......cieuuieiiii ettt ettt e et e et e et et e e e e eba s 381

XVi



List of Examples

3.1. Interaction Of INterfaces OULSIAE CONTBINEY ............uiiieii ettt ettt ettt et e et e et e et et e e eeeeaes 15
3.2. Interaction Of INterfaces INSIAE CONMTAINEY ..........uu ittt e et e et et e et et e e et e e e raa s 15
A1, PEISISIENE ClASS ..ottueeiiit ettt ettt ettt e et e ettt e et e e et e e et et e et e e e e 18
N Lo (= 0L LY O = o PP PO PP TPPPPTPUPPPIN 23
DL, ClaSS IMEBIBHAIA .. ...ttt ettt ettt ettt e e et e e e aa s 32
5.2, COMPIEIE IMEIBHEEIA ... eeeeeti ettt ettt ettt e e et et e et ettt e e et e bt e e et et t e e e eeban e e e erbn e e e eabn e eeens 66
N o1 = 1 (o | ST UP PP UPPPPPRUPPPN 73
6.2. Obtaining an ENtityManagerFattOry .............oceeii ettt e et ettt e et e e e e e 74
7.1. Behavior of Transaction PersSiSteNCe CONLEXT ........u.iieieie ittt ettt ettt e et e et e e e e et e e e e ab e e enaa s 77
7.2. Behavior of Extended PersiStenCe COMEXT ..........ouuuuiiiiiiieieii ettt e e ettt et e e et e e e et e e ena e e eneans 78
8.1, PrSIStNG ODJECLS ... iietiieiiiit ettt ettt ettt ettt e ettt e ettt e e e e h e et e a e e et a et et e et e b e e e e b e e tena e eee 84
8.2, UPELING ODJECES ... eeeeeti ettt ettt ettt oottt et e e et oo et e b e e et e b e e et e b e e et e e e et et e et et e e e e e e ena s 84
8.3. REMOVING OIJECES ...ttt e e ettt e ettt e e ettt e e et et e e et et e et eeter e e e enbe e e e enba e eeene 85
8.4. DetaChing @NO IMEITGING ....eevtueeeitt ettt ettt ettt ettt et e et et ettt e et et e o e ettt e et e et r et e eb e e et eba e et e eber e e e nb e e eenan 85
9.1. Grouping Operations With TIaNSBCIIONS ........cceuue ittt ettt ettt e ettt e e et et e et ea e e e eetareeeestn e eeennnaaeees 92
FO. L. QUENY HINES ..ottt ettt e ettt e ettt e ettt e e ettt oottt h e et e e et e e et e n et aa e e naans 101
10.2. Named QUENY USING HIMES .. ..couutieiiiiie ettt ettt e ettt e ettt e e ettt e e et e bt e e e eebe e e e eeberaeeenbnneeeenes 102
10.3. Setting Multiple Similar QUENY HINES ......u.iiiii ettt et e e e e e 103
104, DEELE DY QUENY ..ttt ettt ettt ettt e e et e e et et e et ettt e ettt har e et e et e et e e b e e et e b e e ettt e e ettt e e e enba e aaen 105
105, UPAALE Y QUETY ...ttt e ettt e e ettt e e et e e e e et b e e et e e e et e b et e e e e 105
12.1. Creating @ SQL QUENY ....iitieetitt ettt e ettt e ettt e ettt e et et e e et et e e et e b e e et et e e et e b e e et e b e e et e b e et e e e e 145
12.2. RetrieVing PersiStent ODJECES ........iiiiiti ittt ettt ettt ettt e et e et e e et e eb e e e ab e e e enaas 146
12.3. SOL QUENY ParBIMELEIS .. ...ttt ettt ettt ettt et et et ettt et et e et e e e e e et e et et e et e et e et e e aa e et e et e eaaenns 146
N IV = o o ] o I O = S = PP SPPPT RN 149
13.2. Defining @ UNIiQUE CONSITAINT ........ieieiii ettt ettt et e ettt e e ettt e e et et r e e e eabareeeesbareeeesbnaeeeentnaaaees 150
SRS A o L= 01 1] VA1V = o o ] o TSP PPPTTR 153
13.4. GENEFALOr IMADPING .. eevtuetettt ettt ettt e et et et e et et e et e et et h e e e et b oot e e b e et e E e et e et e b e et e e e e b e e era s 156
13.5. SINGIE TaDIE MBPPING .. eetnneieeti ettt ettt ettt ettt e et et e et et e et et b e et e th e et e eb e et e ab e et e e enaas 158
13.6. JOINEA SUBCIASS TADIES ... ettt ettt ettt et e e e et e b e e e et e e e et e e ennan s 160
13.7. Tahle Per Class MaPPING .....uueeeertueeeett ettt ettt e et e e et et e e ettt e e et et e e ettt e et e et e e et et e e e e aba e e eenba s 162
13.8. INNEITLANCE IMBPPING .. eetteeeetie ettt ettt ettt et e ettt e e et et e e et et e e et et e e et et e e et et e e e enba s 164
13.9. DiSCrimiNatOr IMBIDPING ...cevuueeeetiaeetet ettt e et e ettt e et et e e et e te e e et et e e et et e e et e be e e et e be e e et e b e et e e e eba s 167
13.10. BESIC FI&ld M@PPING ... eeeeitieeeeei ettt ettt ettt ettt e et et ettt e et e e e e 170
13.11. Secondary Table Field MaPPING .......uoiiiiteeeiii ettt ettt ettt e et et ettt e e e b e eerb e enaaas 172
13.12. Embedded FIeld MaDDiNg ... .cceuuueiiiiieeiii ettt ettt e et e ettt e e e e et et e e e e e e eer e eee 174
13.13. Mapping Mapped SUPEICIasS FIEIA .........iiiii ettt e 175
13.14. Direct Relation Field MaDPINg ........uuoeeemtueiitti ettt ettt ettt e et e e e et e et et e e e et e et e a e e e enaaas 178
13.15. JOIN TaDIE IMBPPING .. eeteeieetie ettt ettt ettt et e et o et e et e et et b e et e e b e e et e e e et n e e e e e e e naa s 181
13.16. JOIN Tahle MaD MEPPING ....ueeeetteeeiti ettt ettt e et e ettt e ettt e e et eb et e e et e b e e et et e e et e b e e e e e e ra s 183
13.17. FUIl ENLIEY MBPPINGS .. .etueeeetie ettt ettt ettt ettt ettt e e et ettt et e ettt bt e et et bt e et e e r e et eebr e et et e e e e san e e ennans 186
2.1. Code Formatting with the AppliCation [ TOO! ..........uuiiiiiie et 198
3.1. Standard OpenJPA LOg CONFIQUIALION ........ociiiteeeeii ettt e et e e et e e e e et e e e e b e e e era s 226
3.2. Standard OpenJPA Log Configuration + All SQL SEAEMENTS ........oeieieieeiiii et e e eena e 226
R A Wl (o 1o (o [N (o = 1 = TP P T RTPPPTR 226
S =Tl = o I oo 72 B o o 1 1 o PP TUPPTTRPPPPTTR 226
3.5, IDK LOQ PrOPEITIES ... eeiiiti ettt ettt ettt e e et e et ettt e e ettt e e e ettt oo e et ab e e e et hh e e e et b b e e e et e e enna e eeee 227
3.6. CUSIOM LOGUING CIBSS ... eeittiieeeeii ettt ettt ettt ettt e et et e et et e e et et e e et ab e e et bb e et e ab e e e e ba s 228
4.1. Properties for the OPENIPA DEASOUICE ........cveuueu ettt ettt ettt ettt ettt e ettt e et et e et e b e e e ebi e e e eranas 232
4.2. Properties File for a Third-Party DAIASOUICE ..........cceuuuiiiiiieeeei et e e et e et e e et e e e raa s 233
4.3. Managed DataSource CONFIGUIBLION ..........uueeeetieeeetti ettt ettt e ettt e et e e e et e e et et e e e e et e e e e et e e e e et e eeeebanaes 233
4.4. Setting DataSource @ RUNLIME ........iiiiii ettt ettt e ettt e ettt e et et e e et b e e e e aa e e e erea s 234
4.5. Using the EntityManager's CONMECIION ........ccuuuuuieiiiiee ettt e et e et e e et e et et e et et e e e e e e e e eraa s 235

XVii



Apache OpenJPA 2.2 User's Guide

4.6. Using the EntityManagerFactory's DAlaSOUICE ..........u.ciuuieeieeiieeee e e e e e e e e e e e e e e e e st e e st e e et e e san e eaneeannns 235
4.7, SPECITYING @ DBDICHONAIY ....uuieiiiiiiieiiie et et e e e e e e e et e e e e e et e e et e e et e e et e e et e et e e et e e aaneeetn e rananrnnas 237
4.8. Specifying a TranSaCtioN ISOIALON .........oiiuiiiiii e e e e e e e e e et e e et e e et e e et e e et e e eanaeeanaees 248
4.9. Specifying the Join SyntaX DEFAUIT .......ccouiiiiiii e e e e e e e e e e et e e e aaans 249
4.10. Specifying the Join SyNtaX @l RUNMLIME ........iiii e e e e e e e e e e e s e e e e e e e et e e eaneaetnaes 249
4.11. Specifying Connection USage DEFAUITS ...........iiiiiiiii e e e e et e e e et e e et e e e e eaaeees 250
4.12. Specifying Connection USAgE Gt RUNLIIME ... .....iiiiiiii e e e e e e e e e e e e et e et e e st e e et e e st e eaaeaannaees 251
4.13. Enable SQL StaemeNt DAlCNING ........iiiieiiiiiei e e e e 251
4.14. Disable SQL StatemMent DatChiNG .........couiiiiii e e e e e e e e aaa 251
4.15. Plug-in custom statement batching implementation ..............oiiiiiiiiii e e 252
4.16. Specifying RESUIT SEt DEfAUITS ... ..uu i e e e e r e e e e e e e et e e et e e et s e ean e ean e eanneaeanaaes 253
4.17. Specifying Result Set BENaVIOr at RUNIIME .......ooiuii e e e e e e e e e e e e et 253
A.18. SCREMA CrEALION ...eeuuieeiiiti ettt e ettt e e e et e e e ettt e e e et s e e eett e e e eett e e e eett e e e ee bt e e e eetteeeeett e eeeettaeeeettaeeeennaeeeees 257
TS @ T S o: 1] o [P 257
O I o =T = g T o 257
S o104 7= B (o P 257
S o 11= 00 T= W = 1= 1o PPN 257
A ¥ o v =y - PP 259
N U S = 0 4= P RPPUPTR 259
5.1. USING the OPENJIPA ENNANCES .....iiiiiiii it e e e e e e e e e e e e e et e et e e et e e et e e et eett e e et e eenneeeeas 261
5.2. Using the OpenJPA Agent for RUNtime ENhanCeMENT .........ouiiiiii e e e 262
5.3. Passing Options t0 the OPENIPA AGENE .....uuiiiii e e et e e e e e e e e e e e et e et e e et e e et e eta e eaneestnaeetnaeernaaees 262
5.4. JPA Datastore [dentity MELAOEIA ..........ceeuueiiiieiii e et e e e e e e e e e e e e e et e e et e e e et e e et e e et e e ean e eeneeaes 265
5.5. Finding an Entity with an Entity Identity FIeld ... e 266
5.6. Id Class for Entity [dentity FIEIOS ... ....uoiiiiiiii e e e e e e et e e e e et e e et e e et e e ean e eaes 266
5.7. Embedded Id for Entity [dentity FIElOS .........oieuniiiiiiii e e e e e e e e e e e e e 267
5.8. Using the Application 1AENtity TOOI .......c.uiiiiiiiii e e e e e e e e e e e et s e e e et e e et e e eaneeeanas 268
5.9. SPECITYING LOGICA INVEISES ....oiuiiiiiieii e e e et e e e e e e e e e et e e e e e et e e et e e et e e ta e e et e e et e e et e eaneeannaees 269
5.10. ENabling Managed INVEISES ......cuuiiiiieiii e e e e et e e e e e et e e e e e e e e e e et e e et e e et e e et eeaa e e et e e et e e et e eeta e eanneeeens 269
o300 I I o B 1 0 TS = (< o= N 270
5.12. USING INItial FIEIA VEIUBS .. ..ouiiiii et e e e e e e e e e et e e e e et e e et e e et e e aneeanns 270
5.13. USING @ Large RESUIT SEE IEIEEON ......ivuiiiiiiieiiee et e e e e e e e e e e e e e e e e et e e et e e et e e st s e ean e ean e e et e esanaeeanees 271
5.14. Marking a Large RESUIT St FIEld ......ciieiiii e e e e e e e e e et e et e e et e e e eaa s 272
5.15. Configuring the ProXY MaNaQEr ........cciuuiiiiiiiiiie e et e e e e e e e e e e e e e e e et e e et e e e e e e tt e e et e e aan e e et e eaneernans 273
o ST £ o I a (= 7= 2 1o o PP 275
5.17. Querying EXternalization FIEIAS ...........oiiiiiiiii e e e e a e 275
R L g o I e (= = = LU =P 276
5.19. Custom FEtCh GroUP MELAOAEA ... ....ceveeiii i eiie e e e e e e e e e e r e e e et e e et e e et e e etn e e et e eaan e e st eeaneeannaees 277
5.20. Load FEtCh Group MELAOAA ........ccvuiii i e e e e e e e e et e e et e e et e e et e e et e e et e e eaneerannas 278
I I £ g o I 1T = (o = = o 279
7 o (o o = I o L= T = o [N 279
5.23. Setting the Default Eager FEICh MOE ..........iiiii e e e e e e e e e aaas 281
5.24. Setting the Eager FEtCh Mode at RUNIME .. ....iiiii e e e e e e e e e e e e e e et e e eaaaaees 282
6.1. Setting a Standard Metadatal FattOry ..........coovuiiiii e e e e e e e e et e e e e e e e e e et e e et e e eaaaaees 283
6.2. Setting a Custom MEtAaa FACIOTY .......uuiiiii i e e e e e e e e e e e et e e et e et e e et e e et e e e et e e aaeeaenns 283
6.3. Setting the Preload Property on Metadata REPOSITONY ......cvvuiiiiieiii e e e e e e e e e e e e e e e e e e et e e eaaeaees 284
6.4. OPENIPA MEtadata EXTENSIONS ... oevuiciiieeiii ettt e et e e e e e e e e e e e e e et e e et e et e e e ta e e et e e et e e et e eaneesneeetnaenenaaees 288
6.5. OPENIPA SChEMA EXIENSIONS .. .euuiiiiieiiieeie e et e et e e e e e e e e e e e et e e et e e e et e e et e e et s e eaa e e ta e e et e ean e e et eetneeennes 289
7.1. USiNg the Mapping TOOI ......cuuiiiiiiiiii it e e e e e e e e e e et e et e e et e e et e e et e e et e e et e e e an e eanneeannns 290
7.2. Creating the Relational Schema from MapPiNgS ......cvvuiiiiicie e e e e e e e e e et e e e eanas 291
7.3. Refreshing entire schema and cleaning OUt TADIES ........couuiiii i e 292
7.4. Dropping Mappings and ASSOCIAtion SChEMA ..........ciiiiiiiii e e e e e e e 292
7.5. Create DDL fOr CUMENt IMADPINGS «.uueein it ieiiee e e et e et e et e e e e e e et e e et e e st e e e ta e e et e e et e estnseean e eaneratneesnnaaernnaes 292
7.6. Create DDL to Update Database for Current MapPingS .......ceuueeinieeieeeieeeiieeee e ee et e et e e et e e st e e st eeaaeeanneesens 292

XViii



Apache OpenJPA 2.2 User's Guide

7.7. Configuring RUNtime FOrWard MaPPiNG .......ueieuueeii e e e e e e e e e e e e e e et e e et e e et e e et e e et e et e e et e eeaneerannas 293
7.8. Reflection with the SCheMa TOOI .........oiiiii e e et e et e e e eaa s 293
7.9. Using the Reverse Mapping TOOI ........iiiiiiiiii e e e e e e e e e e e e e e e e e et e e et e e et e e et e e st e e et e eaaeeanses 293
7.10. Customizing Reverse Mapping With PrOPErIES .......couuiiii e e e e e e e e e e et e e eanaaees 297
AN TTo = 1o Y ="o] 1T o - PP 297
7.12. Configuring Mapping DEFAUILS .........uiiiiiiiii e e e e e e e e e e et e et e et e e et e e et e e et e e eaaaas 299
7.13. Standard JPA CONIQUIBLION ......iiuiieii e e e e et et e e e e et e e e e e et e e st e e et teeaa e e et e eetneeetnaaetn e eanneastnaeetnaeernaees 300
AT == (o] (= [ (= 011 VALY, K=o o1 oo PSP 302
7.15. Overriding ComPleX MEPPINGS «...vuueerueeie et ettt e e e e e e e et e et e e et e e et eeaaeeaa e eataeetneetneeateeatnaestnaesanaernnaeeeen 305
7.16. One-Sided ONE-MaNY MBPPING .. cvuuiiineiie et et e e e e e e e e e et eeat e e et e eeta e et e eta e e et eeataeetnsesansestnseeannaesnnares 307
7.17. String Key, Entity Value Map MaPPiNg ... ccuuiiiiieiiiei e e e e e e e e e e e e e e e et e e et s e s e e e at e e et e e st e eeta e eaneeanns 309
80 T 10177 o (0115 S0 o P 312
8 T AN (o (=Y - Y PP 313
L0 RO S VAW N [0 (== S - - PN 313
A T 7 A N T X0 (o 1= S - V7= PP 314
7.22. Showing annotated Order entity with XML Mapping SITAEQY «..u.evvrneiireeiiieieiiee e e e e e e e e e e e et e eae e st eeaneeannees 314
7.23. Showing creation of Order entity having shipAddress mapped to XML Column ..........ccoooviiiiiiiiiiii e 314
7.24. Sample JPQL queries for XML COlUMN MBPPING ..uiviniiie e e e e e e e e e e e e e e e e et e e st e e st e e eaaaeernaees 315
7.25. Annotated INPUESLIEaM and REAMEY .........iiiiiiii e e e e e e e e e e e e et e et e e et eean s 315
7.26. Custom Logging Orphaned KEYS .........uiiiiiiiiiiiii e e e e e e e e e et e e et e et e e st e e et e eeanneernaees 319
8.1. Configuring Transaction Manager INTEGIatioN ...........ceuuiiiiieiiie e ee e e e e e e e e e e e et e e et s e et e st e eaneeennaees 321
L B Y T (e D - O o 1= RSP 323
LS A L= T T - TN N et = o | P 324
0.3, Setting DEfaUlt LOCK LEVEIS ... e e e e e e e e e et e e et e e et e e aa e e et e e ean e e et 325
9.4. Setting RUNLIME LOCK LEVEIS . ... it e e e e e et e e et e et e e et e e et e e e e e e et e e et e eaanaees 326
S T oo (1 o N U 327
LS D TT=" o 1T 0o I o (1 o P 328
O.7. USING SAVEPOINES ...itieiitieiiteeeie et e e et e et e e et e e st e e et e e et e e et e e et e e aa e e taee et e e st e ee b e eanaeetn s ee st e eenneestnseeaneeensns 330
0.8. NAMEA SEU SEOUENCE ...uuiivueiiieiit ettt e et e e et e et e et e e et e e et e e e et e e et e e et e eeta e e sa e e aaee et e e eaneeeta e e aaeesteestnneennaeenes 333
9.9. System SequENCE CONFIQUIGLION ..........iiie et e e e e e e e e e e et e e e et e e et e e et e e e ta e e et e eat e e et e e st aeeen e eaneeennns 333
O IS T o | F= VY T T - L= 336
02 I - o 3T 336
10.3. DAta CAChE SIZE .. eiviieiiii e et e e e e e e e e e et e e et e e aatnaaaen 336
10.4. Data CaChe TIMEOUL ......ueiiiiiiee ittt et e et s e e et r e e e et s e e e et e e e e et e e e e et e e e e et e e e e st e eeestnn s 336
O (o W o [ g To 1= 0111 = PP 337
O 1 10 o [ g o = 0111 =P 337
10.7. Bulk updates and CaChE EVICHION .........iiiiiiii et e e e e e e e e e et e e e e e et s e e et e e et e e et e eaneeanns 338
10.8. PartitioNed Daf@ CaCh ... ..ieuuieiiiiii ettt e ettt s e e et r et e et r e e ettt e e e et e e et et e aeaaan s 338
10.9. ACCESSING the CaCNE ....i ittt e e e e e e e e e ettt e e et e e st e e e ta e e et e e et e e et e eaa e eat e eetnaeeanaaees 339
10.10. Using the javaxX.persitenCe.Cache INtEITACE ... .....ciuui i e e e e e e e e e et e e et eeaa e eees 339
10.11. ACCESSING the SIOMECACKE .. ..uui i e e e e e et e e e e e et e e et e e et e e et e eateeaaneeetnees 339
O S (0 (= o ST L o = PP 340
10.13. AutomatiC Data Cache EVICIION .......iiiiiiiei ittt e et e e et e e et s e e e et e e e e et e e e e et eas 340
O @0 o T = o 1= = ot 341
10.15. Accessing the QUENYRESUITCACKE ........ciui it e e e e e e e e e et e e e e e et e e et s e e e eaaeees 342
10.16. QUENY CACNE SIZE .. oouiiiiiii ettt e e e et e et e et e et e e et e e s e e e et e e et e e et e e e ta e eaaneeateeetnaeernaees 342
10.17. Disabling the QUENY CaChE ......iiii it e e e e e e e e et e e e et e e et e e et e e et e e et eeannnas 342
10.18. QuEry Cathe EVICHON POIICY .....uuiiiiiiiiiiieii et e e e e e e e e e et e e et e e et e e et e e et e e et e e et e eeneeees 342
00 TV T 1] 0T T == PP 343
10.20. Pinning, and Unpinning QUENY RESUILS ..........uiiiiiiiii i et e e et e e e e e e e e e e e e e et e e et e e st s e eaaeeannaees 344
10.21. Disabling and Enabling QUENY CaChing .........ccuuiiiiiiiiiii e e e e e e e e e e e e e et e e sa e eaa e eaes 344
O 2 @ 0= Y = (= o = o= o q (= 3| AN 345
10.23. Hardcoded Selection Value in JPQL QUETY ....u.iiuuiiiiieeie et e e e e e e e e e e e e e st e e et e e st e e st e e et e e st esaaeesnneaetnaaes 347
10.24. Parameterized Selection Value in JPQL QUETY ......iiuuiiiii e e e e e et e e e e e e e et e e et e e e e e e st eeaaeeeanaes 347

XiX



Apache OpenJPA 2.2 User's Guide

12.1. Configuring DEACNEA SEAEE .......c.uuiiiiieii et e e e e e e e e e e e e e e et e e et e e et e e e ta e eaaeeateeetnaeeanaees 352
12.2. IMS Remote Commit Provider CONfiQUIAiON .........couuuiiiiiieiii e e e e e e e e e e et e e e e e e e e eann s 354
12.3. TCP Remote Commit Provider CONfiQUIAiON .........cocuuiiiiiieiiie i e e e e e e e e e e e e e e e e et eeaa e e aann s 355
12.4. IMS Remote Commit Provider transmitting Persisted ObjeCt [AS ..........couviiiiiiiiiiiici e 355
7 I U L= T o I (gL oo 1 o AN | A = P 364
14.2. Using the Properties Attribute of the <CONFIg> Tag ...cvuiiiiiiiii e e e e 365
14.3. Using the PropertiesFile Attribute of the <CONfIg> Tag ....vuiiiii i e e 365
14.4. USiNG the <Clasath™ ANE Ta0 ....ovuniiiii it e e e e e e e e e e et e e et e e et e e et e e e e e et e e et erannas 365
14.5. UsSiNg the <COOEFOrMIBES ANE TAY . ovvvueirnieiiieiie e e e et e e e e e s e e e e e e e e et e e et e e e ta e eat e e et e e et re st e etn e eatnaeenneeenns 365
14.6. Invoking the ENNANCEr TrOM AN .. ..u.iii e e e e e e e e e e e et e e et e e et e e et e e et e e et e eaneeenss 366
14.7. Invoking the Application Identity TOOI frOM ANt ....oouniiii e e e e e e e e e e eaes 367
14.8. Invoking the Mapping TOOI FrOM ANE .....iieii e e e e e e e e e e et e e et e et e e e e eateeeaneeetnaes 367
14.9. Invoking the Reverse Mapping TOOl frOM ANL ... e e e e e e e st e e et e e e eeanns 368
14.10. Invoking the SChema TOOol frOM AN .. ... e e e e e e e e e e e et e et e e et e e eaneeeaes 368
14.11. Using Commons DBCP with APaChe DErDY .........coiiiniiiiiiii e e aeas 369
2.1. EXample properties fOr DEIDY ........iiiiiiiii i e e r e a e aaa 382
2.2. Example properties fOr INEEIDASE ........ciuui it e e e e e e e e e et e e et e e et e e et ertn e e e e eaaaaes 382
2.3. EXample properties fOr JD@ASIOME ........uueiiiieie e et et e et e e e e e e e et e e e et e e et e e et e e e at e e et e e st s e et e ean e eateeanneaetnaes 382
2.4. Example propertiesS fOr IBIM DB2 ........uiiiiiiiii ettt e e e e e e e e e e et e e et e e et e e et e et e e et e e et eeanaeaen 382
I e 00 0 [N 0T = {0 4] o) == P 383
2.6. Example properties for H2 DatahaSe ENQINE .......ccouuiiiiiiiiie et e e e e e e e e e e et e e et e e e e e e eeeen 383
2.7. Example properties fOr HYPEISOMIC .. ..uu it e e e e e e e e e e e e e e e e et e e et e e et eeaa e e st e e et eernaees 384
2.8. Example properties fOr FIrEiNd .......o.uiii e e e e e e e e e e e e e e e e e e e e e e e e aaaas 384
2.9. Example properties for INfOrmixX DYNAMIC SEIVEN ......ciuuiiiii e e e e e e e e e e e s e e et e et e e et e e aaneesanees 384
2.10. EXample Properties FOr INQIES .....uu.iiiii e et e e e e e e e e e e e e et e e et e e et e e ta e e et e e ean e eetn e eaneeanaeeen 385
2.11. Example properties for INterSyStemMS Cathe .......covuiiiii i e e e e e e e et e e et e e aan e e eanes 385
2.12. Example properties fOr MiCrOSOft ACCESS ......iiuuiiii e et e et e e e e e e e e e e e e e et e e et e e et e e e e e et e e et e eannas 385
2.13. Example properties for MiCroSOft SQL SEIVEN .....uuiiiiiiiii et ee e e e e e e e et e e e e et e e st e e et e eanaeeees 385
2.14. Example properties for MiCroSOft FOXPIO .........iiii i e e e e e e e e e e et e et e e e aaeeaanaees 386
2.15. Example properties fOr MY SOL ...iuuuiiii et e e e e e e e e e e e e e e e e et e et e e e e e e e e e et e et e aa e araas 386
2.16. USING MYSQL HITIS ..tuuuuieeeeisieiiiiie s e s e e e e ettt e s e e e e et et e et e e e e e e ee s tat et e e e aeeeesteta s e s e eaeeessstann e e aeeeaeeeesennnnaeees 387
2.17. EXample Properties FOr OFACIE ... .cuuiiii e e e e e e e e e e e e e e e e et e e et e e et e e et e e et e e st e e et eernaees 387
PSR T £ o T @ = o= T o PP 388
2.19. Property to disable statement batching for OraCle .........coouiiiiiiiii e 388
2.20. Property to retain connection over the lifetime of the entity Manager ..........cooovvii i 388
2.21. Example properties for POINDASE .........cciuiii e 389
2.22. Example properties for POSIGrESQL .. ..uuiiii i eii et e et e e e e e e e e e e e e e et e e et e e et e e e e e e e e ranas 389
2.23. Example properties for IBM SOLIADB ........c.uuiiiiiieii e e et e e e e e e e e e e et s e e e et e e et e e aaneeeens 389
2.24. Example Properties fOr SYDBSE ... couuiii e 390

XX



Part 1. Introduction




220G T O] o )Y 1 o | o) PN
2.3.1. Apache
2.3.2. Serp
22 T T T PPN
2.3.4. Other




Chapter 1. About

OpenJPA is Apache's implementation of Java Persistence 2.0 API (JSR-317 JPA 2.0) specification for the transparent persistence
of Java objects. This document provides an overview of the JPA standard and technical details on the use of OpenJPA.

This document is intended for OpenJPA users. It is divided into several parts:
» The JPA Overview describes the fundamentals of the JPA specification.

» The OpenJPA Reference Guide contains detailed documentation on all aspects of OpenJPA. Browse through this guide to
familiarize yourself with the many advanced features and customization opportunities OpenJPA provides. Later, you can use
the guide when you need details on a specific aspect of OpenJPA.

» Appendices
» The appendix JPA Resources provides links to other resources.
* The appendix Supported Databases provides information on databases supported by OpenJPA.

e The appendix Migration Considerations provides information related to migration to a different release.




Chapter 2. Legal

The Apache OpenJPA website can be found at: http://openjpa.apache.org

2.1. License

Apache OpenJPA isreleased under the Apache Software License Version 2.0

Apache OpenJPA includes the persistence and orm schemas from the JPA specifications and elects to include this software in this
distribution under the CDDL license.

Apache OpenJPA includes software devel oped by the SERP project, which uses the BSD license

2.2. Notice

This product includes software developed by The Apache Softwar e Foundation (http://www.apache.or g/).

The openjpa-all aggregate JAR includes software devel oped by the:

» Apache Commons Collections project

» Apache Commons Lang project

» Apache Commons Logging project

» Apache Commons Pool project

» Apache Geronimo project (IMS 1.1, JTA 1.1 and JPA 2.0 spec APIS)
» JCP JSR-317 JPA 2.0 schemas

» SERP project

2.3. Copyrights

2.3.1. Apache

Copyright (C) 2006,2011 The Apache Software Foundation.

Apache, OpenJPA and the Apache feather logo are trademarks of Apache Software Foundation.

2.3.2. Serp

OpenJPA includes software devel oped by the SERP project.

Copyright (c) 2002-2006, A. Abram White. All rights reserved.

2.3.3. Sun

OpenJPA includes the persistence and orm schemas from the JPA specifications.

Copyright 2005-2009 Sun Microsystems, Inc. All rights reserved.

OpenJPA €lects to include this software in this distribution under the CDDL license.



http://openjpa.apache.org/
http://www.apache.org/licenses/LICENSE-2.0.txt
https://glassfish.dev.java.net/public/CDDL+GPL.html
http://www.opensource.org/licenses/bsd-license.php
http://www.apache.org/

Lega

Y ou can obtain a copy of the License at: https://glassfish.dev.java.net/public/CDDL +GPL .html

The source code is available at: http://java.net/pr ojects/glassfish/sour ces/svn/show or http://jcp.org/en/jsr/detail ?id=317

2.3.4. Other

OpenJPA includes software written by Miroslav Nachev.
OpenJPA uses test code written by Charles Tillman.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.



https://glassfish.dev.java.net/public/CDDL+GPL.html
http://java.net/projects/glassfish/sources/svn/show
http://jcp.org/en/jsr/detail?id=317

Part 2. Java Persistence API




R 1 1o o [ oo T 11

0 1= o o Y o 1= = N 11
O I T g 0T = o = S T (= o PN 11
B2V VO PR 12
3. Java PersistenCe APl ATCIITECIUIE . ... ciii et e e e e e e e et e e et e e et e e et e e et e e et e e e e eateeeaneeeennns 14
TN | o= o)) 1 15
0111 PP 17
4.1, RESITICHONS ON PErSISIENT ClaSSES .. .uuuiiiiiiiiieeei et e et e e e e e e e et e et e e e e e e e e et e e et e e et e e et e e et e eanneeeanns 18
4.1.1. Default Or NO-ATG CONSLIUCION .....uiiiiieiiieii et ee e e e e et e e e e e et e e et e e et e e et e eat e e et e e et e esaneesnneeeens 18
I 1o PSPPI 19
g T o (= 1 VA T [ PP 19
I V= = Lo I T~ o 19
ST 1 g4 T= 1= o P 19
T = S T = | A T [ PP 20
T AR @00 11 o) 1 21

A 0 ()Y T (=01 ) Y U 21
T o U= 0 ] VA O =SSP 22
R W T o = o 1 VA i TT= = 1 = 23

e T Y (=0 LY @ | oo 24
e B I @ o= o 1Y =11 oo PSRN 24
4.3.2. USING CallbaCk MEINOOS ... ccvuiiiiiiciii e e e e e e e e e et e e e e et e e et e e eanaees 25
TG T L= T oo 1 U] Y I E = 1= £ PPN 26
4.3.4. Entity LisSteners HIErarChy .........ocoiiiiiiiii e e e e e e e e e e et e e et e e eanees 27

R o o 11 o) 1N 27
LT Y = = = PP 28
I B O = S Y T = = - PSP 29
ST 0 = 1 PP 29

ST 2 o I O = = PP 30
5.1.3. MAPPE SUPEICIASS ....iitiieiii i eiie ettt e e e e e e e et e e et e et e e et e e et e e et e et e eat e e et e aeanaaes 30
514, EMDEAUANIE ....coeeei e e e e e e e e aae 30
T T o 111 I E 1= 1= £ PP 31
LI T o o) 31

5.2. Field and Property MELAOAIA .........couuieiii e e e e e e e e e e e e et e e et e e et e e et e e e e aaans 33
oI B o Lo ) A oo 33
I 1 -0 = | PPN 35

LS YZ2%C T [ o PP 35
B C 1= g 1= = 1= o I T L P 35
I ST = 1107 o o 1= o N o PR 36
T2 ST = = o) o PPN 36
LI R = Y- = T o O 36
I T < oo B Y o TSP 37

I S 0107 o o /= o PSP 37
5.2.0, MANY T O M ettt ettt 37
I B O = o (T Y/ o PPN 38

5.2.10. ONE TO MABINY ottt ettt e et e aa 39
5.2.10.1. Bidirectional REIGLIONS .......ccvuuiiiiieiiie e e e e 40

L @ 0T o T = PP 40
I |V = 1) A o T 1Y - o PP 41
LI T O 0 = = PP 42
I |V = o T LY PP 42
5.2.15. Persistent FIeld DEfAUILS ........iiiiiiiiee et e e e a e 42

R A QY S ol 0= 1 - L PP 43
L3 @0 o 11T o 65
LT = £ 1 (= TS 68




Java Persistence API

LT o= (= TS (=073 0| PP 68
L2 L] o PSP 74
A =111 = = 1= = o o) Y 75
7.1. Obtaining an ENtityManagerFattory ..........iiiui e e e e e e e e e e e e e e e e e e e aaa 75
7.2. ObtaiNiNg ENLIEYMANAGJELS ... evuniiiiieiie e e e e e e e e e e e et e e e e e et e e et e et e e et e et e e et e e et e e et e ean e eateeeaneeeens 75
AR = S F = (oI @01 (= PP 76
7.3.1. Transaction PersiStenNCe COMEEXL .......civuuiieieiiiieeee s e et et e e e et e e e et e e e et e e e e et e e e e et e e e eetenaeeas 76
7.3.2. Extended PersiStenCe CONEXL ........uuuieiiiiiieeeiii e e e et e et e e e e e e et e e e e et e e e e et e e e e st e eeeatnnaes 77

7.4. Retrieving Properties INFOIMELION ..........oiiuiiii e e e e e e e e e e e e e e e et e e et e e et e eannaees 78
7.5. Closing the EntityManagerFaCtory ...........uiiiiuiiiii e e e e e e e e e e e e e et e e et e e e et e e aaneeaens 78
7.6, PersistenCOUNITULIL ....ciiiee et e et e e et e e e e e et e e e et e e e et e e e et e e e e et 79
S 111441, =0 7= o (= PP 80
8.1, TranSACtiON ASSOCIALION ....eevuueeeeiti e eeeti s e e eet e et et e e e e et e e e eeta s e e e et s e e e et e e e e ettt e e eesaneeestaneeeetnneeesanneeennen 80
8.2. Entity LifeCyCle ManagemMent .........iiii it e e e e e e e e e e e e e e e e aaaaa 81
LG I ) 1= L= T 101 L= 83
8.4. Entity [dentity ManaQemMENnt ... .c.uuiiii e e e e e e e e e e e e e e e e e e e e e e r et raen 85
L OF o 1 IV = 107 o = 0101 o | 86
N T @ 0T YA oo (0] Y/ PR 87
S A 11 VA oo (1 o P 87
8.8. Retrieving Properties INFOIMELION ..........oiiuiiiiii et e e e e e e e e e e e et e e et e e e aaeeannaees 88
SR 01 1 o TP 89
LS I =01 1o PP 90
LS N 0 o o TR Y/ == 20
9.2. The EntityTransaCtion INTEITACE .......couniiii i e e e e e e e e et e e et eean e eaes 91
O o O 11T USSP 93
05 = N PP 93
O N I @ 0=V = - = o PR 93
O 2 o = Lo I I Y = PP 96
10.1.3. EMBEdable TIaVErSaAl ... .ccoeui it e e et e e et e et e e 97
O s (o B o LSS PUPPPRTPPN 97
O [ @ | o o) 98
10.1.6. POlYMOIPRIC QUETIES .....iiiiiiii e e e e e e e et e e e et e e et e e et e e et e e aneeannns 100
JO.1.7. QUENY PalamMELerS ... ouiiiiiiiiie ettt e e e e e e e e e et e e e 100
O R @ 0= Y o 110 £ PP 101
10.1.8.1. LOCKING HINES ...iiiiiiiiei e e e e e e e e e e e e e e et e e et e e st e e et e e anneeannns 101

10.1.8.2. LOCK TimMEOUL HITL ....ceiiiiiee it e e e et e e et e e e et eeeeaan s 102

10.1.8.3. QUErY TIMEOUL HINE ..uuniieiiiii ettt e e e e e et s e e e et r e e e eatn s e eeerenaeeeees 102

10.1.8.4. RESUIL SEt SIZE HIME .evvuiieiiiiee et e et s e e et e e e e et s e e eebe e e e eeraaeeeees 102

10.1.8.5. 1S0l@tion LEVEl HINE ...oouniiiiiii et e e e et e e e et e e e eaenneeeees 102

10.1.8.6. Other Fetchplan HinS ........couiiii e e e e e e e 102

10.1.8.7. Database-SpeCifiC HINES ...uuiui i e e e e e et e ea e e aaaees 102

10.1.8.8. Named QUENY HINES ...ouuuiiiiiiii e e e et e e e et r e e e e atr e e e eatn s e e aestnnaeeees 102

10.1.8.9. Handling of Multiple Similar QUErY HiNtS .........oovuniiiiiiiie e e 103

050 e T @ o (= 11 oo 103
O I (O oo 1= o = S PRSPPI 103
O =T 1= o B 0 PR 104
10.1.12. DEELE BY QUENY .vuueeiiiteeeeiti e ettt e e e e ettt e e e ettt e e et et s e e e eatar e e e e eta s e e e eate s aeeeett s aeeeste s aeeestn s aeeestnaaaees 104
10.1.13. UPAE BY QUETY ...veueeiiiieeee it e ettt e et e e e et e e e et e e e e et e e e e et e e e e e at e e e e e bt e e e e e bt e e e e ettaeeeernnas 105

10.2. JPQL Language ReEfEIENCE .....cuiiii e e e e e e e e e e e e e e e e e e e e e e 105
10.2.1. JPQL StALEMENE TYPES ..vueteertneeeetinteteetin e eeettn e teatt e eeete e eeesen e aesten e aessanaeeesseaeeessenaeeessanaeeesnen 105
10.2.1.10. JPQL SElECE SEAIEMENT ..eevuueiiiii ettt e et e e et e e e et e e e e et e e e e et eas 106

10.2.1.2. JPQL Update and Delete StAEMENES ......couu it e e e e e e e e 106

10.2.2. JPQL Abstract Schema Types and QUEY DOMAEINS .........ccuuieiiiiiiiiieeiiiie e e e e e e e e e e e eees 106
10.2.2.1. JPQL ENtity NAIMING .oevvuieiiiiiieee it e e e e e e e et e e e et e e e e et e e e e et e e e eaen s 107




Java Persistence API

10.2.2.2. JPQL SChEMa EXBMPIE . .cevviieiiii ettt e e e et e e et e e e et e e eenens 107
10.2.3. JPQL FROM Clause and Navigational DECIarations ...........c.uveiuiieiinieiiiieeiiie e ieeie e e e e e eeanes 108
10.2.3.1. JPQL FROM TAENITIEIS 1ovvuiieiiei ettt e et e e et e e et e e e e aaa s 108
10.2.3.2. JPQL Identification Variables .........cccuuiiiiiiiiii e e 111
10.2.3.3. JPQL RANQGE DECIAIrAtiONS ... .cevuieiiiieiiie e e e e e e e e et e e e e et e e e eeaas 112
10.2.3.4. JPQL Path EXPIESSIONS ....ccuvuiieiiiiiieetiiit e ettt s e e ettt s e e e eate s e e e eatn s e e e eate s e eeestnsaeeeatn s aeaestnsaeeenes 112

02 AT | @ I o 11 o SRR 114
10.2.3.5.1. JPQL Inner Joins (Relationship JOINS) .....cccuueiiiniiiieiiiiieeie e eein e e e e e e e eeen 115

10.2.3.5.2. JPQL OULES JOINS ...eevtueeeiiinseeeiti e ettt s e e e et s e e e et s e e e ett s e e eettaeeeestn s eeeeatnaeeeentnaaaees 116

10.2.3.5.3. JPQL FELCH JOINS ...uiiiiiiiieeei e e e 116

10.2.3.6. JPQL Collection Member DECIarationS ..........ccuuueiiiiiiiiii e e e e e e s e e e e e e e eaees 116
10.2.3.7. JPQL FROM Clause @ant SQL ......uuuieiiiiiieeiiiiiee et aeeeetis e e e ettt e e e eeteaaeeeetssaeseetnsaeeeeseaeeeens 117
10.2.3.8. JPQL POIYMOIPIISM ...iiti e e e e e e e e e e e et e e e et e e et e e ean e eeas 117
10.2.4. JPQL WHERE ClAUSE ... .ceuuuietiiiiiiet et e e ettt e et e et r e e et r e e e et s e e e et e e e e et e e e e et e eeestnn s 117
10.2.5. JPQL Conditional EXPrESSIONS .....uciuueiiieeiieeeieesie e et eeat e eet e e st e eeat e esteeataeetnaestnaerateeennaesnnaaes 118
0T I | @ | I = = PP 118
10.2.5.2. JPQL Identification Variables ..........ccuuiiiiiiiii e 118
10.2.5.3. JPQL Path EXPIESSIONS ....ccuvuiieiiiiiieeeiiit e ee et s e e e ettt e e e ettt e e e eat s e e e eete s eeaestnaeeeestn s aeeestnnaaeenes 119
10.2.5.4. JPQL INPUL ParamELErS ... ..iiiiiii et e e e e et e e e e e et e e e aneen 119
10.2.5.4.1. JPQL POSItiONal Par@mMELErS .. ... ceveveiieeeiiii et e e 119

10.2.5.4.2. JPQL NaMEA ParamMELErS .. ...uuueiiiiiieieiiii et e e et s e et e et e e e et e e e e e e e enea s 119

10.2.5.5. JPQL Conditional EXpression COMPOSItION .........eevuuieiiieeiiieeeiiieeiie e e eeesine e e e esieeeanaeesneens 119
10.2.5.6. JPQL Operators and Operator PreCEAENCE ........covuiiiiiiiiii et e e e 120
10.2.5.7. JPQL COMPariSOn EXPIrESSIONS .....uuuiiiieiitieiiiee it e e et ee e e et e e e et e e et e e et e s e st e e et e aaaneeenans 120
10.2.5.8. JPQL BEIWEEN EXPIESSIONS ....uuiiiieiiieiiieeeie et eeei e e eeat e e et e e st e esat e e st e eatnaestnaeeaneernnns 121
10.2.5.9. JPQL N EXPIESSIONS ...vuuiiitnieiieietiieette e st aeestee st eest e eat e sat e eatn e st e e st eeanaeeaneretnaernneeenns 122
10.2.5.10. JPQL LiKE EXPIESSIONS .. ccvuiiinieiitieiiie ettt e e et e e e e e et e e e e e et e e et e e et e e et eeaan e e et e eerneeeannaees 122
10.2.5.11. JPQL Null CompariSON EXPrESSIONS .......cvuuueeiieeiieeeiieeeieestteeseteestaesaaesanaesrtaeeenaeenaaes 123
10.2.5.12. JPQL Empty Collection Comparison EXPreSSIONS .......ccuueeirnieriieeiieeeiieeeeeaeeeateesaneeeennns 123
10.2.5.13. JPQL Collection Member EXPreESSIONS ......ccuuueiuueiiieeiieeeieeeieeesteeai e esteeeanaeeateesaneesennns 124
10.2.5.14. JPQL EXIStS EXPrESSIONS ....uivuiiiiiiieiiieeiit ettt e e e e e st sesae e et e e et e e et e e st e eaaeeanseeatnaeeanaaees 124
10.2.5.15. JPQL All OF ANY EXPIESSIONS ....cvvuiiiiieiiiieiii e et e e e e e e e e e e e e e e e et e e st e e et s e eateeaaneeeens 124
LT (TN | @ IS T oo 0= = 125
10.2.6. JPQL SCalar EXPIrESSIONS .. .cvuiiiiieiiiietiii e e e et e et e e e e e e et e e et e e e et e e et e e et s e et e ean e eatneesanaeetnees 126
10.2.6.1. ArithmEtiC EXPrESSIONS .....civueiii et ee it et e e e e e e e e e e e e e e e et e e et e e e et e e et e e et e eeanaeeanneees 126
10.2.6.2. String, Arithmetic, and Datetime Functional EXPreSSioNS ........ccuvieiiieiiieiiiieeiiieeiineeeieesineas 126
10.2.6.2.1. JPQL SENG FUNCLIONS .....cuuiiiiiiieiieei e e e e e e e e e e e e e e e e eaens 126

10.2.6.2.2. JPQL ArithmetiC FUNCLIONS ......ccouiiiiiiiiie e e e e 127

10.2.6.2.3. JPQL Datetime FUNCLIONS .....coovuiiiiiiii e e e e e e e e e e e eanes 127

10.2.6.3. CaASE EXPIESSIONS ...uuuiiiieiitieeti et e et e e et e e st e e st e e et e e e tt e eat e e et e stn e eatneeatneeetnseeanaersneenen 127
10.2.6.4. ENtity TYPE EXPIrESSIONS ... cevuiiiiieiiiieiiie et e e e e e e e e e e e et e e et e e et s e e et e e st e e et e eeanaeeenaees 128
10.2.7. JPQL GROUP BY, HAVING .. .ooiiiiiiiiii ettt e et e et e e e et e e e e et e e e eaan s 129
10.2.8. JPQL SELECT ClAUSE . .eevtuuieteiiiie et e ettt e et e et e e et e e et e e e e et e e e e et e e e e st e e e estn e eaestn s 130
10.2.8.1. JPQL Result Type of the SELECT ClalSE .......uuiiiiiiieiiiiii et e et e e e e eeens 131
10.2.8.2. JPQL CONSLrUCIOr EXPIESSIONS .. ..vuiiiniiiiietiii ettt ettt e e et e e et s e st e e st e e st e e et e san e eateeranaesrnnes 132
10.2.8.3. JPQL Null Valuesin the QUErY RESUIL ........ccoouuiiiiiiiiieiiie et 132
10.2.8.4. JPQL Embeddables in the QUEry RESUIL ..........ooiiuiiiii i e 132
10.2.8.5. JPQL AQQregate FUNCLIONS .......uciiuiieiiieiie e e e e e e e e e e e e e e e st e e et e e et e e et e e eaneeeaneeaes 133
10.2.8.5.1. JPQL AQQregate EXaAMPIES .....c.ueiiiiiiiii e e e 134

10.2.8.5.2. JPQL Numeric Expressionsin the SELECT ClaUse .........cooevveviiiieiiiieiiieecie e 134

10.2.9. JPQL ORDER BY ClAUSE .. .itittuieiiiiiiettiii e e ettt s e ettt e e e eeta e e e ettt s e e eettateeeett e eaeett s eeaettaeaeereaaaaes 134
10.2.10. JPQL BUlk Update @nd DEIBLE ... cceeveiieeeiiii ettt e e e e e e e e e eeeaea s 136
10.2.11. JPQL NUI VBIUES ...ttt e e e e et e e e et e e e et e e e et e e e eaan s 137
10.2.12. JPQL Equality and CompariSOn SEMANTICS .......cvuniiiiiieiiieiie e e ee e e s e e e e e e et e et e e et eeaaeeaens 137




Java Persistence API

02 N = @ 2 N PSPPSRI 137

TN o O ) = T PP 142
11.1. Constructing @ CriterTAQUETY ......c.u.iiuueiiie e i e e e e e e et e e e e et e e et e et e et e e et ee et e e st e eat e eaneeatnaeesnaeennnns 142
11.2. EXECULING @ CriteriaQUENY ...iuuiiiiiiieiiee st e e ettt e e e e e e e e e e e et e e et e e et e e et e e et e e et e eetn e e st e eetn e eanneeannns 143
R 1< g S To g I (o T @) = (- N PP 143
11.4. Generation of Canonical MetaMOdel ClaSSES .......covvvuiiiiiiii e 143
S O O 1T PSP 145
A I O = (] o IR I O 1 = = P 145
12.2. Retrieving Persistent ObjeCtS With SQL ......uuiiiiiiiii e e e e e e e e e e e e et e e eaaaaee 145
G /=0 o o Y, == = - 147
35 O I o TSP 148
72 U o (0TI @) 11 =] | 150
G T o 11 410 S PTT 150
C T o T 1 VA Y=o o1 o PP 151
R ST 1< 1 = (o] £ T PP TPPR 154
13.5. 1. SEOUENCE GEBNEIEION ....vuitieitie et e e e et e e e e e e e et e e et e e e e e e e e et e e et eae e en 154

R I I o L=l T 0 = o P 154
ST T - 0 ] o [ PSPPSR 155

GG T [ 10T 1) =T ot TSP 157
T 300 S T o 1= = o] = 157
GG T I N0 | 4 = o (=S PPTPPP 158

G TN A B TE= o 1V = gL = o L= PSP 158

GG T2 o1 ¢ 1= o PSP 158
G T I N0 | 4 = o (=S PPSTP 160

O I A B TE= o 1V g = o L= PSP 161

R A I o L= == O =S SRR SPPPN 161
GG T I I N0 | 4 = o (=S PPPTPP 162

G T A B TE= o 1V g = o L= PSP 162

13.6.4. PULING it All TOGEINET . .ovniii e e e e e e e e et e et e aanas 162

T B T = T 011 = o P 165
HCTE S = o 1Y oo 1o P 168
TR C 00 I = TS Tl 1V = 1 o Vo P 168
G335 0 O I 2 1 PPN 168

R S I A o 11 01 = 1= o PP 168

TS T I T = 1010 To = R 8/ == 169

13.8.1.4. The Updated MapPiNgS ....ccvueeieieiiiieeei et e e ee e e e e e e e e e e st e e et e e eat s e s et e esan e e et aeeanaeraneraen 169

13.8.2. SECONAAIY TADIES ...uiiiiieii e e e e e e e e e e e e e e e e a e aaa s 171
13.8.3. EMbedded Mapping ......ceuuueeiieeiiiie et e e e e e e e e e e e e e e e e e e e e e e e e a e aaa s 172
13.8.4. DIrECL REIBIIONS ....eeevtieiiiii ettt e e et e e et e e e et n e e e et e e e e et e e e e et e e e e et eas 175
G S TN o1 I 1= o = PR 179

RCT oI = 1T 1= ox L0 g 7= 1Y, F=To) o1 oo P 182
HCTE S A V.= o 0 1, =o' 1 oo 182

13.9. The COMPIELE MAPPINGS ...uuietiieiit ettt et et et e e e e e et e e et e e et e e et e e et e et e et e eaaeeataeeanaeetnreeaneeennaeaenns 183
I o o 11 =T o U SPPN 187

10



Chapter 1. Introduction

1.1.

The Java Persistence 2.0 API (JPA 2.0) is a specification for the persistence of Java objects to any relational datastore.
This document provides an overview of JPA 2.0. Unless otherwise noted, the information presented appliesto all JPA
implementations.

For coverage of OpenJPA's many extensions to the JPA specification, see the Reference Guide.

Intended Audience

1.2.

This document is intended for developers who want to |earn about JPA in order to useit in their applications. It assumes that
you have a strong knowledge of object-oriented concepts and Java, including annotations and generics. It also assumes some
experience with relational databases and the Structured Query Language (SQL).

Lightweight Persistence

Persistent data is information that can outlive the program that createsit. The majority of complex programs use persistent data:
GUI applications need to store user preferences across program invocations, web applications track user movements and orders
over long periods of time, etc.

Lightweight persistenceis the storage and retrieval of persistent datawith little or no work from you, the developer. For example,
Java seridization isaform of lightweight persistence because it can be used to persist Java objects directly to afile with very
little effort. Serialization's capabilities as a lightweight persistence mechanism pale in comparison to those provided by JPA,
however. The next chapter compares JPA to serialization and other available persistence mechanisms.

11



Chapter 2. Why JPA?

Java devel opers who need to store and retrieve persistent data already have several options available to them: serialization,
JDBC, JDO, proprietary object-relational mapping tools, object databases, and EJB 2 entity beans. Why introduce yet another
persistence framework? The answer to this question is that with the exception of JDO, each of the aforementioned persistence
solutions has severe limitations. JPA attempts to overcome these limitations, as illustrated by the table below.

Table 2.1. Persistence Mechanisms

Supports: Serialization |JDBC ORM ODB EJB 2 JDO JPA
JavaObjects |Yes No Yes Yes Yes Yes Yes
Advanced OO |Yes No Yes Yes No Yes Yes
Concepts

Transactiona |No Yes Yes Yes Yes Yes Yes
Integrity

Concurrency |No Yes Yes Yes Yes Yes Yes
Large Data No Yes Yes Yes Yes Yes Yes
Sets

Existing No Yes Yes No Yes Yes Yes
Schema

Relationa No No No No Yes Yes No
and Non-

Relationa

Stores

Queries No Yes Yes Yes Yes Yes Yes
Strict Yes No No No Yes Yes Yes
Standards/

Portability

Simplicity Yes Yes Yes Yes No Yes Yes

e Serialization is Java's built-in mechanism for transforming an object graph into a series of bytes, which can then be sent over
the network or stored in afile. Serialization is very easy to use, but it is also very limited. It must store and retrieve the entire
object graph at once, making it unsuitable for dealing with large amounts of data. It cannot undo changes that are made to
objectsif an error occurs while updating information, making it unsuitable for applications that require strict data integrity.
Multiple threads or programs cannot read and write the same serialized data concurrently without conflicting with each other. It
provides no query capabilities. All these factors make serialization useless for all but the most trivial persistence needs.

e Many developers use the Java Database Connectivity (JDBC) APIsto manipulate persistent datain relational databases.
JDBC overcomes most of the shortcomings of serialization: it can handle large amounts of data, has mechanisms to ensure
dataintegrity, supports concurrent access to information, and has a sophisticated query language in SQL. Unfortunately, JDBC
does not duplicate serialization's ease of use. The relational paradigm used by JDBC was not designed for storing objects, and
therefore forces you to either abandon object-oriented programming for the portions of your code that deal with persistent data,
or to find away of mapping object-oriented concepts like inheritance to relational databases yourself.

e There are many proprietary software products that can perform the mapping between objects and relational database tables
for you. These object-relational mapping (ORM) frameworks allow you to focus on the object model and not concern yourself
with the mismatch between the object-oriented and relational paradigms. Unfortunately, each of these product has its own set
of APIs. Your code becomes tied to the proprietary interfaces of asingle vendor. If the vendor raises prices, failsto fix show-
stopping bugs, or falls behind in features, you cannot switch to another product without rewriting all of your persistence code.
Thisisreferred to as vendor lock-in.

12



Why JPA?

Rather than map objects to relational databases, some software companies have developed a form of database designed
specifically to store objects. These object databases (ODBS) are often much easier to use than object-relational mapping
software. The Object Database Management Group (ODMG) was formed to create a standard API for accessing object
databases; few object database vendors, however, comply with the ODMG's recommendations. Thus, vendor lock-in plagues
object databases as well. Many companies are a so hesitant to switch from tried-and-true relational systemsto the relatively
unknown object database technology. Fewer data-analysis tools are available for object database systems, and there are vast
quantities of data already stored in older relational databases. For al of these reasons and more, object databases have not
caught on as well astheir creators hoped.

The Enterprise Edition of the Java platform introduced entity Enterprise Java Beans (EJBS). EJB 2.x entities are components
that represent persistent information in a datastore. Like object-relational mapping solutions, EJB 2.x entities provide an
object-oriented view of persistent data. Unlike object-relational software, however, EJB 2.x entities are not limited to relational
databases; the persistent information they represent may come from an Enterprise Information System (EIS) or other storage
device. Also, EJB 2.x entities use a strict standard, making them portable across vendors. Unfortunately, the EJB 2.x standard
is somewhat limited in the object-oriented concepts it can represent. Advanced features like inheritance, polymorphism, and
complex relations are absent. Additionally, EBJ 2.x entities are difficult to code, and they require heavyweight and often
expensive application serversto run.

The JDO specification uses an AP that is strikingly similar to JPA. JDO, however, supports non-relational databases, a
feature that some argue dilutes the specification.

JPA combines the best features from each of the persistence mechanisms listed above. Creating entities under JPA is as simple
as creating serializable classes. JPA supports the large data sets, data consistency, concurrent use, and query capabilities of
JDBC. Like object-relational software and object databases, JPA alows the use of advanced object-oriented concepts such
asinheritance. JPA avoids vendor lock-in by relying on a strict specification like JDO and EJB 2.x entities. JPA focuses on
relational databases. And like JDO, JPA is extremely easy to use.

OpenJPA typically stores datain relational databases, but can be customized for use with non-relational datastores as
well.

JPA isnot ideal for every application. For many applications, though, it provides an exciting alternative to other persistence
mechanisms.

13



Chapter 3. Java Persistence API Architecture

The diagram below illustrates the relationships between the primary components of the JPA architecture.

javax.persistence
EntityManagerFactory EntityTransaction
Enﬂryl';!anager : Query
Persistence
E.:'.lﬂty

A number of the depicted interfaces are only required outside of an EJB3-compliant application server. In an application
server, EntityManager instances aretypically injected, rendering the Ent i t yManager Fact or y unnecessary.
Also, transactions within an application server are handled using standard application server transaction controls. Thus,
theEnt it yTr ansact i on also goes unused.

» Persistence: The javax. persi stence. Persi st ence class contains static hel per methods to obtain
Enti t yManager Fact or y instancesin avendor-neutral fashion.

« EntityManager Factory: The javax. persi stence. EntityManager Fact ory classisafactory for
Enti t yManager s.

 EntityManager :Thej avax. persistence. EntityManager istheprimary JPA interface used by applications.
Each Ent i t yManager managesaset of persistent objects, and has APIs to insert new objects and delete existing
ones. When used outside the container, there is a one-to-one relationship between an  Ent i t yManager and an
EntityTransacti on. EntityManager saso act asfactoriesfor Query instances.

« Entity :Entitiesare persistent objects that represent datastore records.

e EntityTransaction: EachEntityManager hasaone-to-onerelationwithasingle
j avax. persi stence. EntityTransacti on. EntityTransacti onsallow operations on persistent datato be
grouped into units of work that either completely succeed or completely fail, leaving the datastore in its original state. These
all-or-nothing operations are important for maintaining data integrity.

. Query :Thej avax. persi stence. Query interfaceisimplemented by each JPA vendor to find persistent objects
that meet certain criteria. JPA standardizes support for queries using both the Java Persistence Query Language (JPQL) and the
Structured Query Language (SQL). You obtain Quer y instancesfrom an Ent i t yManager .

The example below illustrates how the JPA interfaces interact to execute a JPQL query and update persistent objects. The
exampl e assumes execution outside a container.

14



Java Persistence APl Architecture

Example 3.1. Interaction of | nterfaces Outside Container

/1 get an EntityManager Factory using the Persistence class

/1 1t is not reconmmended to obtain a factory often, as construction of a

// factory is a costly operation. Typically you will like to cache

// a factory and then refer it for repeated use

EntityManager Factory factory = Persistence. createEntityManagerFactory(null);

/1 get an EntityManager fromthe factory
EntityManager em = factory. createEntityManager();

/1 Begin a transaction
em get Transaction(). begi n();

/1 query for all enployees who work in our research division

/1 and put in over 40 hours a week average

Query query = em createQuery("SELECT e " +
" FROM Enpl oyee e " +
" WHERE e.division.name = 'Research’ " +
" AND e. avgHours > 40");

List results = query.getResultList();

/'l give all those hard-working enpl oyees a raise
for (Cbject res : results) {

Enpl oyee enp = (Enpl oyee) res;

enp. set Sal ary(enp. getSalary() * 1.1);
}

/1 commt will detect all updated entities and save themin database
em get Transaction().commt();

/'l free the resources
em cl ose();

Within a container, the Ent i t yManager will beinjected and transactions will be handled declaratively. Thus, the in-container
version of the example consists entirely of business logic:

Example 3.2. Interaction of Interfaces | nside Container

/1 query for all enployees who work in our research division
/1 and put in over 40 hours a week average - note that the EntityManager em
/1 is injected using a @Resource annotation
Query query = emcreateQuery("select e from Enpl oyee e where "
+ "e.division. nane = 'Research’' and e.avgHours > 40");
List results = query.getResultList();

/1 give all those hard-working enpl oyees a raise
for (Object res : results) {

emp = (Enpl oyee) res;

enp. set Sal ary(enp. getSalary() * 1.1);

3.1.

The remainder of this document explores the JPA interfaces in detail. We present them in roughly the order that you will use
them as you develop your application.

JPA Exceptions

15




Java Persistence APl Architecture

lllegalStateException

RuntimeException |<
[

lllegalArgumentException

1
PersistenceException [= EntityNotFoundException

= TransactionRequiredException

-  OptimisticLockException

- MNonUnigueResultException

= NoResultException

| EntityExistsException

. RollbackException

javax.persistence

The diagram above depicts the JPA exception architecture. All exceptions are unchecked. JPA uses standard exceptions where
appropriate, most notably | | | egal Ar gunent Excepti onsandl | | egal St at eExcept i ons. The specification also
provides afew JPA-specific exceptionsin thej avax. per si st ence package. These exceptions should be self-explanatory.
See the Javadoc for additional details on JPA exceptions.

All exceptions thrown by OpenJdPA implement or g. apache. openj pa. uti | . Excepti onl nf o to provide you
with additional error information.

16


http://download.oracle.com/javaee/6/api/
../javadoc/org/apache/openjpa/util/ExceptionInfo.html

Chapter 4. Entity

JPA recognizes two types of persistent classes: entity classes and embeddable classes. Each persistent instance of an entity class
- each entity - represents a unique datastore record. You can usethe Ent i t yManager to find an entity by its persistent identity
(covered later in this chapter), or use aQuer y to find entities matching certain criteria

An instance of an embeddable class, on the other hand, is only stored as part of a separate entity. Embeddable instances have
no persistent identity, and are never returned directly from the Ent i t yManager or from aQuer y unlessthe query uses
aprojection on owning class to the embedded instance. For example, if Addr ess isembedded in Conpany, then a query
"SELECT a FROM Address a" will never return the embedded Addr ess of Conpany; but a projection query such as
"SELECT c. address FROM Conpany c" will.

Despite these differences, there are few distinctions between entity classes and embeddable classes. In fact, writing either type
of persistent classisalot like writing any other class. There are no specia parent classes to extend from, field types to use, or
methods to write. Thisis one important way in which JPA makes persistence transparent to you, the devel oper.

JPA supports both fields and JavaBean properties as persistent state. For simplicity, however, we will refer to all
persistent state as persistent fields, unless we want to note a unique aspect of persistent properties.

17



Entity

Example4.1. Persistent Class

package org. nag;

/**
* Exanpl e persistent class. Notice that it |ooks exactly |ike any other
* class. JPA makes writing persistent classes conpletely transparent.
*/

public class Magazine {

private String isbn;

private String title;

private Set articles = new HashSet();
private Article coverArticle;

private int copiesSol d;

private double price;

private Conpany publisher;

private int version;

protected Magazi ne() {
}

public Magazine(String title, String isbn) {
this.title = title;
this.isbn = isbn;

}

public voi d publish(Conmpany publisher, double price) {
this.publisher = publisher;
publ i sher. addMagazi ne(thi s);
this.price = price;

}

public void sell() {
copi esSol d++;
publ i sher. addRevenue(price);

}

public void addArticle(Article article) {
articles.add(article);
}

/'l rest of nethods omtted

4.1.

Restrictions on Persistent Classes

4.1.1.

There are very few restrictions placed on persistent classes. Still, it never hurts to familiarize yourself with exactly what JPA does
and does not support.

Default or No-Arg Constructor

The JPA specification requiresthat all persistent classes have a no-arg constructor. This constructor may be public or protected.
Because the compiler automatically creates a default no-arg constructor when no other constructor is defined, only classes that
define constructors must also include a no-arg constructor.

OpenJPA's enhancer will automatically add a protected no-arg constructor to your class when required. Therefore, this
restriction does not apply when using the enhancer. See Section 5.2, “ Enhancement ” [260] of the Reference Guide
for details.

18




Entity

4.1.2. Final

4.1.3.

Entity classes may not be final. No method of an entity class can befinal.

OpenJPA supports final classes and final methods.

ldentity Fields

4.1.4.

All entity classes must declare one or more fields which together form the persistent identity of an instance. These are called
identity or primary key fields. Inour Magazi ne class,i sbnandti t| e areidentity fields, because no two magazine records
in the datastore can have the samei sbn andti t | e values. Section 5.2.3,“ Id " [35] will show you how to denote your
identity fieldsin JPA metadata. Section 4.2, “ Entity Identity ” [21] below examines persistent identity.

Note

OpenJPA fully supports identity fields, but does not require them. See Section 5.4, “ Object Identity ” [265] of the
Reference Guide for details.

Version Field

4.1.5.

Thever si on fieldin our Magazi ne class may seem out of place. JPA uses aversion field in your entities to detect concurrent
modifications to the same datastore record. When the JPA runtime detects an attempt to concurrently modify the same record, it
throws an exception to the transaction attempting to commit last. This prevents overwriting the previous commit with stale data.

A version field is not required, but without one concurrent threads or processes might succeed in making conflicting changesto
the same record at the same time. This is unacceptable to most applications. Section 5.2.6, “ Version ” [36] shows you how
to designate aversion field in JPA metadata.

The version field must be anintegral type ( i nt, Long, etc) ora j ava. sql . Ti mest anp. You should consider version
fields immutable. Changing the field value has undefined results.

OpenJPA fully supports version fields, but does not require them within the actual entity for concurrency detection.
OpenJPA can maintain surrogate version values or use state comparisons to detect concurrent modifications. See
Section 7.7, “ Additional JPA Mappings” [301] in the Reference Guide.

Inheritance

JPA fully supports inheritance in persistent classes. It allows persistent classes to inherit from non-persistent classes, persistent
classes to inherit from other persistent classes, and non-persistent classes to inherit from persistent classes. It is even possible to
form inheritance hierarchies in which persistence skips generations. There are, however, afew important limitations:

* Persistent classes cannot inherit from certain natively-implemented system classes such asj ava. net . Socket and
j ava. |l ang. Thr ead.

« If apersistent classinherits from a non-persistent class, the fields of the non-persistent superclass cannot be persisted.




Entity

 All classesin an inheritance tree must use the same identity type. We cover entity identity in Section 4.2, “ Entity | dentity
" [21].

4.1.6. Persistent Fields

JPA manages the state of all persistent fields. Before you access persistent state, the JPA runtime makes sure that it has been
loaded from the datastore. When you set afield, the runtime records that it has changed so that the new value will be persisted.
Thisallows you to treat the field in exactly the same way you treat any other field - another aspect of JPA's transparency.

JPA does not support static or final fields. It does, however, include built-in support for most common field types. These types
can be roughly divided into three categories. immutable types, mutable types, and relations.

Immutable types, once created, cannot be changed. The only way to alter a persistent field of an immutable typeisto assign a
new valueto the field. JPA supports the following immutable types:

All primitives(i nt, fl oat, byte,etc)

All primitive wrappers (j ava. | ang. | nt eger, java.lang. Fl oat, java.l ang. Byt e, etc)
* java.lang. String

* java. mat h. Bi gl nt eger

» java. mat h. Bi gDeci nal

JPA aso supportsbyt e[ ],Byte[],char[],and Charact er[] asimmutabletypes. That is, you can persist fields of these
types, but you should not manipulate individual array indexes without resetting the array into the persistent field.

Persistent fields of mutable types can be atered without assigning the field a new value. Mutable types can be modified
directly through their own methods. The JPA specification requires that implementations support the following mutable field

types:

* java.util.Date

* java.util. Cal endar
* java.sql.Date

* java. sql . Ti nest anp
* java.sqgl.Time

¢ Enums

Entity types (relations between entities)

Embeddable types

e java. util. Col | ecti onsof entities

e java. util. Set sof entities

e java. util . Li stsof entities

e java. util. Mapsinwhich each entry maps the value of one of arelated entity's fields to that entity.
Collection and map types may be parameterized.

Most JPA implementations also have support for persisting serializable values as binary datain the datastore. Chapter 5,
Metadata [28] has more information on persisting serializable types.

20



Entity

OpenJPA also supports arrays, j ava. | ang. Nunber ,j ava. util . Local e, al JDK 1.2 Set, Li st, and Map
types, and many other mutable and immutable field types. OpenJPA aso allows you to plug in support for custom types.

4.1.7. Conclusions

4.2.

This section detailed all of the restrictions JPA places on persistent classes. While it may seem like we presented alot of
information, you will seldom find yourself hindered by these restrictionsin practice. Additionally, there are often ways of using
JPA's other features to circumvent any limitations you run into.

Entity Identity

Java recognizes two forms of object identity: numeric identity and qualitative identity. If two references are numerically
identical, then they refer to the same JVM instance in memory. Y ou can test for this using the == operator. Qualitative identity,
on the other hand, relies on some user-defined criteria to determine whether two objects are "equal”. Y ou test for qualitative
identity using the equal s method. By default, this method simply relies on numeric identity.

JPA introduces another form of object identity, called entity identity or persistent identity. Entity identity tests whether two
persistent objects represent the same state in the datastore.

The entity identity of each persistent instance is encapsulated in its identity field(s). If two entities of the same type have the
same identity field values, then the two entities represent the same state in the datastore. Each entity'sidentity field values must
be unique among all other entities of the same type.

Identity fields must be primitives, primitive wrappers, St ri ngs, Dat es, Ti mest anps, or embeddable types.

OpenJPA supports entities as identity fields, as the Reference Guide discussesin Section 5.4.2, “ Entities as | dentity
Fields” [265]. For legacy schemas with binary primary key columns, OpenJPA also supports using identity fields

of typebyt e[ ] . Whenyou useabyt e[ ] identity field, you must create an identity class. Identity classes are covered
below.

Changing the fields of an embeddable instance while it is assigned to an identity field has undefined results. Always
treat embeddable identity instances as immutable objectsin your applications.

If you are dealing with a single persistence context (see Section 7.3, “ Persistence Context ” [76]), then you do not have to
compare identity fields to test whether two entity references represent the same state in the datastore. There is amuch easier way:
the==operator. JPA requiresthat each persistence context maintain only one VM object to represent each unique datastore
record. Thus, entity identity is equivalent to numeric identity within a persistence context. Thisisreferred to as the uniqueness
requirement.

The uniqueness requirement is extremely important - without it, it would be impossible to maintain data integrity. Think of

what could happen if two different objects in the same transaction were allowed to represent the same persistent data. If you
made different modifications to each of these objects, which set of changes should be written to the datastore? How would your
application logic handle seeing two different "versions" of the same data? Thanks to the uniqueness requirement, these questions
do not have to be answered.

21



Entity

4.2.1. ldentity Class

If your entity has only one identity field, you can use the value of that field as the entity'sidentity object in all

Enti t yManager APIs. Otherwise, you must supply an identity class to use for identity objects. Y our identity class must meet
the following criteria:

The class must be public.
The class must be seriaizable.
The class must have a public no-args constructor.

The names of the non-static fields or properties of the class must be the same as the names of the identity fields or properties of
the corresponding entity class, and the types must be identical.

Theequal s and hashCode methods of the class must use the values of all fields or properties corresponding to identity
fields or propertiesin the entity class.

If the classisan inner class, it must best at i c.
All entity classes related by inheritance must use the same identity class, or else each entity class must have its own identity

class whose inheritance hierarchy mirrors the inheritance hierarchy of the owning entity classes (see Section 4.2.1.1, “ I dentity
Hierarchies” [23]).

Though you may still create identity classes by hand, OpenJPA providesthe appi dt ool to automatically generate
proper identity classes based on your identity fields. See Section 5.4.3, “ Application I dentity Tool ” [267] of the
Reference Guide.

22



Entity

Example 4.2. Identity Class

This exampleillustrates a proper identity class for an entity with multiple identity fields.

/**
* Persistent class using application identity.
*/

public class Magazine {

private String isbn; I/ identity field
private String title; /1l identity field

/'l rest of fields and nethods omitted

/**
* Application identity class for Mugazine.
*/

public static class Magazineld {

I/ each identity field in the Magazi ne class nust have a
/'l corresponding field in the identity class

public String isbn;

public String title;

/**
* Equal ity nust be inplenmented in ternms of identity field
* equality, and nust use instanceof rather than conparing
* classes directly (some JPA inplenentations may subclass the
* identity class).
*/
publ i c bool ean equal s(Obj ect other) {
if (other == this)
return true;
if (!(other instanceof Magazineld))
return fal se;

Magazineld mi = (Magazi neld) other;
return (isbn == m.isbn
|| (isbn !'= null && isbn.equal s(m.isbn)))
&& (title == nmi.title
|| (title !'=null && title.equals(m.title)));

}
/**
* Hashcode nust al so depend on identity val ues.
*/
public int hashCode() {
return ((isbn == null) ? 0 : isbn.hashCode())
A ((title == null) ?2 0 : title.hashCode());
}
public String toString() {
return isbn + ":" + title;
}

4.2.1.1. ldentity Hierarchies

23



Entity

4.3.

Person Personid
- §5n: String - §5Nn: String
Employee Employeeld
- userName: String - userName: String
FullTimeEmployee FullTimeEmployeeld
- empld: lang - empld: long
Manager Managerld

An dternative to having asingle identity class for an entire inheritance hierarchy isto have one identity class per level in the
inheritance hierarchy. The requirements for using a hierarchy of identity classes are as follows:

» Theinheritance hierarchy of identity classes must exactly mirror the hierarchy of the persistent classes that they identify. In
the exampl e pictured above, abstract class Per son is extended by abstract class Enpl oyee, which is extended by non-
abstract class Ful | Ti meEnpl oyee, which is extended by non-abstract class Manager . The corresponding identity
classes, then, are an abstract Per sonl d class, extended by an abstract Enpl oyeel d class, extended by a hon-abstract
Ful | Ti meEnpl oyeel d class, extended by anon-abstract Manager | d class.

» Subclassesin the identity hierarchy may define additional identity fields until the hierarchy becomes non-abstract. In the
aforementioned example, Per son definesan identity field ssn, Enpl oyee defines additional identity field user Nane
,and Ful | Ti meEnpl oyee adds afinal identity field, enpl d. However, Manager may not define any additional identity
fields, sinceit is asubclass of a non-abstract class. The hierarchy of identity classes, of course, must match the identity field
definitions of the persistent class hierarchy.

* Itisnot necessary for each abstract class to declare identity fields. In the previous example, the abstract Per son and
Enpl oyee classes could declare no identity fields, and the first concrete subclass Ful | Ti neEnpl oyee could define one or
more identity fields.

 All subclasses of aconcreteidentity class must beequal s and hashCode-compatible with the concrete superclass. This
means that in our example, aManager | d instanceand aFul | Ti neEnpl oyeel d instance with the same identity field
values should have the same hash code, and should compare equal to each other using the equal s method of either one. In
practice, this requirement reduces to the following coding practices:

1. Usei nst anceof instead of comparing Cl ass objectsin the equal s methods of your identity classes.

2. Anidentity class that extends another non-abstract identity class should not override equal s or hashCode.

Lifecycle Callbacks

4.3.1.

It is often necessary to perform various actions at different stages of a persistent object's lifecycle. JPA includes a variety of
callbacks methods for monitoring changes in the lifecycle of your persistent objects. These callbacks can be defined on the
persistent classes themselves and on non-persistent listener classes.

Callback Methods

Every persistence event has a corresponding callback method marker. These markers are shared between persistent classes and
their listeners. Y ou can use these markers to designate a method for callback either by annotating that method or by listing the
method in the XML mapping file for agiven class. The lifecycle events and their corresponding method markers are:

24



Entity

4.3.2.

e PrePer si st : Methods marked with this annotation will be invoked before an object is persisted. This could be used for
assigning primary key values to persistent objects. Thisis equivalent to the XML element tag pr e- per si st .

» Post Per si st : Methods marked with this annotation will be invoked after an object has transitioned to the persistent state.
Y ou might want to use such methods to update a screen after a new row is added. Thisis equivalent to the XML element tag
post - persi st.

» Post Load: Methods marked with this annotation will be invoked after al eagerly fetched fields of your class have been
loaded from the datastore. No other persistent fields can be accessed in this method. Thisis equivaent to the XML element tag
post - | oad.

Post Load is often used to initialize non-persistent fields whose values depend on the values of persistent fields, such asa
complex data structure.

* PreUpdat e: Methods marked with this annotation will be invoked just the persistent valuesin your objects are flushed to
the datastore. Thisis equivalent to the XML element tag pr e- updat e.

Pr eUpdat e isthe complement to Post Load . While methods marked with Post Load are most often used to initialize
non-persistent values from persistent data, methods annotated with Pr eUpdat e is normally used to set persistent fields with
information cached in non-persistent data.

» Post Updat e: Methods marked with this annotation will be invoked after changes to a given instance have been stored to
the datastore. Thisis useful for clearing stale data cached at the application layer. Thisis equivalent to the XML element tag
post - updat e.

* PreRenpve: Methods marked with this annotation will be invoked before an object transactions to the deleted state. Access
to persistent fields is valid within this method. Y ou might use this method to cascade the deletion to related objects based on
complex criteria, or to perform other cleanup. Thisis equivalent to the XML elementtag pre-renove.

» Post Renpove: Methods marked with this annotation will be invoked after an object has been marked as to be deleted. Thisis
equivalent to the XML element tag post - r enove.

Using Callback Methods

When declaring callback methods on a persistent class, any method may be used which takes no arguments and is not shared with
any property access fields. Multiple events can be assigned to a single method as well.

Below is an example of how to declare callback methods on persistent classes:

[ **

* Exanpl e persistent class declaring our entity |istener.
*/

@Entity

public class Magazine {
@r ansi ent
private byte[][] data;
@many ToMany

private List<Photo> photos;

@Post Load
public void convertPhotos() {
data = new byt e[ photos.size()][];
for (int i =0; i < photos.size(); i++)
data[i] = photos.get(i).toByteArray();
}

@rebDel ete
public void | ogMagazi neDel etion() {
get Log() . debug("del eti ng magazi ne contai ni ng" + photos. si ze()

25



http://download.oracle.com/javaee/6/api/javax/persistence/PrePersist.html
http://download.oracle.com/javaee/6/api/javax/persistence/PostPersist.html
http://download.oracle.com/javaee/6/api/javax/persistence/PostLoad.html
http://download.oracle.com/javaee/6/api/javax/persistence/PreUpdate.html
http://download.oracle.com/javaee/6/api/javax/persistence/PostUpdate.html
http://download.oracle.com/javaee/6/api/javax/persistence/PreRemove.html
http://download.oracle.com/javaee/6/api/javax/persistence/PostRemove.html

Entity

+ " photos.");

In an XML mapping file, we can define the same methods without annotations:

<entity cl ass="Magazi ne">
<pr e-renove>l ogMagazi neDel eti on</ pre-renove>
<post - | oad>conver t Phot os</ post - | oad>
</entity>

We fully explore persistence metadata annotations and XML in Chapter 5, Metadata [28].

4.3.3. Using Entity Listeners

Mixing lifecycle event code into your persistent classesis not alwaysidedl. It is often more elegant to handle cross-cutting
lifecycle events in a non-persistent listener class. JPA alows for this, requiring only that listener classes have a public no-arg
constructor. Like persistent classes, your listener classes can consume any number of callbacks. The callback methods must take
inasinglej ava. | ang. Qbj ect argument which represents the persistent object that triggered the event.

Entities can enumerate listenersusingthe Ent i t yLi st ener s annotation. This annotation takes an array of listener classes as
itsvalue.

Below is an example of how to declare an entity and its corresponding listener classes.

/**
* Exanpl e persistent class declaring our entity |istener.
*
/
@ntity
@ntityListeners({ Mgazi neLogger.class, ... })
public class Magazine {

I

/**
* Exanple entity listener.
*
/
public class Magazi neLogger {

@Post Per si st
public void | ogAddi tion(Object pc) {
get Log() . debug("Added new nmgazine:" + ((Magazine) pc).getTitle());

@r eRenove
public void | ogDel etion(Object pc) {
get Log() . debug("Renoving fromcirculation:" +
((Magazine) pc).getTitle());

In XML, we define both the listeners and their callback methods as so:

26



Entity

<entity class="Magazi ne">
<entity-listeners>
<entity-listener class="Magazi neLogger">
<post - per si st >l ogAddi ti on</ post - persi st >
<pre-renpve>| ogDel eti on</ pre-renpve>
</entity-listener>
</entity-listeners>
</entity>

4.3.4.

Entity Listeners Hierarchy

4.4.

Entity listener methods are invoked in a specific order when a given event isfired. So-called default listeners are invoked first:
these are listeners which have been defined in a package annotation or in the root element of XML mapping files. Next, entity

listeners are invoked in the order of the inheritance hierarchy, with superclass listeners being invoked before subclass listeners.
Finaly, if an entity has multiple listeners for the same event, the listeners are invoked in declaration order.

Y ou can exclude default listeners and listeners defined in superclasses from the invocation chain through the use of two class-
level annotations:

» Excl udeDef aul t Li st ener s: Thisannotation indicates that no default listeners will be invoked for this class, or any of its
subclasses. The XML equivalent isthe empty excl ude- def aul t -1 i st ener s element.

» Excl udeSuper cl assLi st ener s: Thisannotation will cause OpendPA to skip invoking any listeners declared in
superclasses. The XML equivalent isthe empty excl ude- super cl ass- | i st ener s element.

Conclusions

This chapter covered everything you need to know to write persistent class definitionsin JPA. JPA cannot use your persistent
classes, however, until you complete one additional step: you must define the persistence metadata. The next chapter explores
metadata in detail.

27




Chapter 5. Metadata

JPA requires that you accompany each persistent class with persistence metadata. This metadata serves three primary purposes:
1. Toidentify persistent classes.

2. To override default JPA behavior.

3. To provide the JPA implementation with information that it cannot glean from simply reflecting on the persistent class.

Persistence metadata is specified using either the Java annotations defined in thej avax. per si st ence package, XML
mapping files, or amixture of both. In the latter case, XML declarations override conflicting annotations. If you choose to
use XML metadata, the XML files must be available at development and runtime, and must be discoverable via either of two
strategies:

1. Inaresource named or m xm placedina META- | NF directory within adirectory in your classpath or within ajar archive
containing your persistent classes.

2. Declaredinyour per si st ence. xm configuration file. In this case, each XML metadata file must be listed in a
mappi ng- f i | e element whose content is either a path to the given file or aresource location available to the class' class
loader.

We describe the standard metadata annotations and XML equivalents throughout this chapter. The full schemafor XML mapping
filesisavailablein Section 5.3,“ XML Schema” [43]. JPA also standardizes relational mapping metadata and named query
metadata, which we discussin Chapter 13, Mapping Metadata [147] and Section 10.1.11, “ Named Queries” [104]
respectively.

OpenJPA defines many useful annotations beyond the standard set. See Section 6.3, “ Additional JPA Metadata
" [284] and Section 6.4, “ Metadata Extensions” [285] in the Reference Guide for details. There are currently
no XML equivalents for these extension annotations.

Persistence metadata may be used to validate the contents of your entities prior to communicating with the database.
This differs from mapping meta data which is primarily used for schema generation. For example if you indicate that a
relationship is not optional (e.g. @Basic(optional=false)) OpenJPA will validate that the variable in your entity is not
null before inserting a row in the database.

28



Metadata

org.mag org.mag.pub
Author
authors™ * [-id: long
- firstName: String
nR L - lastName: String
- - arts® —{ - version: int
- title: String
- content: byte] T
- version: int address
Address
- street: String
coverArticle articles® - city: String
| | - state: String
Magazine - Zip: String
- isbn: String
- title: String ;
- price: double pubhlsher ardresa
- copiesSold: int L Company
- version: int - mags® — -id: long
- name: String
- revenue: double
- version: int
I
magazine subscriptions™
Lineltem_ __Subscription LifetimeSubscription
- comments: String -id: lang —eleClub: boolean
- price: double 4 ilems® 4 - startDate: Date
- num: long - payment: double
- version: int
l’ TrialSubscription
Doc - endDate: Date
Contract 7d: Tong L
- o |- version: int
org.mag.subscribe

Through the course of this chapter, we will create the persistent object model above.

5.1. Class Metadata

The following metadata annotations and XML elements apply to persistent class declarations.

5.1.1. Entity

TheEnt i t y annotation denotes an entity class. All entity classes must have this annotation. The Ent i t y annotation takes one
optional property:

» String name: Name used to refer to the entity in queries. Must not be areserved literal in JPQL. Defaults to the unqualified
name of the entity class.

The equivalent XML elementisent i t y. It has the following attributes:
» cl ass: Theentity class. This attribute is required.

« nane: Named used to refer to the class in queries. See the name property above.

29



Metadata

5.1.2.

e access: Theaccesstypeto use for the class. Must either be FI ELD or PROPERTY. For details on access types, see
Section 5.2, “ Field and Property Metadata” [33].

OpenJPA uses a process called enhancement to modify the bytecode of entities for transparent lazy loading and
immediate dirty tracking. See Section 5.2, “ Enhancement ” [260] in the Reference Guide for details on
enhancement.

Id Class

5.1.3.

Aswediscussed in Section 4.2.1, “ Identity Class” [22], entities with multiple identity fields must use an identity class to
encapsulate their persistent identity. Thel dCl ass annotation specifiesthis class. It acceptsasingle j ava. | ang. Cl ass
value.

The equivalent XML element isi d- cl ass, which hasasingle attribute:

» cl ass: Set thisrequired attribute to the name of the identity class.

Mapped Superclass

5.1.4.

A mapped superclassis anon-entity classthat can define persistent state and mapping information for entity subclasses. Mapped
superclasses are usually abstract. Unlike true entities, you cannot query a mapped superclass, pass a mapped superclass instance
toany EntityManager or Query methods, or declare a persistent relation with a mapped superclass target. Y ou denote a
mapped superclass with the MappedSuper cl ass marker annotation.

The equivalent XML element ismapped- super cl ass. It expects the following attributes:
» cl ass: Theentity class. This attribute is required.

» access: Theaccesstypeto usefor the class. Must either be FI ELD or PROPERTY. For details on access types, see
Section 5.2, “ Field and Property Metadata” [33].

OpenJPA allows you to query on mapped superclasses. A query on a mapped superclass will return all matching
subclass instances. OpenJPA also allows you to declare relations to mapped superclass types; however, you cannot
query across these relations.

Embeddable

The Enbeddabl e annotation designates an embeddable persistent class. Embeddable instances are stored as part of the record
of their owning instance. All embeddable classes must have this annotation.

A persistent class can either be an entity or an embeddable class, but not both.
The equivalent XML element isermrbeddabl e. It understands the following attributes:
e cl ass: Theentity class. Thisattribute is required.

e access: Theaccesstypeto use for the class. Must either be FI ELD or PROPERTY. For details on access types, see
Section 5.2, “ Field and Property Metadata” [33].

30



Metadata

5.1.5.

OpenJPA allows a persistent class to be both an entity and an embeddabl e class. Instances of the class will act as entities
when persisted explicitly or assigned to non-embedded fields of entities. Instances will act as embedded values when
assigned to embedded fields of entities.

To signal that a classis both an entity and an embeddable classin OpenJPA, simply add both the @nt i t y and the
@nbeddabl e annotations to the class.

EntityListeners

5.1.6.

An entity may list itslifecycle event listenersinthe Enti t yLi st ener s annotation. This value of this annotation is an array
of thelistener Ol ass esfor the entity. The equivalent XML elementisentity-1i st eners. For more details on entity
listeners, see Section 4.3, “ Lifecycle Callbacks” [24].

Example

Here are the class declarations for our persistent object model, annotated with the appropriate persistence metadata. Note that
Magazi ne declares an identity class, and that Docunent and Addr ess are a mapped superclass and an embeddable class,
respectively. Li f et i meSubscri ptionand Tri al Subscri pti on override the default entity name to supply a shorter
aliasfor usein queries.

31



pull L Ll dass vdayasl 1ic

public static class Magazineld {

}
}

@ntity
public class Article {

}

package org. mag. pub;

@ntity

public class Conpany {
}

@ntity

public class Author {
}

@nbeddabl e

public class Address {

}

package org. mag. subscri be;

@mppedSuper cl ass
public abstract class Docunment {

}
@ntity

public class Contract
ext ends Docunent {

}

@ntity

L Cula A fl L

<entity-mappi ngs xm ns="http://java.sun. conl xm / ns/ persi stence/ or nf
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schera- i nst ance"
xsi : schemaLocati on="http://java. sun. com xm / ns/ persi stence/orm orm 1_0. xsd"
version="1.0">
<mapped- super cl ass cl ass="or g. mag. subscri be. Docunent " >

</ mapped- super cl ass>
<entity class="org. mag. Magazi ne">
<id-cl ass cl ass="org. nag. Magazi ne$Magazi nel d"/ >

</entity>

<entity class="org.mag.Article">

</entity>

<entity class="org. mg. pub. Conpany" >

</entity>

<entity class="org. mag. pub. Aut hor">

</entity>

<entity class="org. mg. subscribe. Contract">

</entity>

<entity class="org. mag. subscribe. Li nel tent >

</entity>

<entity class="org. mag. subscribe. Lifeti neSubscription" nane="Lifetime">
</entity>

<entity class="org. mag. subscribe. Tri al Subscription" name="Trial ">
</entity>

<enbeddabl e cl ass="org. mag. pub. Addr ess" >

</ embeddabl e>
</ entity-nmappi ngs>

32




Metadata

5.2.

Field and Property Metadata

The persistence implementation must be able to retrieve and set the persistent state of your entities, mapped superclasses, and
embeddable types. JPA offers two modes of persistent state access:. field access, and property access. The access type of a
persistent attribute can be either set explicitly on a class or attribute level, inherited, or determined by the provider.

Under field access, the implementation injects state directly into your persistent fields, and retrieves changed state from your
fieldsaswell. To declare field access on an entire entity with XML metadata, set the access attribute of your ent i t y XML
element to FI ELD. To usefield access for an entire entity using annotation metadata, simply place your metadata and mapping
annotations on your field declarations:

@anyToOne
private Conpany publisher;

Property access, on the other hand, retrieves and loads state through JavaBean "getter" and "setter” methods. For a property p of
type T, you must define the following getter method:

T getP();

For boolean properties, thisis also acceptable:

bool ean isP();

Y ou must also define the following setter method:

void setP(T val ue);

To implicitly use property access for an entire class by default, set your ent i t y element's access attribute to PROPERTY, or
place your metadata and mapping annotations on the getter method:

@manyToOne
private Conpany getPublisher() { ... }
private void setPublisher(Conpany publisher) { ... }

5.2.1.

Explicit Access

The access type of aclass or individual persistent attributes can be specified explicitly using the @GA\ccess annotation or
access attribute on the XML elements used to define persistent attributes. When explicitly defining access, specify the
explicit access type for the class and then apply the @A\ccess annotation or access XML attribute to individual fields or
properties. If explicit FI ELD or PROPERTY is specified at the classlevel, all eligible non-transient fields or properties will

33




Metadata

be persistent. If using classlevel FI ELD access, non-persistent fields must bet r ansi ent or annotated with @r ansi ent .
If using class level PROPERTY access, non-persistent properties must be annotated @t ansi ent or excluded using the
transi ent XML attribute. Refer to the JPA specification for specific rules regarding the use of explicit access with
embeddables and within an inheritance hierarchy.

This entity definitions shows how multiple access types may be specified on an entity:

@ntity
@\ccess(AccessType. Fl ELD)
public class Payment Contract {

@d
private String id;

@enpor al (Tenpor al Type. DATE)
private String contractDate;

@r ansi ent
private String terns;

@/er si on
private int version;

@ob

@\ccess(AccessType. PROPERTY)

public String getContractTerms() {
return terns;

}

public void setContractTernms(String terms) {
/'l Format string before persisting
this.terns = fornmat Terns(terns);

The equivalent declarationsin XML:

<entity-mappi ngs xm ns="http://java. sun.conl xn / ns/ persi stence/ or nt
xm ns: xsi ="http://ww. wa3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocation="http://java.sun. conl xm / ns/ persi stence/ orm orm 2_0. xsd"
ver si on="2.0">
<entity class="org.xyz.Paynment Contract" access="Fl ELD'>
<attributes>
<id name="id"/>
<basi ¢ nane="contract Ternms" access="PROPERTY">
<l ob/ >
</ basi c>
<basi ¢ nane="contract Date">
<t empor al >DATE</ t enpor al >
</ basi c>
<versi on name="version"/>
<transi ent name="terns"/>
</attributes>
</entity>
</ entity-mappi ngs>

When using property access, only the getter and setter method for a property should ever access the underlying persistent
field directly. Other methods, including internal business methods in the persistent class, should go through the getter
and setter methods when manipulating persistent state.




Metadata

Also, take care when adding business logic to your getter and setter methods. Consider that they are invoked by the
persistence implementation to load and retrieve al persistent state; other side effects might not be desirable.

The remainder of this document uses the term "persistent field" to refer to either a persistent field or a persistent property.

5.2.2. Transient

The Tr ansi ent annotation specifies that afield is non-persistent. Use it to exclude fields from management that would
otherwise be persistent. Tr ansi ent isamarker annotation only; it has no properties.

The equivalent XML elementist r ansi ent . It hasasingle attribute:

e nane: Thetransient field or property name. This attribute is required.

5.2.3. Id

Annotate your simpleidentity fields with | d. This annotation has no properties. We explore entity identity and identity fieldsin
Section 4.1.3, “ Identity Fields” [19].

The equivalent XML element isi d. It has one required attribute:

e nane: The name of the identity field or property.

5.2.4. Generated Value

The previous section showed you how to declare your identity fields with the | d annotation. It is often convenient to allow the
persistence implementation to assign a unique value to your identity fields automatically. JPA includes the Gener at edVal ue
annotation for this purpose. It has the following properties:

e GenerationType strategy: Enum value specifying how to auto-generate the field value. The Gener at i onType
enum has the following values:

e Cenerat or Type. AUTO The default. Assign the field a generated value, leaving the details to the JPA vendor.
e GenerationType. | DENTI TY: The database will assign an identity value on insert.

e Generati onType. SEQUENCE: Use a datastore sequence to generate afield value.

e GenerationType. TABLE: Use a sequence table to generate afield value.

e String generat or: The name of agenerator defined in mapping metadata. We show you how to define named
generatorsin Section 13.5,“ Generators” [154]. If the Gener ati onType isset but this property is unset, the JPA
implementation uses appropriate defaults for the sel ected generation type.

The equivalent XML element isgener at ed- val ue, which includes the following attributes:
e strategy: Oneof TABLE, SEQUENCE, | DENTI TY, or AUTO, defaulting to AUTQO.

e gener at or : Equivalent to the generator property listed above.

OpenJPA allowsyou to use the Gener at edVal ue annotation on any field, not just identity fields. Before using the
| DENTI TY generation strategy, however, read Section 5.4.4, “ Autoassign / |dentity Strategy Caveats” [268] in
the Reference Guide.

35



Metadata

5.2.5.

Embedded Id

5.2.6.

If your entity has multiple identity values, you may declare multiple @ d fields, or you may declare asingle @nbeddedI d
field. The type of afield annotated with Enbedded| d must be an embeddable entity class. The fields of this embeddable class
are considered the identity values of the owning entity. We explore entity identity and identity fieldsin Section 4.1.3, “ | dentity
Fields” [19].

The EnbeddedI d annotation has no properties.

The equivalent XML element isenbedded- i d. It has one required attribute:

* nane: The name of theidentity field or property.

Version

5.2.7.

Usethe Ver si on annotation to designate aversion field. Section 4.1.4, “ Version Field " [19] explained the importance of
version fieldsto JPA. Thisis a marker annotation; it has no properties.

The equivalent XML element isver si on, which hasasingle attribute:

« name: The name of the version field or property. This attribute is required.

Basic

Basi c signifies a standard value persisted as-is to the datastore. Y ou can use the Basi ¢ annotation on persistent fields of the
following types. primitives, primitivewrappers, j ava.l ang. String,byte[], Byte[],char[], Character[],

36


http://www.ics.uci.edu/~ejw/authoring/uuid-guid/
http://www.ics.uci.edu/~ejw/authoring/uuid-guid/
http://www.ics.uci.edu/~ejw/authoring/uuid-guid/
http://www.ics.uci.edu/~ejw/authoring/uuid-guid/
../javadoc/org/apache/openjpa/persistence/Generator.html

Metadata

j ava. nat h. Bi gDeci mal ,j ava. mat h. Bi gl nteger, java.util.Date,java. util.Cal endar,
j ava. sql . Dat e,j ava. sql . Ti mest anp, Enuns, and Ser i al i zabl e types.

Basi ¢ declaresthese properties:

» FetchType f et ch: Whether to load the field eagerly (Fet chType. EAGER) or lazily ( Fet chType. LAZY). Defaultsto
Fet chType. EAGER

» bool ean opti onal : Whether the datastore allows null values. Defaults to true.
The equivalent XML element isbasi c. It hasthe following attributes:

» nane: The name of the field or property. This attribute is required.

» fetch: Oneof EAGERor LAZY .

» opti onal : Boolean indicating whether the field value may be null.

5.2.7.1. Fetch Type

5.2.8.

Many metadata annotations in JPA have af et ch property. This property can take on one of two values: Fet chType. EAGER
or Fet chType. LAZY. Fet chType. EAGER meansthat the field is loaded by the JPA implementation before it returns the
persistent object to you. Whenever you retrieve an entity from a query or fromthe Ent i t yManager , you are guaranteed that all
of its eager fields are populated with datastore data.

Fet chType. LAZY isahint to the JPA runtime that you want to defer loading of the field until you accessit. Thisis called lazy
loading. Lazy loading is completely transparent; when you attempt to read the field for the first time, the JPA runtime will load
the value from the datastore and populate the field automatically. Lazy loading is only a hint and not a directive because some
JPA implementations cannot lazy-load certain field types.

With amix of eager and lazily-loaded fields, you can ensure that commonly-used fields load efficiently, and that other state loads

transparently when accessed. Asyou will seein Section 7.3, " Persistence Context ” [76], you can aso use eager fetching
to ensure that entities have all needed data loaded before they become detached at the end of a persistence context.

OpenJPA can lazy-load any field type. OpenJPA also alows you to dynamically change which fields are eagerly or
lazily loaded at runtime. See Section 5.7, “ Fetch Groups” [276] in the Reference Guide for details.

The Reference Guide details OpenJPA's eager fetching behavior in Section 5.8, “ Eager Fetching ” [280].

Embedded

5.2.9.

Use the Enbedded marker annotation on embeddable field types. Embedded fiel ds are mapped as part of the datastore record of
the declaring entity. In our sample model, Aut hor and Conpany each embed their Addr ess, rather than forming arelation to
an Addr ess as a separate entity.

The equivalent XML element isenmbedded, which expects a single attribute:

e nane: The name of the field or property. This attributeis required.

Many To One

37



Metadata

When an entity A references asingle entity B, and other As might also reference the same B, we say there is a many to one
relation from A to B. In our sample model, for example, each magazine has areference to its publisher. Multiple magazines might
have the same publisher. We say, then, that the Magazi ne. publ i sher field isamany to one relation from magazines to
publishers.

JPA indicates many to one relations between entitieswith the  Many ToOne annotation. This annotation has the following
properties:

* Class target Entity: Theclassof therelated entity type.

e CascadeType[] cascade: Array of enum values defining cascade behavior for thisfield. We explore cascades below.
Defaults to an empty array.

* FetchType f et ch: Whether to load the field eagerly (Fet chType. EAGER ) or lazily (Fet chType. LAZY). Defaultsto
Fet chType. EACGER. See Section 5.2.7.1, “ Fetch Type” [37] above for details on fetch types.

* bool ean opti onal : Whether the related object must exist. If f al se, thisfield cannot be null. Defaultsto t r ue.
The equivalent XML element ismany- t 0- one. It accepts the following attributes:

» nane: The name of the field or property. This attribute is required.

e target-entity: Theclassof therelated type.

» fetch: Oneof EAGEROr LAZY.

» opti onal : Boolean indicating whether the field value may be null.

5.2.9.1. Cascade Type

Weintroduce the JPA Ent i t yManager in Chapter 8, EntityManager [80]. TheEnti t yManager hasAPIsto persist
new entities, remove (delete) existing entities, refresh entity state from the datastore, and merge detached entity state back into
the persistence context. We explore al of these APIsin detail later in the overview.

Whenthe Ent i t yManager is performing the above operations, you can instruct it to automatically cascade the operation to
the entities held in a persistent field with the cascade property of your metadata annotation. This processis recursive. The
cascade property accepts an array of CascadeType enum values.

e CascadeType. PERSI ST: When persisting an entity, also persist the entities held in thisfield. We suggest liberal
application of this cascade rule, becauseif the Ent i t yManager finds afield that references a new entity during flush, and
thefield doesnot use CascadeType. PERSI ST, itisan error.

e CascadeType. REMOVE: When deleting an entity, also delete the entities held in thisfield.

» CascadeType. REFRESH: When refreshing an entity, a so refresh the entities held in this field.

» CascadeType. MERGE: When merging entity state, also merge the entities held in this field.

OpenJPA offers enhancements to JPA's CascadeType.REM OV E functionality, including additional annotations to
control how and when dependent fields will be removed. See Section 6.4.2.1, “ Dependent ” [286] for more details.

38



Metadata

CascadeType defines one additional value, CascadeType. ALL, that acts asa shortcut for all of the values above. The
following annotations are equivalent:

@manyToOne( cascade={ CascadeType. PERS| ST, CascadeType. REMOVE,
CascadeType. REFRESH, CascadeType. MERGE} )
private Conpany publisher

@bnyToOne( cascade=CascadeType. ALL)
private Conpany publisher

In XML, these enumeration constants are available as child elements of thecascade element. Thecascade element isitself a
child of many- t o- one. The following examples are equivalent:

<many-t o-one name="publisher">
<cascade>
<cascade- persi st/ >
<cascade- ner ge/ >
<cascade-renove/ >
<cascade-refresh/ >
</ cascade>
</ many-t o- one>

<many-t o- one nane="publisher">
<cascade>
<cascade-al | / >
</ cascade>
</ many-t o- one>

5.2.10. One To Many

When an entity A references multiple B entities, and no two As reference the same B, we say there is a one to many relation from
AtoB.

One to many relations are the exact inverse of the many to one relations we detailed in the preceding section. In that section,

we said that the Magazi ne. publ i sher field isamany to one relation from magazines to publishers. Now, we see that the
Conpany. mags field isthe inverse - aone to many relation from publishers to magazines. Each company may publish multiple
magazines, but each magazine can have only one publisher.

JPA indicates one to many relations between entitieswith the  OneToMany annotation. This annotation has the following
properties:

» Class target Entity: Theclassof therelated entity type. Thisinformation is usually taken from the parameterized
collection or map element type. Y ou must supply it explicitly, however, if your field isn't a parameterized type.

e String mappedBy: Namesthe many to onefield in the related entity that maps this bidirectional relation. We explain
bidirectional relations below. Leaving this property unset signals that thisis a standard unidirectional relation.

e CascadeType[] cascade: Array of enum values defining cascade behavior for the collection el ements. We explore
cascades above in Section 5.2.9.1, “ Cascade Type” [38]. Defaults to an empty array.

39



Metadata

* FetchType f et ch: Whether to load the field eagerly (Fet chType. EAGER ) or lazily (Fet chType. LAZY). Defaultsto
Fet chType. LAZY. See Section 5.2.7.1, “ Fetch Type” [37] above for details on fetch types.

The equivalent XML element isone- t o- many, which includes the following attributes:
» nane: The name of the field or property. This attribute is required.

» target-entity: Theclassof therelated type.

» fetch: Oneof EAGERoOr LAZY.

e napped- by: The name of the field or property that owns the relation. See Section 5.2, “ Field and Property Metadata
" [33].

You may aso nest the cascade element withina one-t o- nany element.

5.2.10.1. Bidirectional Relations

When two fields are logical inverses of each other, they form a bidirectional relation. Our model contains two bidirectional
relations: Magazi ne. publ i sher and Conpany. mags form one bidirectional relation, and Arti cl e. aut hors and
Aut hor . arti cl es formthe other. In both cases, thereis aclear link between the two fields that form the relationship. A
magazine refers to its publisher while the publisher refersto all its published magazines. An article refers to its authors while each
author refersto her written articles.

When the two fields of a bidirectional relation share the same datastore mapping, JPA formalizes the connection with the
mappedBy property. Marking Conpany. mags asmappedBy Magazi ne. publ i sher meanstwo things:

1. Conpany. mags usesthe datastore mapping for Magazi ne. publ i sher, but inversesit. Infact, it isillegal to specify
any additional mapping information when you use the mappedBy property. All mapping information is read from the
referenced field. We explore mapping in depth in Chapter 13, Mapping Metadata [147].

2. Magazi ne. publ i sher isthe"owner" of therelation. The field that specifies the mapping datais always the owner.
This means that changes to the Magazi ne. publ i sher field are reflected in the datastore, while changes to the
Conpany. mags field alone are not. Changes to Conpany. mags may still affect the JPA implementation's cache, however.
Thus, it is very important that you keep your object model consistent by properly maintaining both sides of your bidirectional
relations at all times.

Y ou should always take advantage of the mappedBy property rather than mapping each field of a bidirectional relation
independently. Failing to do so may result in the JPA implementation trying to update the database with conflicting data. Be
careful to only mark one side of the relation as mappedBy, however. One side has to actually do the mapping!

Y ou can configure OpenJPA to automatically synchronize both sides of a bidirectiona relation, or to perform various
actions when it detects inconsistent relations. See Section 5.5, “ Managed Inverses” [269] in the Reference Guide
for details.

5.2.11. One To One

When an entity A references asingle entity B, and no other As can referencethe same B, we say thereisaoneto
one relation between A and B. In our sample model, Magazi ne hasaoneto onerelationto Arti cl e through the
Magazi ne. cover Arti cl e field. No two magazines can have the same cover article.

JPA indicates one to one relations between entitieswith the  OneToOne annotation. This annotation has the following
properties:

40



Metadata

e Class target Entity: Theclassof therelated entity type. Thisinformation is usually taken from the field type.

e String mappedBy: Namesthefield in the related entity that maps this bidirectional relation. We explain bidirectional
relationsin Section 5.2.10.1, “ Bidirectional Relations” [40] above. Leaving this property unset signalsthat thisisa
standard unidirectional relation.

e CascadeType[] cascade: Array of enum values defining cascade behavior for thisfield. We explore cascades in
Section 5.2.9.1, “ Cascade Type” [38] above. Defaults to an empty array.

» FetchType f et ch: Whether to load the field eagerly (Fet chType. EACGER ) or lazily (Fet chType. LAZY). Defaultsto
Fet chType. EACER. See Section 5.2.7.1, “ Fetch Type” [37] above for details on fetch types.

* bool ean opti onal : Whether the related object must exist. If f al se, thisfield cannot be null. Defaultsto t r ue.
The equivalent XML element isone- t 0- one which understands the following attributes:

» nane: The name of the field or property. This attributeis required.

e target-entity: Theclassof therelated type.

+ fetch: Oneof EAGEROr LAZY.

e napped- by: Thefield that ownsthe relation. See Section 5.2, “ Field and Property Metadata” [33].

You may aso nest the cascade element withina one-t o- one element.

5.2.12. Many To Many

When an entity A references multiple B entities, and other As might reference some of the same Bs, we say there is amany to
many relation between A and B. In our sample model, for example, each article has areference to all the authors that contributed
to the article. Other articles might have some of the same authors. We say, then, that Art i cl e and Aut hor have amany to
many relation throughthe Arti cl e. aut hors field.

JPA indicates many to many relations between entitieswith the ManyToMany annotation. This annotation has the following
properties:

« Class target Entity: Theclassof therelated entity type. Thisinformation is usually taken from the parameterized
collection or map element type. Y ou must supply it explicitly, however, if your field isn't a parameterized type.

e String mappedBy: Namesthe many to many field in the related entity that maps this bidirectional relation. We explain
bidirectional relationsin Section 5.2.10.1, “ Bidirectional Relations” [40] above. Leaving this property unset signals that
thisis a standard unidirectiona relation.

» CascadeType[] cascade: Array of enum values defining cascade behavior for the collection elements. We explore
cascades above in Section 5.2.9.1, “ Cascade Type” [38]. Defaults to an empty array.

* FetchType fetch: Whether to load the field eagerly (Fet chType. EAGER) or lazily (Fet chType. LAZY). Defaultsto
Fet chType. LAZY. See Section 5.2.7.1, “ Fetch Type” [37] above for details on fetch types.

The equivalent XML element ismany- t o- many. It accepts the following attributes:
» nane: The name of the field or property. This attribute is required.
e target-entity: Theclassof therelated type.

o fetch: Oneof EAGERor LAZY.

41



Metadata

e mapped- by: Thefield that ownsthe relation. See Section 5.2, “ Field and Property Metadata” [33].

You may also nest the cascade element withina nany-t o- nany element.

5.2.13. Order By

Datastores such as relational databases do not preserve the order of records. Your persistent Li st fields might be ordered

one way the first time you retrieve an object from the datastore, and a completely different way the next. To ensure consi stent
ordering of collection fields, you must use the Or der By annotation. The Or der By annotation's value is a string defining the
order of the collection elements. An empty value means to sort on the identity value(s) of the elements in ascending order. Any
other value must be of the form:

<field name>[ ASC| DESC][, ...]

Each<fi el d name> isthe name of apersistent field in the collection's element type. Y ou can optionally follow each field by
the keyword ASC for ascending order, or DESC for descending order. If the direction is omitted, it defaults to ascending.

The equivalent XML element isor der - by which can be listed as a sub-element of the one- t o- nany or many-t o- many
elements. The text within this element is parsed as the order by string.

5.2.14. Map Key

JPA supports persistent Map fields through either a OneToMany or ManyToMany association. The related entities form the
map values. JPA derives the map keys by extracting afield from each entity value. The MapKey annotation designates the field
that is used as the key. It has the following properties:

e String nane: Thename of afield in the related entity class to use as the map key. If no nameis given, defaults to the
identity field of the related entity class.

The equivalent XML element ismap- key which can be listed as a sub-element of the one-t o- many or many-t o- many
elements. The map- key element has the following attributes:

» nane: The name of the field in the related entity class to use as the map key.

5.2.15. Persistent Field Defaults

In the absence of any of the annotations above, JPA defines the following default behavior for declared fields:

1. Fieldsdeclaredst atic, transient,orfinal defaulttonon-persistent.
2. Fidds of any primitive type, primitive wrapper type, j ava.l ang. String,byte[], Byte[],char[],
Character[],java. mat h. Bi gDeci nal ,j ava. mat h. Bi gl nt eger, java.util.Date,

java. util. Cal endar,java. sql . Date,java. sql . Ti nest anp, orany Seri al i zabl e type default to
persistent, asif annotated with @Basi c.

3. Fields of an embeddable type default to persistent, asif annotated with @enbedded.
4. All other fields default to non-persistent.

Note that according to these defaullts, all relations between entities must be annotated explicitly. Without an annotation, arelation
field will default to serialized storage if the related entity typeis serializable, or will default to being non-persistent if not.

42



Metadata

XML Schema

The latest revision of the version 2.0 orm schemais presented below. Version 2.0 of the schema must be used if JPA 2.0 elements
are specified as XML metadata. Many of the elementsin the schemarelate to object/relational mapping rather than metadata;
these elements are discussed in Chapter 13, Mapping Metadata [147]. Version 1.0 of the orm schema can be found at
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd.

<?xm version="1.0" encodi ng="UTF-8"?>
<l-- Java Persistence APl object/relational mapping file schema -->
<xsd: schema t ar get Namespace="http://j ava. sun. com xm / ns/ per si st ence/ or n{
xm ns: orme"http://java. sun. com xm / ns/ per si st ence/ or ni
xm ns: xsd="ht t p: / / www. wW3. or g/ 2001/ XM_Schema"
el ement For nDef aul t =" qual i fi ed" attri buteFornDef aul t ="unqual i fi ed"
versi on="2.0">

<xsd: annot ati on>
<xsd: docurent ati on>
@#)orm2_0.xsd 2.0 Cctober 1 2009
</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: annot ati on>
<xsd: docurent ati on>

DO NOT ALTER OR REMOVE COPYRI GHT NOTI CES OR TH S HEADER.
Copyri ght 2005-2009 Sun M crosystens, Inc. Al rights reserved.

The contents of this file are subject to the terms of either the
GNU General Public License Version 2 only ("GPL") or the Common
Devel opment and Distribution License("CDDL") (collectively, the
"License"). You may not use this file except in conpliance with
the License. You can obtain a copy of the License at

https://gl assfish. dev.java. net/public/CDDL+GPL. html or

gl assfish/bootstrap/l egal /LI CENSE. txt. See the License for the
speci fic | anguage governing perm ssions and limitations under the
Li cense.

Wien distributing the software, include this License Header
Notice in each file and include the License file at

gl assfi sh/bootstrap/l egal /LI CENSE. txt. Sun designates this
particular file as subject to the "Cl asspath" exception as
provided by Sun in the GPL Version 2 section of the License file
that acconpanied this code. |f applicable, add the follow ng

bel ow the License Header, with the fields enclosed by brackets []
repl aced by your own identifying information:

"Portions Copyrighted [year] [nanme of copyright owner]"

Contributor(s):

If you wi sh your version of this file to be governed by only the
CDDL or only the GPL Version 2, indicate your decision by adding
"[Contributor] elects to include this software in this
distribution under the [CDDL or GPL Version 2] license." |If you
don't indicate a single choice of license, a recipient has the
option to distribute your version of this file under either the
CDDL, the GPL Version 2 or to extend the choice of license to its
licensees as provided above. However, if you add GPL Version 2
code and therefore, elected the GPL Version 2 license, then the
option applies only if the new code is made subject to such
option by the copyright hol der.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: annot ati on>
<xsd: docurent ati on>

<! [ CDATA[
This is the XM Schema for the persistence object/rel ational
mapping file.

The file may be named "META-INF/orm xm " in the persistence

43



http://java.sun.com/xml/ns/persistence/orm_1_0.xsd

Metadata

11>

archive or it may be named some ot her nane which woul d be

used to locate the file as resource on the classpath

bj ect/rel ati onal mapping files nmust indicate the object/rel ational
mappi ng file schema by using the persistence nanespace
http://java. sun. com xnl / ns/ per si st ence

and indicate the version of the schema by

using the version el ement as shown bel ow.

<entity-mappi ngs xm ns="http://java. sun. con xm / ns/ persi st ence/ or ni'
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schera- i nst ance"

xsi : schemaLocati on="http://java. sun. com xm / ns/ persi st ence/ orm
http://java. sun. com xm / ns/ persi st ence/ ornmf orm 2_0. xsd"

ver si on="2. 0" >

</ entity-nmappi ngs>

</ xsd: docunent at i on>
</ xsd: annot ati on>

<xsd: conpl exType name="enptyType" />
<xsd: si npl eType name="versi onType">
<xsd:restriction base="xsd:token">

<xsd: pattern value="[0-9] +(\.[0-9]+)*" />

</xsd:restriction>
</ xsd: si npl eType>

P L

<xsd: el ement name="entity-mappi ngs">
<xsd: conpl exType>

<xsd: annot ati on>
<xsd: docunent ati on>
The entity-mappings element is the root el ement of a mapping
file. It contains the followi ng four types of elenents
1. The persistence-unit-netadata el enent contai ns netadata
for the entire persistence unit. It is undefined if this el enent
occurs in multiple mapping files within the sanme
persistence unit.
2. The package, schemm, catal og and access el enents apply to all of
the entity, nmapped-superclass and enmbeddabl e
el enents defined in
the sane file in which they occur.
3. The sequence-generator, table-generator, naned-query
naned- nati ve-query and sql -resul t-set-nmapping
el enents are gl obal
to the persistence unit. It is undefined to have nore than one
sequence-generator or tabl e-generator of the sanme
nane in the sane
or different mapping files in a persistence unit. It is also
undefined to have nore than one naned-query
naned- nati ve- query, or
resul t-set-mappi ng of the same name in the same or different nmapping
files in a persistence unit
4. The entity, mapped-superclass and enbeddabl e el ements each define
the mapping infornmation for a nanaged persi stent
cl ass. The mappi ng
informati on contained in these el enents may be conplete or it may
be partial .
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement nanme="description" type="xsd:string"
m nCccurs="0" />
<xsd: el ement name="persi st ence-unit-netadata"
t ype="or m per si st ence- uni t - net adat a" m nCccur s="0" />
<xsd: el ement name="package" type="xsd:string"
m nCccurs="0" />
<xsd: el ement name="schem" type="xsd:string"
m nCccurs="0" />
<xsd: el ement name="cat al og" type="xsd:string"
m nCccurs="0" />
<xsd: el ement name="access" type="orm access-type"
m nCccurs="0" />
<xsd: el ement name="sequence-generator" type="orm sequence-generator"
m nCccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="t abl e-generator" type="ormtabl e-generator"
m nCccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="naned- query" type="orm nanmed- query"
m nCccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="naned- nati ve-query" type="orm named-native-query"
m nCccur s="0" maxCccur s="unbounded" />




Metadata

<xsd: el ement name="sql -resul t - set - mappi ng"
type="orm sql -resul t - set - mappi ng" m nCccur s="0"
maxQccur s="unbounded" />
<xsd: el ement name="mapped- supercl ass" type="orm mapped- supercl ass"
m nCQccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="entity" type="ormentity"
m nCccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="enbeddabl e" type="orm enbeddabl e"
m nCccur s="0" maxCccur s="unbounded" />
</ xsd: sequence>
<xsd: attribute name="version" type="orm versi onType"
fixed="2.0" use="required" />
</ xsd: conpl exType>
</ xsd: el enent >
<!__ R R R RS R R R R R R R R R R R R R RS R R R R R R R )
<xsd: conpl exType nanme="persi stence-unit-netadata">
<xsd: annot ati on>
<xsd: docunent at i on>
Met adata that applies to the persistence unit and not just to
the mapping file in which it is contained
I f the xnl-mappi ng- net adat a- conpl ete el enent is specified
the conpl ete set of nmapping netadata for the persistence unit
is contained in the XML mapping files for the persistence unit
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string"
m nCccurs="0" />
<xsd: el ement name="xmn - mappi ng- net adat a- conpl et e"
type="orm enpt yType" m nCccurs="0" />
<xsd: el ement name="persistence-unit-defaults"
t ype="or m per si st ence-uni t -defaul ts" m nCccurs="0" />
</ xsd: sequence>
</ xsd: conpl exType>
<!__ R R R R S R R R R R R R R R R RS R R R R R R R R R R R EEE R )
<xsd: conpl exType name="persi stence-unit-defaul ts">
<xsd: annot ati on>
<xsd: docunent at i on>
These defaults are applied to the persistence unit as a whole
unl ess they are overridden by |ocal annotation or XM
el enent settings.
schema - Used as the schema for all tables, secondary tables, join
tabl es, collection tables, sequence generators, and table
generators that apply to the persistence unit
catalog - Used as the catalog for all tables, secondary tables, join
tabl es, collection tables, sequence generators, and
tabl e generators that apply to the persistence unit
delimted-identifiers - Used to treat database identifiers as
delimted identifiers
access - Used as the access type for all managed cl asses in
the persistence unit
cascade- persi st - Adds cascade-persist to the set of cascade options
in all entity relationships of the persistence unit
entity-listeners - List of default entity listeners to be invoked
on each entity in the persistence unit
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string"
m nCccurs="0" />
<xsd: el ement name="schem" type="xsd:string"
m nCccurs="0" />
<xsd: el ement name="cat al og" type="xsd:string"
m nCccurs="0" />
<xsd: el ement name="del i mted-identifiers" type="orm enptyType"
m nCccurs="0" />
<xsd: el ement name="access" type="orm access-type"
m nCccurs="0" />
<xsd: el ement name="cascade- persist" type="orm enptyType"
m nCccurs="0" />
<xsd: el ement name="entity-listeners" type="ormentity-listeners
m nCccurs="0" />
</ xsd: sequence>
</ xsd: conpl exType>

P L

<xsd: conpl exType name="entity">
<xsd: annot ati on>
<xsd: docunent at i on>

45




Metadata

Defines the settings and mappings for an entity. |Is allowed to be
sparsely popul ated and used in conjunction with the annotati ons.
Al ternatively, the netadata-conplete attribute can be
used to
indicate that no annotations on the entity class (and its fields
or properties) are to be processed. If this is the case then
the defaulting rules for the entity and its subel enents will
be recursively applied.
@rarget (TYPE) @Ret enti on( RUNTI ME)
public @nterface Entity {
String nanme() default "";
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string"
m nCccurs="0" />
<xsd: el ement name="t abl e" type="ormtable"
m nCccurs="0" />
<xsd: el ement name="secondary-tabl e" type="orm secondary-table"
m nCQccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="pri mary-key-j oi n-col um"
type="orm pri mary-key-j oi n-col um" m nCccur s="0"
maxQccur s="unbounded" />
<xsd: el ement name="id-cl ass" type="ormi d-cl ass"
m nCccurs="0" />
<xsd: el ement name="i nheritance" type="orminheritance"
m nCccurs="0" />
<xsd: el ement name="di scri m nator-val ue" type="ormdi scrim nator-val ue"
m nCccurs="0" />
<xsd: el ement name="di scri m nator-col um" type="orm di scri m nator-col um"
m nCccurs="0" />
<xsd: el ement name="sequence-generator" type="orm sequence-generator"
m nCccurs="0" />
<xsd: el ement name="t abl e-generator" type="ormtabl e-generator"
m nCccurs="0" />
<xsd: el ement name="naned- query" type="orm nanmed- query"
m nCccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="naned- nati ve-query" type="orm named-native-query"
m nCQccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="sql -resul t-set-mappi ng" type="ormsql -result-set-mppi ng"
m nCccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="excl ude-defaul t-1isteners"
type="orm enpt yType" m nCccurs="0" />
<xsd: el ement name="excl ude- supercl ass-1|i steners"
type="orm enpt yType" m nCccurs="0" />
<xsd: el ement name="entity-listeners" type="ormentity-Iisteners"
m nCccurs="0" />
<xsd: el ement name="pre-persist" type="orm pre-persist"
m nCccurs="0" />
<xsd: el ement name="post-persist" type="orm post-persist"
m nCccurs="0" />
<xsd: el ement name="pre-renove" type="orm pre-renove"
m nCccurs="0" />
<xsd: el ement name="post-renove" type="orm post-renove"
m nCccurs="0" />
<xsd: el ement name="pre-update" type="orm pre-update"
m nCccurs="0" />
<xsd: el ement name="post-update" type="orm post-update"
m nCccurs="0" />
<xsd: el ement name="post-|oad" type="orm post-| oad"
m nCccurs="0" />
<xsd: el ement name="attribute-override" type="ormattribute-override"
m nCQccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="associ ati on-overri de" type="orm associ ati on-overri de"
m nCccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="attributes" type="ormattributes"
m nCccurs="0" />
</ xsd: sequence>
<xsd: attribute name="nanme" type="xsd:string" />
<xsd: attribute name="cl ass" type="xsd:string" use="required" />
<xsd: attri bute name="access" type="orm access-type" />
<xsd: attri bute name="cacheabl e" type="xsd: bool ean" />
<xsd: attri bute name="net adat a- conpl ete" type="xsd: bool ean" />
</ xsd: conpl exType>
<!__ R R R RS R R R R R R R R R R R R R R R R R R R R EEE R )
<xsd: si npl eType nanme="access-type">
<xsd: annot ati on>

46




Metadata

<xsd: docunent ati on>
This el ement determ nes how the persistence provider accesses the
state of an entity or enbedded object.
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuner ati on val ue="PROPERTY" />
<xsd: enuner ati on val ue="FI ELD' />
</xsd:restriction>
</ xsd: si npl eType>
<!__ R R R RS R R R R R R R R R R R R R R R R R R R R R SRR E R )
<xsd: conpl exType nanme="associ ation-override">
<xsd: annot ati on>
<xsd: docunent ati on>
@rarget ({ TYPE, METHOD, FIELD}) @Rretention(RUNTI ME)
public @nterface Associati onOverride {
String name();
Joi nCol um[] joinColums() defaul t{};
Joi nTabl e joinTabl e() default @oinTabl e;
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string" mnCccurs="0" />
<xsd: choi ce>
<xsd: el ement name="j oi n-col um" type="ormj oi n-col um"
m nCccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="j oi n-tabl e" type="ormj oi n-table"
m nCccurs="0" />
</ xsd: choi ce>
</ xsd: sequence>
<xsd: attri bute name="name" type="xsd:string" use="required" />
</ xsd: conpl exType>
<!__ R R R R SR R R R R R R R R R R R R R R R R R R R EEE R )
<xsd: conpl exType name="attri bute-override">
<xsd: annot ati on>
<xsd: docunent at i on>
@rarget ({ TYPE, METHOD, FIELD}) @Rretention(RUNTI ME)
public @nterface AttributeOverride {
String name();
Col um col um();
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string"
m nCccurs="0" />
<xsd: el ement name="col um" type="orm col um" />
</ xsd: sequence>
<xsd: attri bute name="name" type="xsd:string" use="required" />
</ xsd: conpl exType>
<!__ R R R R SR R R R R R R R R R R R R R R R R R R R R R R )
<xsd: conpl exType name="attri butes">
<xsd: annot ati on>
<xsd: docunent at i on>
This el ement contains the entity field or property mappings.
It may be sparsely populated to include only a subset of the
fields or properties. |If netadata-conplete for the entity is true
then the renminder of the attributes will be defaulted according
to the default rules.
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement nanme="description" type="xsd:string"
m nCccurs="0" />
<xsd: choi ce>
<xsd: el ement name="id" type="ormid"
m nCccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="enbedded-i d" type="orm enbedded-i d"
m nCccurs="0" />
</ xsd: choi ce>
<xsd: el ement name="basi c" type="orm basic"
m nCQccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="version" type="orm version"
m nCQccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="many-to-one" type="orm many-to-one"
m nCQccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="one-to-many" type="orm one-to-many"

47




Metadata

m nCQccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="one-to-one" type="orm one-to-one"
m nCQccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="many-to-many" type="orm many-to-many"
m nCccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="el enent-col | ecti on" type="orm el enent-col | ection
m nCccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="enbedded" type="orm enbedded"
m nCccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="transi ent" type="ormtransient"
m nCQccur s="0" maxCccur s="unbounded" />
</ xsd: sequence>
</ xsd: conpl exType>

P

<xsd: conpl exType name="basi c">
<xsd: annot ati on>
<xsd: docunent ati on>
@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface Basic {
FetchType fetch() default EAGER
bool ean optional () default true

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="col um" type="orm col um"
m nCccurs="0" />
<xsd: choi ce>
<xsd: el ement name="| ob" type="orm | ob"
m nCccurs="0" />
<xsd: el ement name="tenporal" type="ormtenporal"
m nCccurs="0" />
<xsd: el ement name="enuner at ed" type="orm enuner at ed"
m nCccurs="0" />
</ xsd: choi ce>
</ xsd: sequence>
<xsd: attri bute name="name" type="xsd:string" use="required" />
<xsd: attribute name="fetch" type="ormfetch-type" />
<xsd: attri bute name="optional" type="xsd: bool ean" />
<xsd: attri bute name="access" type="orm access-type" />
</ xsd: conpl exType>
<!__ R R R R SR R R R R R R R R R R R R SRR R R RS R EEE R )
<xsd: conpl exType name="cascade-type">
<xsd: annot ati on>
<xsd: docunent ati on>
public enum CascadeType { ALL, PERSI ST, MERGE, REMOVE, REFRESH
DETACH} ;
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="cascade-al | " type="orm enptyType"
m nCccurs="0" />
<xsd: el ement name="cascade- persist" type="orm enptyType"
m nCccurs="0" />
<xsd: el ement name="cascade- nmerge" type="orm enptyType"
m nCccurs="0" />
<xsd: el ement name="cascade-renove" type="orm enptyType"
m nCccurs="0" />
<xsd: el ement name="cascade-refresh" type="orm enptyType"
m nCccurs="0" />
<xsd: el ement name="cascade- det ach" type="orm enptyType"
m nCccurs="0" />
</ xsd: sequence>
</ xsd: conpl exType>
<!__ R R R RS R R R R R R R R R R R R R R R R R R R R SRR EE R )
<xsd: conpl exType name="col | ecti on-tabl e">
<xsd: annot ati on>
<xsd: docunent at i on>
@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface Col |l ectionTabl e {
String name() default "";
String catal og() default
String schema() default
Joi nCol um[] joinColums() default {}
Uni queConstraint[] uni queConstraints() default {}

</ xsd: docunent at i on>
</ xsd: annot ati on>

48




Metadata

<xsd: sequence>
<xsd: el enent name="j oi n-col um" type="ormj oi n-col urm"
m nCccur s="0" maxCccur s="unbounded" />
<xsd: el enent name="uni que-constraint" type="orm uni que-constraint"
m nCccur s="0" maxCccur s="unbounded" />
</ xsd: sequence>
<xsd: attribute name="nanme" type="xsd:string" />
<xsd:attribute name="catal og" type="xsd:string" />
<xsd: attribute name="schema" type="xsd:string" />
</ xsd: conpl exType>
<!__ R R R RS R R R R R R R R R R R R R R R R R R R R R SRR E R )
<xsd: conpl exType name="col utm" >
<xsd: annot ati on>
<xsd: docunent ati on>
@rarget ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface Colum {
String name() default "";
bool ean uni que() default false;
bool ean nul | abl e() default true;
bool ean insertabl e() default true;
bool ean updat abl e() default true;
String columbDefinition() default "";
String table() default "";
int length() default 255;
int precision() default 0; // decimal precision
int scale() default 0; // decimal scale
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: attri bute name="name" type="xsd:string" />
<xsd: attri bute name="uni que" type="xsd: bool ean" />
<xsd: attri bute name="nul | abl e" type="xsd: bool ean" />
<xsd:attribute name="insertabl e" type="xsd: bool ean" />
<xsd: attri bute name="updat abl e" type="xsd: bool ean" />
<xsd: attribute name="col um-definition" type="xsd:string" />
<xsd: attribute name="tabl e" type="xsd:string" />
<xsd:attribute name="I|ength" type="xsd:int" />
<xsd: attri bute name="precision" type="xsd:int" />
<xsd:attri bute name="scal e" type="xsd:int" />
</ xsd: conpl exType>
<!__ R R R R SR R R R R R R R R R R R R RS R R R R SRR RS )
<xsd: conpl exType name="col um-resul t">
<xsd: annot ati on>
<xsd: docunent ati on>
@rarget ({}) @Retenti on( RUNTI ME)
public @nterface Col umResult {
String name();
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: attri bute name="name" type="xsd:string" use="required" />
</ xsd: conpl exType>
<!__ R R R R SR R R R R R R R R R R R R R R R R R R R R EE S )
<xsd: conpl exType name="di scri m nator-col utm" >
<xsd: annot ati on>
<xsd: docunent at i on>
@rarget ({ TYPE}) @Ret enti on( RUNTI ME)
public @nterface DiscrimnatorColum {
String name() default "DTYPE";
Di scri m nator Type di scrim nator Type() default STRI NG
String columDefinition() default "";
int length() default 31;
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: attribute name="name" type="xsd:string" />
<xsd: attribute name="di scrim nator-type" type="ormdiscrimnator-type" />
<xsd: attri bute name="col um-definition" type="xsd:string" />
<xsd:attribute name="I|ength" type="xsd:int" />
</ xsd: conpl exType>
<!__ R R R R SR R R R R R R R R R R R R R R R R R R R R EE R )
<xsd: si npl eType name="di scri m nator-type">
<xsd: annot ati on>
<xsd: docunent at i on>
public enum Di scrim natorType { STRING CHAR | NTECER };
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">

49




Metadata

<xsd: enuner ati on val ue="STRI NG' />
<xsd: enuner ati on val ue="CHAR"' />
<xsd: enuner ati on val ue="I| NTECER' />
</ xsd:restriction>
</ xsd: si npl eType>
<!__ ER R R R S R R R R R R R R R R R R R R RS R R R R R EE R )
<xsd: si npl eType nanme="di scri m nat or-val ue" >
<xsd: annot ati on>
<xsd: docunent ati on>
@rarget ({ TYPE}) @Ret enti on( RUNTI ME)
public @nterface DiscrimnatorValue {
String val ue();

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:string" />
</ xsd: si npl eType>
<!__ R R R R SR R R R R R R R R R R R SRR R R R R R EEE R )
<xsd: conpl exType nanme="el enent-col | ecti on">
<xsd: annot ati on>
<xsd: docunent ati on>
@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface El ementCol | ection {
Class targetd ass() default void.class
FetchType fetch() default LAZY;
}

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: choi ce>
<xsd: el ement name="order-by" type="orm order-by"
m nCccurs="0" />
<xsd: el ement name="order-col um" type="orm order-col um"
m nCccurs="0" />
</ xsd: choi ce>
<xsd: choi ce>
<xsd: el ement name="map- key" type="orm map- key"
m nCccurs="0" />
<xsd: sequence>
<xsd: el ement name="map- key-cl ass" type="orm map- key- cl ass"
m nCccurs="0" />
<xsd: choi ce>
<xsd: el ement name="map- key-tenporal "
type="ormtenporal " mnCccurs="0" />
<xsd: el ement name="map- key- enuner at ed"
type="orm enurer at ed" m nCQccurs="0" />
<xsd: el ement name="map- key-attribute-override"
type="ormattribute-override" m nCccurs="0"
maxQccur s="unbounded" />
</ xsd: choi ce>
<xsd: choi ce>
<xsd: el ement name="map- key- col um"
type="or m map- key-col um" m nCccurs="0" />
<xsd: el ement name="nmap- key-j oi n-col um"
type="orm map- key-j oi n-col um" mi nCccur s="0"
maxQccur s="unbounded" />
</ xsd: choi ce>
</ xsd: sequence>
</ xsd: choi ce>
<xsd: choi ce>
<xsd: sequence>
<xsd: el ement name="col um" type="orm col um"
m nCccurs="0" />
<xsd: choi ce>
<xsd: el ement name="tenporal" type="ormtenporal"
m nCccurs="0" />
<xsd: el ement name="enuner at ed" type="orm enuner at ed"
m nCccurs="0" />
<xsd: el ement name="| ob" type="orm | ob"
m nCccurs="0" />
</ xsd: choi ce>
</ xsd: sequence>
<xsd: sequence>
<xsd: el enent nane="attribute-override"
type="ormattribute-override" m nCccurs="0"
maxQccur s="unbounded" />
<xsd: el enent nane="associ ati on-override"
type="orm associ ati on-override" m nCccurs="0"

50




Metadata

maxQccur s="unbounded" />
</ xsd: sequence>
</ xsd: choi ce>
<xsd: el ement name="col | ecti on-tabl e" type="ormcollection-table"
m nCccurs="0" />
</ xsd: sequence>
<xsd: attri bute name="name" type="xsd:string" use="required" />
<xsd: attribute name="target-class" type="xsd:string" />
<xsd: attribute name="fetch" type="ormfetch-type" />
<xsd: attri bute name="access" type="orm access-type" />
</ xsd: conpl exType>
<!__ R R R RS R R R R R R R R R R R R R R R R R R R R R R R EE R )
<xsd: conpl exType name="enbeddabl e" >
<xsd: annot ati on>
<xsd: docunent ati on>
Defines the settings and mappi ngs for enbeddabl e objects. Is
all owed to be sparsely popul ated and used in conjunction with
the annotations. Alternatively, the netadata-conplete attribute
can be used to indicate that no annotations are to be processed
inthe class. If this is the case then the defaulting rules will
be recursively applied.
@rarget ({ TYPE}) @Ret enti on( RUNTI ME)
public @nterface Enbeddable {}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string"
m nCccurs="0" />
<xsd: el ement name="attributes" type="orm enbeddabl e-attributes"
m nCccurs="0" />
</ xsd: sequence>
<xsd:attri bute name="cl ass" type="xsd:string" use="required" />
<xsd: attri bute name="access" type="orm access-type" />
<xsd: attri bute name="net adat a- conpl ete" type="xsd: bool ean" />
</ xsd: conpl exType>
<!__ R R R R S R R R R R R R R R R R R R R R R R R R R SRR R )
<xsd: conpl exType name="enbeddabl e-attri butes">
<xsd: sequence>
<xsd: el ement name="basi c" type="orm basic"
m nCQccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="many-to-one" type="orm many-to-one"
m nCccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="one-to-many" type="orm one-to-many"
m nCQccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="one-to-one" type="orm one-to-one"
m nCQccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="many-to-many" type="orm many-to-many"
m nCQccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="el ement -col | ecti on" type="orm el ement-col | ecti on"
m nCQccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="enbedded" type="orm enbedded"
m nCccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="transi ent" type="ormtransient"
m nCQccur s="0" maxCccur s="unbounded" />
</ xsd: sequence>
</ xsd: conpl exType>
<!__ R R R R S R R R R R R R R R R R RS R R R R R R R R R R EE R )
<xsd: conpl exType nanme="enbedded" >
<xsd: annot ati on>
<xsd: docunent at i on>
@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface Enbedded {}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="attribute-override" type="ormattribute-override"
m nCQccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="associ ati on-overri de" type="orm associ ati on-overri de"
m nCQccur s="0" maxCccur s="unbounded" />
</ xsd: sequence>
<xsd: attri bute name="name" type="xsd:string" use="required" />
<xsd: attri bute name="access" type="orm access-type" />
</ xsd: conpl exType>
<!__ R R R R S R R R R R R R R R R R R R R R R R R R R SRR R )
<xsd: conpl exType nanme="enbedded-i d">
<xsd: annot ati on>
<xsd: docunent ati on>
@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)

51




Metadata

public @nterface Enbeddedld {}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="attribute-override" type="ormattribute-override"
m nCQccur s="0" maxCccur s="unbounded" />
</ xsd: sequence>
<xsd: attri bute name="name" type="xsd:string" use="required" />
<xsd: attri bute name="access" type="orm access-type" />
</ xsd: conpl exType>
<!__ R R R RS R R R R R R R R R R R R R R R R R R R R R SRR E R )
<xsd: conpl exType name="entity-|istener">
<xsd: annot ati on>
<xsd: docunent ati on>
Defines an entity listener to be invoked at |ifecycle events
for the entities that list this listener.
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string"
m nCccurs="0" />
<xsd: el ement name="pre-persist" type="orm pre-persist"
m nCccurs="0" />
<xsd: el ement name="post-persist" type="orm post-persist"
m nCccurs="0" />
<xsd: el ement name="pre-renove" type="orm pre-renove"
m nCccurs="0" />
<xsd: el ement name="post-renove" type="orm post-renove"
m nCccurs="0" />
<xsd: el ement name="pre-update" type="orm pre-update"
m nCccurs="0" />
<xsd: el ement name="post-update" type="orm post-update"
m nCccurs="0" />
<xsd: el ement name="post-|oad" type="orm post-| oad"
m nCccurs="0" />
</ xsd: sequence>
<xsd: attribute name="cl ass" type="xsd:string" use="required" />
</ xsd: conpl exType>
<!__ R R R RS R R R R R R R R R R R R R R R R R R R R R R )
<xsd: conpl exType name="entity-listeners">
<xsd: annot ati on>
<xsd: docunent ati on>
@rarget ({ TYPE}) @Ret enti on( RUNTI ME)
public @nterface EntityListeners {
C ass[] val ue();

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="entity-listener" type="ormentity-listener"
m nCccur s="0" maxCccur s="unbounded" />
</ xsd: sequence>
</ xsd: conpl exType>
<!__ R R R R S R R R R R R R R R R RS R R R R R R R R R R R EEE R )
<xsd: conpl exType name="entity-result">
<xsd: annot ati on>
<xsd: docunent at i on>
@rarget ({}) @Retenti on( RUNTI ME)
public @nterface EntityResult {
Class entityd ass();
FieldResult[] fields() default {};
String discrimnnatorColum() default
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="field-result" type="ormfield-result”
m nQccur s="0" maxCccur s="unbounded" />
</ xsd: sequence>
<xsd:attribute name="entity-class" type="xsd:string"
use="required" />
<xsd: attribute name="di scrim nator-colum" type="xsd:string" />
</ xsd: conpl exType>

P L L

<xsd: si npl eType name="enumtype">
<xsd: annot ati on>
<xsd: docunent ati on>
publ i ¢ enum Enunilype {

52




Metadata

ORDI NAL,
STRI NG
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuneration val ue="ORDI NAL" />
<xsd: enuner ati on val ue="STRI NG' />
</xsd:restriction>
</ xsd: si npl eType>
<!__ R R R RS R R R R R R R R R R R R R R R R R R R R R SRR E R )
<xsd: si npl eType name="enuner at ed" >
<xsd: annot ati on>
<xsd: docunent ati on>
@rarget ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface Enunerated {
EnuniType val ue() default ORDI NAL;
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="ormenumtype" />
</ xsd: si npl eType>
<!__ ER R R R SR R R R R R R R R R R R RS R R R R R R EEE R )
<xsd: si npl eType name="fetch-type">
<xsd: annot ati on>
<xsd: docunent ati on>
public enum FetchType { LAZY, EAGER };
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuner ati on val ue="LAZY" />
<xsd: enuneration val ue="EAGER"' />
</xsd:restriction>
</ xsd: si npl eType>
<!__ R R R R S R R R R R R R R R R RS R R R R R R R R R R R EEE R )
<xsd: conpl exType name="field-result">
<xsd: annot ati on>
<xsd: docunent at i on>
@rarget ({}) @Retenti on( RUNTI ME)
public @nterface Fiel dResult {
String name();
String colum();

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: attri bute name="name" type="xsd:string" use="required" />
<xsd: attri bute name="col um" type="xsd:string"
use="required" />
</ xsd: conpl exType>
<!__ R R R R S R R R R R R R R R R R R R R R R R R R R R R )
<xsd: conpl exType name="gener at ed- val ue" >
<xsd: annot ati on>
<xsd: docunent at i on>
@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface GeneratedVal ue {
CenerationType strategy() default AUTO
String generator() default "";

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: attribute name="strategy" type="orm generation-type" />
<xsd:attribute name="generator" type="xsd:string" />
</ xsd: conpl exType>
<!__ R R R R S R R R R R R R R R R R R RS R R R R R EE R )
<xsd: si npl eType nanme="generati on-type">
<xsd: annot ati on>
<xsd: docunent ati on>
public enum GenerationType { TABLE, SEQUENCE, | DENTITY,
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuner ati on val ue="TABLE" />
<xsd: enuner ati on val ue="SEQUENCE" />
<xsd: enuner ati on val ue="1DENTI TY" />
<xsd: enuneration val ue="AUTO" />
</xsd:restriction>
</ xsd: si npl eType>

P L L

AUTO };

53




Metadata

<xsd: conpl exType name="id">
<xsd: annot ati on>
<xsd: docunent at i on>
@rarget ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface Id {}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="col um" type="orm col um"
m nCccurs="0" />
<xsd: el ement name="gener at ed- val ue" type="orm gener at ed- val ue"
m nCccurs="0" />
<xsd: el ement name="tenporal" type="ormtenporal"
m nCccurs="0" />
<xsd: el ement name="t abl e-generator" type="ormtabl e-generator"
m nCccurs="0" />
<xsd: el ement name="sequence-generator" type="orm sequence-generator"
m nCccurs="0" />
</ xsd: sequence>
<xsd: attri bute name="name" type="xsd:string" use="required" />
<xsd: attri bute name="access" type="orm access-type" />
</ xsd: conpl exType>
<!__ ER R R R SR R R R R R R R R R R R RS R R R R R R EEE R )
<xsd: conpl exType name="id-cl ass">
<xsd: annot ati on>
<xsd: docunent ati on>
@rarget ({ TYPE}) @Ret enti on( RUNTI ME)
public @nterface 1dCd ass {
Cl ass val ue();
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:attri bute name="cl ass" type="xsd:string" use="required" />
</ xsd: conpl exType>
<!__ R R R R S R R R R R R R R R R RS R R R R R R R R R R R EEE R )
<xsd: conpl exType name="i nheritance">
<xsd: annot ati on>
<xsd: docunent at i on>
@rarget ({ TYPE}) @Ret enti on( RUNTI ME)
public @nterface |nheritance {
I nheritanceType strategy() default SINGLE_TABLE;
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: attri bute name="strategy" type="orminheritance-type" />
</ xsd: conpl exType>
<!__ R R R R SR R R R R R R R R R R R R R R R R R R R R R EE S )
<xsd: si npl eType name="inheritance-type">
<xsd: annot ati on>
<xsd: docunent at i on>
public enum | nheritanceType
{ SINGLE_TABLE, JO NED, TABLE_PER CLASS};
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuner ati on val ue="SI NGLE_TABLE" />
<xsd: enuner ati on val ue="JO NED" />
<xsd: enuner ati on val ue="TABLE_PER CLASS" />
</ xsd:restriction>
</ xsd: si npl eType>
<!__ ER R R R SR R R R R R R R R R R R RS R R R R R R EEE R )
<xsd: conpl exType nanme="j oi n-col um" >
<xsd: annot ati on>
<xsd: docunent ati on>
@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface Joi nCol um {
String name() default "";
String referencedCol umNane() default
bool ean uni que() default false;
bool ean nul | abl e() default true;
bool ean insertabl e() default true;
bool ean updat abl e() default true;
String col umbDefinition() default
String table() default "";
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: attribute name="name" type="xsd:string" />




Metadata

<xsd: attribute name="referenced-col um-nane" type="xsd:string" />
<xsd: attribute name="uni que" type="xsd:bool ean" />
<xsd:attribute name="nul | abl " type="xsd: bool ean" />
<xsd: attribute name="insertabl e" type="xsd: bool ean" />
<xsd: attribute name="updatabl e" type="xsd: bool ean" />
<xsd: attribute name="col urm-definition" type="xsd:string" />
<xsd:attribute name="tabl e" type="xsd:string" />
</ xsd: conpl exType>
<!__ R R R R SR R R R R R R R R R R R R R R R R R R R R R EE S )
<xsd: conpl exType name="j oi n-t abl e">
<xsd: annot ati on>
<xsd: docunent ati on>
@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface JoinTable {
String name() default "";
String catal og() default
String schema() default
Joi nCol um[] joinColums() default {};
Joi nCol um[] inverseJoi nCol ums() default {};
Uni queConstraint[] uniqueConstraints() default {};
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="j oi n-col um" type="ormj oi n-col um"
m nCQccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="i nverse-j oi n-col um" type="ormj oi n-col um"
m nCccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="uni que-constrai nt" type="orm uni que-constraint"
m nCQccur s="0" maxCccur s="unbounded" />
</ xsd: sequence>
<xsd: attribute name="nanme" type="xsd:string" />
<xsd: attri bute name="catal og" type="xsd:string" />
<xsd: attri bute name="schem" type="xsd:string" />
</ xsd: conpl exType>

P L L

<xsd: conpl exType name="| ob" >
<xsd: annot ati on>
<xsd: docunent ati on>
@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface Lob {}
</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: conpl exType>
<!__ R R R R S R R R R R R R R R R R R RS R R R R R EE R )
<xsd: si npl eType name="I| ock- node-type">
<xsd: annot ati on>
<xsd: docunent ati on>
public enum LockMbdeType { READ, WRI TE, OPTI M STIC,
OPTI M STI C_FORCE_| NCREMENT, PESSI M STI C_READ,
PESSI M STI C_WRI TE,
PESSI M STI C_FORCE_| NCREMENT, NONE} ;
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuner ati on val ue="READ" />
<xsd: enuneration val ue="WRI TE" />
<xsd: enunerati on val ue="OPTIM STIC"' />
<xsd: enuner ati on val ue="OPTI M STI C_FORCE_I NCREMENT" />
<xsd: enuner ati on val ue="PESSI M STI C_READ" />
<xsd: enuneration val ue="PESSI M STIC_ WRI TE" />
<xsd: enuneration val ue="PESSI M STI C_FORCE_| NCREMENT" />
<xsd: enuneration val ue="NONE" />
</xsd:restriction>
</ xsd: si npl eType>
<!__ ER R R R SR R R R R R R R R R R R R R R R R R R R R EE R )
<xsd: conpl exType name="many-t o- many" >
<xsd: annot ati on>
<xsd: docunent at i on>
@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface ManyToMany {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default LAZY;
String nappedBy() default "";

</ xsd: docunent at i on>
</ xsd: annot ati on>

55




Metadata

<xsd: sequence>
<xsd: choi ce>
<xsd: el ement name="order-by" type="orm order-by"
m nCccurs="0" />
<xsd: el ement name="order-col um" type="orm order-col um"
m nCccurs="0" />
</ xsd: choi ce>
<xsd: choi ce>
<xsd: el ement name="map- key" type="orm map- key"
m nCccurs="0" />
<xsd: sequence>
<xsd: el ement name="map- key-cl ass" type="orm map- key- cl ass"
m nCccurs="0" />
<xsd: choi ce>
<xsd: el ement name="map- key-t enporal "
type="ormtenporal " m nCccurs="0" />
<xsd: el ement name="map- key- enuner at ed"
type="or m enuner at ed" m nCccurs="0" />
<xsd: el ement name="map- key-attribute-override"
type="orm attribute-override" m nCccurs="0"
maxQccur s="unbounded" />
</ xsd: choi ce>
<xsd: choi ce>
<xsd: el ement name="map- key- col um"
t ype="or m map- key- col um" m nCccurs="0" />
<xsd: el ement name="nmap- key-j oi n-col um"
t ype="or m map- key-j oi n-col um" m nCccur s="0"
maxQccur s="unbounded" />
</ xsd: choi ce>
</ xsd: sequence>
</ xsd: choi ce>
<xsd: el ement name="j oi n-tabl e" type="ormj oi n-table"
m nCccurs="0" />
<xsd: el ement name="cascade" type="orm cascade-type"
m nCccurs="0" />
</ xsd: sequence>
<xsd: attri bute name="name" type="xsd:string" use="required" />
<xsd:attribute name="target-entity" type="xsd:string" />
<xsd:attribute name="fetch" type="ormfetch-type" />
<xsd: attri bute name="access" type="orm access-type" />
<xsd: attri bute name="mapped- by" type="xsd:string" />
</ xsd: conpl exType>
<!__ R R R R SR R R R R R R R R R R R R R R RS R R SRR EEE R )
<xsd: conpl exType name="nmany-t o-one">
<xsd: annot ati on>
<xsd: docunent at i on>
@rarget ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface ManyToOne {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default EAGER
bool ean optional () default true;
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: choi ce>
<xsd: el ement name="j oi n-col um" type="ormj oi n-col um"
m nCccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="j oi n-tabl e" type="ormj oi n-table"
m nCccurs="0" />
</ xsd: choi ce>
<xsd: el ement name="cascade" type="orm cascade-type"
m nCccurs="0" />
</ xsd: sequence>
<xsd: attri bute name="name" type="xsd:string" use="required" />
<xsd:attribute name="target-entity" type="xsd:string" />
<xsd: attribute name="fetch" type="ormfetch-type" />
<xsd: attri bute name="optional" type="xsd: bool ean" />
<xsd: attri bute name="access" type="orm access-type" />
<xsd:attribute name="maps-id" type="xsd:string" />
<xsd:attribute name="id" type="xsd: bool ean" />
</ xsd: conpl exType>
<!__ R R R R S R R R R R R R R R R R R R R R R R R R R SRR R )
<xsd: conpl exType name="map- key" >
<xsd: annot ati on>
<xsd: docunent ati on>
@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)

56




Metadata

public @nterface MapKey {
String name() default "";
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: attribute name="nanme" type="xsd:string" />
</ xsd: conpl exType>
<!__ R R R RS R R R R R R R R R R R R SRR R R R R R R )
<xsd: conpl exType nanme="map- key-cl ass">
<xsd: annot ati on>
<xsd: docunent ati on>
@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface MapKeyd ass {
Cl ass val ue();
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: attribute name="cl ass" type="xsd:string" use="required" />
</ xsd: conpl exType>
<!__ R R R RS R R R R R R R R R R R R R R SRR E SRR EEE R )
<xsd: conpl exType name="map- key-col utm" >
<xsd: annot ati on>
<xsd: docunent at i on>
@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface MapKeyCol um {
String nanme() default "";
bool ean uni que() default false;
bool ean nul |l abl e() default false;
bool ean insertabl e() default true;
bool ean updat abl e() default true;
String col umbDefinition() default
String table() default "";
int length() default 255;
int precision() default 0; // decimal precision
int scale() default O; // decinmal scale
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: attri bute name="name" type="xsd:string" />
<xsd: attri bute name="uni que" type="xsd: bool ean" />
<xsd: attri bute name="nul | abl e" type="xsd: bool ean" />
<xsd:attribute name="insertabl e" type="xsd: bool ean" />
<xsd: attri bute name="updat abl e" type="xsd: bool ean" />
<xsd: attribute name="col um-definition" type="xsd:string" />
<xsd: attribute name="tabl e" type="xsd:string" />
<xsd:attribute name="I|ength" type="xsd:int" />
<xsd: attri bute name="precision" type="xsd:int" />
<xsd: attri bute name="scal e" type="xsd:int" />
</ xsd: conpl exType>

P L L

<xsd: conpl exType name="map- key-j oi n-col um" >
<xsd: annot ati on>
<xsd: docunent at i on>

@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface MapKeyJoi nCol um {
String name() default "";
String referencedCol umNane() default
bool ean uni que() default false;
bool ean nul |l abl e() default false;
bool ean insertabl e() default true;
bool ean updat abl e() default true;
String col umbDefinition() default
String table() default "";

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: attribute name="name" type="xsd:string" />
<xsd: attri bute name="ref erenced- col um-nanme" type="xsd:string" />
<xsd: attri bute name="uni que" type="xsd: bool ean" />
<xsd: attri bute name="nul | abl e" type="xsd: bool ean" />
<xsd:attribute name="insertabl e" type="xsd: bool ean" />
<xsd: attri bute name="updat abl e" type="xsd: bool ean" />
<xsd: attri bute name="col um-definition" type="xsd:string" />
<xsd: attribute name="tabl e" type="xsd:string" />
</ xsd: conpl exType>
<!__ R R R RS R R R R R R R R R R R R R R R R R R R R EEE R )
<xsd: conpl exType nanme="mapped- supercl ass" >
<xsd: annot ati on>

57




Metadata

<xsd: docunent ati on>
Defines the settings and mappings for a mapped superclass. |s
all owed to be sparsely popul ated and used in conjunction with
the annotations. Alternatively, the netadata-conplete attribute
can be used to indicate that no annotations are to be processed
If this is the case then the defaulting rules will be recursively
appl i ed.
@rarget (TYPE) @Ret enti on( RUNTI ME)
public @nterface MappedSupercl ass{}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement nanme="description" type="xsd:string"
m nCccurs="0" />
<xsd: el ement name="id-cl ass" type="ormi d-cl ass"
m nCccurs="0" />
<xsd: el ement name="excl ude-defaul t-1isteners"
type="orm enpt yType" m nCccurs="0" />
<xsd: el ement name="excl ude- supercl ass-1|i steners"
type="orm enpt yType" m nCccurs="0" />
<xsd: el ement name="entity-listeners" type="ormentity-Iisteners"
m nCccurs="0" />
<xsd: el ement name="pre-persist" type="orm pre-persist"
m nCccurs="0" />
<xsd: el ement name="post-persist" type="orm post-persist"
m nCccurs="0" />
<xsd: el ement name="pre-renove" type="orm pre-renove"
m nCccurs="0" />
<xsd: el ement name="post-renove" type="orm post-renove"
m nCccurs="0" />
<xsd: el ement name="pre-update" type="orm pre-update"
m nCccurs="0" />
<xsd: el ement name="post-update" type="orm post-update"
m nCccurs="0" />
<xsd: el ement name="post-|oad" type="orm post-| oad"
m nCccurs="0" />
<xsd: el ement name="attributes" type="ormattributes"
m nCccurs="0" />
</ xsd: sequence>
<xsd:attri bute name="cl ass" type="xsd:string" use="required" />
<xsd: attri bute name="access" type="orm access-type" />
<xsd: attri bute name="net adat a- conpl ete" type="xsd: bool ean" />
</ xsd: conpl exType>
<!__ ER R R R S R R R R R R R R R R R R R R RS R R R R R EE R )
<xsd: conpl exType name="naned- nati ve-query">
<xsd: annot ati on>
<xsd: docunent ati on>
@rarget ({ TYPE}) @Ret enti on( RUNTI ME)
public @nterface NanedNativeQuery {
String name();
String query();
QueryH nt[] hints() default {};
Class resultC ass() default void.cl ass;
String resultSet Mappi ng() default ""; //named Sgl Resul t Set Mappi ng

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string"
m nCccurs="0" />
<xsd: el ement name="query" type="xsd:string" />
<xsd: el ement name="hint" type="orm query-hint"
m nQccur s="0" maxCccur s="unbounded" />
</ xsd: sequence>
<xsd: attri bute name="name" type="xsd:string" use="required" />
<xsd:attribute name="resul t-cl ass" type="xsd:string" />
<xsd: attri bute name="result-set-nmappi ng" type="xsd:string" />
</ xsd: conpl exType>
<!__ R R R R S R R R R R R R R R R R R R R R R R R R R R R )
<xsd: conpl exType nanme="naned- query" >
<xsd: annot ati on>
<xsd: docunent at i on>
@rarget ({ TYPE}) @Ret enti on( RUNTI ME)
public @nterface NanedQuery {
String name();
String query();
LockModeType | ockMode() default NONE;
QueryHi nt[] hints() default {};

58




Metadata

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string"
m nCccurs="0" />
<xsd: el ement name="query" type="xsd:string" />
<xsd: el ement name="| ock- node" type="orm | ock-node-type"
m nCccurs="0" />
<xsd: el ement name="hint" type="orm query-hint"
m nCQccur s="0" maxCccur s="unbounded" />
</ xsd: sequence>
<xsd: attri bute name="name" type="xsd:string" use="required" />
</ xsd: conpl exType>
<!__ R R R RS R R R R R R R R R R R R R RS R R R R R R R )
<xsd: conpl exType nanme="one-t o- many" >
<xsd: annot ati on>
<xsd: docunent at i on>
@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface OneToMany {
Class targetEntity() default void.class
CascadeType[] cascade() default {}
Fet chType fetch() default LAZY;
String nappedBy() default "";

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: choi ce>
<xsd: el ement name="order-by" type="orm order-by"
m nCccurs="0" />
<xsd: el ement name="order-col um" type="orm order-col um"
m nCccurs="0" />
</ xsd: choi ce>
<xsd: choi ce>
<xsd: el ement name="map- key" type="orm map- key"
m nCccurs="0" />
<xsd: sequence>
<xsd: el ement name="map- key-cl ass" type="orm map- key- cl ass"
m nCccurs="0" />
<xsd: choi ce>
<xsd: el ement name="map- key-tenporal "
type="ormtenporal " m nCccurs="0" />
<xsd: el ement name="map- key- enuner at ed"
type="or m enuner at ed" m nCccurs="0" />
<xsd: el ement name="map- key-attribute-override"
type="orm attribute-override" m nCccurs="0"
maxQccur s="unbounded" />
</ xsd: choi ce>
<xsd: choi ce>
<xsd: el ement name="map- key- col um"
t ype="or m map- key- col um" m nCccurs="0" />
<xsd: el ement name="map- key-j oi n-col um"
t ype="or m map- key-j oi n-col um" m nCccur s="0"
maxQccur s="unbounded" />
</ xsd: choi ce>
</ xsd: sequence>
</ xsd: choi ce>
<xsd: choi ce>
<xsd: el ement name="j oi n-tabl e" type="ormj oi n-table"
m nCccurs="0" />
<xsd: el ement name="j oi n-col um" type="ormj oi n-col um"
m nCccur s="0" maxCccur s="unbounded" />
</ xsd: choi ce>
<xsd: el ement name="cascade" type="orm cascade-type"
m nCccurs="0" />
</ xsd: sequence>
<xsd: attri bute name="name" type="xsd:string" use="required" />
<xsd:attribute name="target-entity" type="xsd:string" />
<xsd: attribute name="fetch" type="ormfetch-type" />
<xsd: attri bute name="access" type="orm access-type" />
<xsd: attri bute name="mapped- by" type="xsd:string" />
<xsd: attri bute name="orphan-renoval " type="xsd: bool ean" />
</ xsd: conpl exType>
<!__ R R R R S R R R R R R R R R R R R R R R R R R R R R R R )
<xsd: conpl exType name="one-to0-one">
<xsd: annot ati on>
<xsd: docunent at i on>

59




Metadata

@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface OneToOne {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default EAGER
bool ean optional () default true;
String nappedBy() default "";
bool ean or phanRenoval () default fal se;
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: choi ce>
<xsd: el ement name="pri mary-key-j oi n-col um"
type="orm pri mary-key-j oi n-col um" m nCccur s="0"
maxQccur s="unbounded" />
<xsd: el ement name="j oi n-col um" type="ormj oi n-col um"
m nCccur s="0" maxCccur s="unbounded" />
<xsd: el ement name="j oi n-tabl e" type="ormj oi n-table"
m nCccurs="0" />
</ xsd: choi ce>
<xsd: el ement name="cascade" type="orm cascade-type"
m nCccurs="0" />
</ xsd: sequence>
<xsd: attribute name="nanme" type="xsd:string" use="required" />
<xsd:attribute name="target-entity" type="xsd:string" />
<xsd:attribute name="fetch" type="ormfetch-type" />
<xsd: attribute name="optional" type="xsd:bool ean" />
<xsd:attribute name="access" type="orm access-type" />
<xsd: attribute name="mapped-by" type="xsd:string" />
<xsd: attribute name="orphan-renoval " type="xsd: bool ean" />
<xsd:attribute name="naps-id" type="xsd:string" />
<xsd:attribute name="id" type="xsd: bool ean" />
</ xsd: conpl exType>
<!__ R R R R S R R R R R R R R R R RS R R R R R R R R R R R EEE R )
<xsd: si npl eType name="or der-by">
<xsd: annot ati on>
<xsd: docunent at i on>
@rarget ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface OrderBy {
String value() default "";
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:string" />
</ xsd: si npl eType>
<!__ R R R R SR R R R R R R R R R R R R R R R R R R R R R EE S )
<xsd: conpl exType name="or der-col utm" >
<xsd: annot ati on>
<xsd: docunent at i on>
@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface O derCol um {
String name() default "";
bool ean null abl e() default true;
bool ean insertabl e() default true;
bool ean updat abl e() default true;
String columbDefinition() default "";
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: attri bute name="name" type="xsd:string" />
<xsd: attri bute name="nul | abl e" type="xsd: bool ean" />
<xsd:attribute name="insertabl e" type="xsd: bool ean" />
<xsd: attri bute name="updat abl e" type="xsd: bool ean" />
<xsd: attribute name="col um-definition" type="xsd:string" />
</ xsd: conpl exType>
<!__ R R R R SR R R R R R R R R R R R R R R R R R R R EE S )
<xsd: conpl exType name="post-| oad" >
<xsd: annot ati on>
<xsd: docunent ati on>
@ar get ({ METHOD}) @Ret ent i on( RUNTI ME)
public @nterface PostlLoad {}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string"
m nCccurs="0" />
</ xsd: sequence>

60




Metadata

<xsd: attri bute name="net hod- nane" type="xsd:string"
use="required" />
</ xsd: conpl exType>

DI L

<xsd: conpl exType name="post - persi st">
<xsd: annot ati on>
<xsd: docunent at i on>
@ar get ({ METHOD}) @Ret ent i on( RUNTI ME)
public @nterface PostPersist {}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement nanme="description" type="xsd:string"
m nCccurs="0" />
</ xsd: sequence>
<xsd: attri bute name="net hod- nane" type="xsd:string"
use="required" />
</ xsd: conpl exType>

DI

<xsd: conpl exType nanme="post-renove">
<xsd: annot ati on>
<xsd: docunent at i on>
@ar get ({ METHOD}) @Ret ent i on( RUNTI ME)
public @nterface PostRenove {}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string"
m nCccurs="0" />
</ xsd: sequence>
<xsd: attri bute name="net hod- nane" type="xsd:string"
use="required" />
</ xsd: conpl exType>

DI

<xsd: conpl exType name="post - updat e" >
<xsd: annot ati on>
<xsd: docunent at i on>
@ar get ({ METHOD}) @Ret ent i on( RUNTI ME)
public @nterface PostUpdate {}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string"
m nCccurs="0" />
</ xsd: sequence>
<xsd: attri bute name="net hod- nane" type="xsd:string"
use="required" />
</ xsd: conpl exType>

DI L

<xsd: conpl exType nanme="pre-persist">
<xsd: annot ati on>
<xsd: docunent ati on>
@ar get ({ METHOD}) @Ret ent i on( RUNTI ME)
public @nterface PrePersist {}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string"
m nCccurs="0" />
</ xsd: sequence>
<xsd: attri bute name="net hod- nane" type="xsd:string"
use="required" />
</ xsd: conpl exType>

DI

<xsd: conpl exType name="pre-renove">
<xsd: annot ati on>
<xsd: docunent ati on>
@ar get ({ METHOD}) @Ret ent i on( RUNTI ME)
public @nterface PreRemove {}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string"
m nCccurs="0" />
</ xsd: sequence>
<xsd: attri bute name="net hod- nane" type="xsd:string"
use="required" />
</ xsd: conpl exType>

->

->

->

->

->

61




Metadata

P L

<xsd: conpl exType nanme="pre-update">
<xsd: annot ati on>
<xsd: docunent ati on>
@ar get ({ METHOD}) @Ret ent i on( RUNTI ME)
public @nterface PreUpdate {}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string"
m nCccurs="0" />
</ xsd: sequence>
<xsd: attri bute name="net hod- nane" type="xsd:string"
use="required" />
</ xsd: conpl exType>
<!__ R R R R S R R R R R R R R R R RS R R R R R R R R R R R EEE R )
<xsd: conpl exType name="pri mary-key-j oi n-col um">
<xsd: annot ati on>
<xsd: docunent at i on>
@rarget ({ TYPE, METHOD, FIELD}) @Rretention(RUNTI ME)
public @nterface PrimaryKeyJoi nCol um {
String name() default "";
String referencedCol umNane() default
String columbDefinition() default "";

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: attribute name="name" type="xsd:string" />
<xsd: attri bute name="ref erenced- col um-nanme" type="xsd:string" />
<xsd: attribute name="col um-definition" type="xsd:string" />
</ xsd: conpl exType>
<!__ R R R R SR R R R R R R R R R R R R R R SRR R R R R SRR EE R )
<xsd: conpl exType name="query- hint">
<xsd: annot ati on>
<xsd: docunent ati on>
@rarget ({}) @Retenti on( RUNTI ME)
public @nterface QueryHint {
String name();
String val ue();

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string"
m nCccurs="0" />
</ xsd: sequence>
<xsd: attri bute name="name" type="xsd:string" use="required" />
<xsd: attri bute name="val ue" type="xsd:string" use="required" />
</ xsd: conpl exType>
<!__ R R R R S R R R R R R R R R R R R R R R R R R R R R R )
<xsd: conpl exType name="secondary-tabl e">
<xsd: annot ati on>
<xsd: docunent at i on>
@rarget ({ TYPE}) @Ret enti on( RUNTI ME)
public @nterface SecondaryTabl e {
String name();
String catal og() default
String schema() default
Pri mar yKeyJoi nCol um[] pkJoi nCol ums() default {};
Uni queConstraint[] uniqueConstraints() default {};

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="pri mary-key-j oi n-col um"
type="orm pri mary-key-j oi n-col um" m nCccur s="0"
maxQccur s="unbounded" />
<xsd: el ement name="uni que-constrai nt" type="orm uni que-constraint"
m nCQccur s="0" maxCccur s="unbounded" />
</ xsd: sequence>
<xsd: attri bute name="name" type="xsd:string" use="required" />
<xsd: attri bute name="catal og" type="xsd:string" />
<xsd: attri bute name="schem" type="xsd:string" />
</ xsd: conpl exType>
<!__ R R R R S R R R R R R R R R R R R R R R R R R R R R R R )
<xsd: conpl exType name="sequence- gener ator">
<xsd: annot ati on>
<xsd: docunent at i on>

62




Metadata

@rarget ({ TYPE, METHOD, FIELD}) @Rretention(RUNTI ME)
public @nterface SequenceGenerator {
String name();
String sequenceNane() default
String catal og() default "";
String schema() default
int initialValue() default 1;
int allocationSize() default 50;
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement nanme="description" type="xsd:string"

m nCccurs="0" />

</ xsd: sequence>

<xsd: attri bute name="name" type="xsd:string" use="required" />

<xsd: attri bute name="sequence-nane" type="xsd:string" />

<xsd: attri bute name="catal og" type="xsd:string" />

<xsd: attri bute name="schem" type="xsd:string" />

<xsd:attribute name="initial-value" type="xsd:int" />

<xsd: attri bute name="al | ocati on-si ze" type="xsd:int" />

</ xsd: conpl exType>

P L L

<xsd: conpl exType name="sql -resul t - set - mappi ng" >
<xsd: annot ati on>
<xsd: docunent ati on>
@rarget ({ TYPE}) @Ret enti on( RUNTI ME)
public @nterface Sql Resul t Set Mappi ng {
String name();
EntityResult[] entities() default {};
Col umResul t[] colums() default {};
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent name="description" type="xsd:string"
m nCccurs="0" />
<xsd: el enent name="entity-result" type="ormentity-result"
m nCccur s="0" maxCccur s="unbounded" />
<xsd: el enent name="col um-result" type="orm colum-result"
m nCccur s="0" maxCccur s="unbounded" />
</ xsd: sequence>
<xsd: attribute name="nanme" type="xsd:string" use="required" />
</ xsd: conpl exType>
<!__ R R R R S R R R R R R R R R R R R RS R R R R R EE R )
<xsd: conpl exType name="t abl e" >
<xsd: annot ati on>
<xsd: docunent ati on>
@rarget ({ TYPE}) @Ret enti on( RUNTI ME)
public @nterface Table {
String name() default "";
String catal og() default
String schema() default
Uni queConstraint[] uniqueConstraints() default {};

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="uni que-constrai nt" type="orm uni que-constraint"
m nCQccur s="0" maxCccur s="unbounded" />
</ xsd: sequence>
<xsd: attribute name="name" type="xsd:string" />
<xsd: attri bute name="catal og" type="xsd:string" />
<xsd: attri bute name="schem" type="xsd:string" />
</ xsd: conpl exType>
<!__ ER R R R SR R R R R R R R R R R R R R R R R R R R R EE R )
<xsd: conpl exType name="t abl e- generat or">
<xsd: annot ati on>
<xsd: docunent at i on>
@rarget ({ TYPE, METHOD, FIELD}) @Rretention(RUNTI ME)
public @nterface Tabl eGenerator {
String name();
String table() default "";
String catal og() default "";
String schema() default
String pkCol umNane() default "";
String val ueCol umNane() default
String pkCol umVal ue() default "";

63




Metadata

int initialValue() default O;
int allocationSize() default 50;
Uni queConstraint[] uniqueConstraints() default {};

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string"
m nCccurs="0" />
<xsd: el ement name="uni que-constrai nt" type="orm uni que-constraint"
m nCQccur s="0" maxCccur s="unbounded" />
</ xsd: sequence>
<xsd: attribute name="nanme" type="xsd:string" use="required" />
<xsd:attribute name="tabl e" type="xsd:string" />
<xsd:attribute name="catal og" type="xsd:string" />
<xsd:attribute name="schema" type="xsd:string" />
<xsd: attribute name="pk-col um-name" type="xsd:string" />
<xsd: attribute name="val ue-col um-nane" type="xsd:string" />
<xsd: attribute name="pk-col um-val ue" type="xsd:string" />
<xsd:attribute name="initial-value" type="xsd:int" />
<xsd: attribute name="al | ocati on-size" type="xsd:int" />
</ xsd: conpl exType>
<!__ ER R R R SR R R R R R R R R R R R RS R R R R R R EEE R )
<xsd: si npl eType nanme="t enporal ">
<xsd: annot ati on>
<xsd: docunent ati on>
@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface Tenporal {
Tenpor al Type val ue();
}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="ormtenporal -type" />
</ xsd: si npl eType>
<!__ R R R R S R R R R R R R R R R RS R R R R R R R R R R R EEE R )
<xsd: si npl eType nanme="t enporal -type">
<xsd: annot ati on>
<xsd: docunent at i on>
publ i ¢ enum Tenpor al Type {
DATE, // java.sql.Date
TIME, // java.sql.Tine
TI MESTAMP // java.sql . Ti mestanp

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuneration val ue="DATE" />
<xsd: enuner ati on val ue="TI ME" />
<xsd: enuner ati on val ue="TI MESTAMP" />
</xsd:restriction>
</ xsd: si npl eType>
<!__ R R R R SR R R R R R R R R R R R R R R R R R R R R R R )
<xsd: conpl exType name="transi ent">
<xsd: annot ati on>
<xsd: docunent at i on>
@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface Transient {}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: attri bute name="name" type="xsd:string" use="required" />
</ xsd: conpl exType>
<!__ R R R R SR R R R R R R R R R R R R R R RS R R SRR EEE R )
<xsd: conpl exType name="uni que-constraint">
<xsd: annot ati on>
<xsd: docunent ati on>
@rarget ({}) @Retenti on( RUNTI ME)
public @nterface Uni queConstraint {
String name() default "";
String[] col ummNanes();

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="col um- nane" type="xsd:string"
maxQccur s="unbounded" />
</ xsd: sequence>
<xsd: attri bute name="name" type="xsd:string" />
</ xsd: conpl exType>




Metadata

P L

<xsd: conpl exType name="versi on">
<xsd: annot ati on>
<xsd: docunent ati on>
@rar get ({ METHOD, FIELD}) @Rretention( RUNTI VE)
public @nterface Version {}
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="col um" type="orm col um"
m nCccurs="0" />
<xsd: el ement name="tenporal" type="ormtenporal"
m nCccurs="0" />
</ xsd: sequence>
<xsd: attri bute name="name" type="xsd:string" use="required" />
<xsd: attri bute name="access" type="orm access-type" />
</ xsd: conpl exType>
</ xsd: schenma>

5.4. Conclusion

That exhausts persistence metadata annotations. We present the class definitions for our sample model below:

65



<many-to-nmany nane="articles" >
<order - by>l ast Nane, firstNane</order-by>
</ many-t o- many>
</attributes>
</entity>
<entity class="org. mg. pub. Conpany" >
<attributes>
<id name="id"/>
<basi ¢ nane="nane"/ >
<basi ¢ nane="revenue"/>
<version name="version"/>
<one-to-many nane="mags" mapped- by="publisher">
<cascade>
<cascade- persi st/ >
</ cascade>
</ one-t o- many>
<one-to-many nane="subscriptions">
<cascade>
<cascade- persi st/ >
<cascade-renove/ >
</ cascade>
</ one-t o- many>
</attributes>
</entity>
<entity class="org. mag. pub. Aut hor">
<attributes>
<id name="id"/>
<basi ¢ nane="firstNane"/>
<basi ¢ nane="| ast Nane"/ >
<version name="version"/>
<many-to-many nane="arts" mapped- by="aut hors">
<cascade>
<cascade- persi st/ >
</ cascade>
</ many-t o- many>
</attributes>
</entity>
<entity class="org. mg. subcribe. Contract">
<attributes>
<basic nane="terns"/>
</attributes>
</entity>
<entity class="org. mag. subcribe. Subscription">
<attributes>
<id name="id"/>
<basi ¢ nane="paynent"/>
<basi c nane="startDate"/>
<versi on name="version"/>
<one-to-nmany nane="itens">
<map- key name="nunt >
<cascade>
<cascade- persi st/ >
<cascade-renove/ >
</ cascade>
</ one-t o- many>
</attributes>
</entity>
<entity class="org. mag. subscribe. Subscri ption. Li nel tent >
<attributes>
<basi ¢ nane="comments"/>
<basi c nane="price"/>
<basi ¢ nane="nunt/>
<many-t o- one nane="nmagazi ne"/>
</attributes>
</entity>
<entity class="org. mag. subscribe. Lifeti neSubscription" nane="Lifetime"
access="PROPERTY" >
<attributes>
<basic nane="eliteC ub" fetch="LAZY"/>
</attributes>
</entity>
<entity class="org. mag. subscribe. Tri al Subscription" name="Trial ">
<attributes>
<basi ¢ nane="endDate"/>
</attributes>
</entity>
<enbeddabl e cl ass="org. mag. pub. Addr ess" >
<attributes>
<basi c nane="street"/>
<basic nane="city"/>
<basi c nane="state"/>
<basi ¢ nane="zip"/>
</attributes>
</ enbeddabl e>
</ entity-nmappi ngs>

66




Metadata

Chapter 13, Mapping Metadata [147] will show you how to map your persistent classes to the datastore using additional
annotations and XML markup. First, however, we turn to the JPA runtime APIs.

67



Chapter 6. Persistence

javax.persistence

Persistence

+ createEntityManagerFactory(Siring): EntityManagerFactory
+ createEntityManagerFactory(Siring, Map). EntityManagerFactory

OpenJPA also includesthe OpenJPAPer si st ence helper classto provide additional utility methods.

Within a container, you will typically useinjection to accessan Ent i t yManager Fact or y. Applications operating outside
of acontainer, however, can usethe Per si st ence classtoobtain Ent it yManager Fact or y objectsin avendor-neutral
fashion.

public static EntityManagerFactory createEntityManagerFactory(String nane);
public static EntityManagerFactory createEntityManagerFactory(String name, Map props);
public static PersistenceUtil getPersistenceltil();

Each cr eat eEnt i t yManager Fact or y method searches the system for an Ent i t yManager Fact or y definition with
the given name. Use nul | for an unnamed factory. The optional map contains vendor-specific property settings used to further
configure the factory.

persi stence. xnl filesdefine EntityManager Fact ori es. Thecr eat eEnti t yManager Fact ory methods
search for per si st ence. xm fileswithin the META- | NF directory of any CLASSPATH element. For example, if your
CLASSPATH containsthe conf directory, you could placean Ent i t yManager Fact ory definitionin conf / META-
| NF/ per si stence. xm .

Theget Per si st enceUt i | method returns a PersistenceUtil interface that can be used to determine whether an entity or
attribute of an entity isloaded.

PersistenceUtil pUtil = Persistence.getPersistenceUtil ();

if (!'pUil.isLoaded(nyEntity)) {
| oadEntity(nyEntity);
}

6.1.

persistence.xml

With the introduction of JPA 2.0, there are two versions of the per si st ence. xnl . The most current revision of the 2.0
persistence schemais presented below. Version 1.0 of the persistence schema can be found at http://java.sun.com/xml/ng/
persistence/persistence 1 0.xsd.

<?xm version="1.0" encodi ng="UTF-8"?>
<!-- persistence.xm schema -->

<xsd: schena t arget Nanespace="http://java. sun. com xm / ns/ persi st ence"
xm ns: xsd="ht t p: // ww. w3. or g/ 2001/ XM_Scherma"
xm ns: persi stence="http://java.sun. conl xnl / ns/ persi st ence"

68



../javadoc/org/apache/openjpa/persistence/OpenJPAPersistence.html
http://download.oracle.com/javaee/6/api/javax/persistence/Persistence.html
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd

Persistence

el enent For nDef aul t ="qual i fi ed" attributeFornDefaul t="unqualified"
versi on="2.0">

<xsd: annot ati on>
<xsd: docunent ati on>
@ #) persistence_2_0.xsd 1.0 October 1 2009
</ xsd: docunent at i on>
</ xsd: annot ati on>

<xsd: annot ati on>
<xsd: docunent ati on>

DO NOT ALTER OR REMOVE COPYRI GHT NOTI CES OR THI S HEADER
Copyri ght 2005-2009 Sun M crosystens, Inc. Al rights reserved.

The contents of this file are subject to the ternms of either the
G\U Ceneral Public License Version 2 only ("GPL") or the Cormmon
Devel opnent and Distribution License("CDDL") (collectively, the
"License"). You may not use this file except in conpliance with
the License. You can obtain a copy of the License at

https://gl assfish. dev.java. net/public/CDDL+GPL. htl or

gl assfish/bootstrap/legal /LI CENSE. txt. See the License for the
speci fic | anguage governing perm ssions and |imitations under the
Li cense.

When distributing the software, include this License Header
Notice in each file and include the License file at

gl assfi sh/bootstrap/l egal /LI CENSE. t xt. Sun designates this
particular file as subject to the "Cl asspath" exception as
provided by Sun in the GPL Version 2 section of the License file
that acconpanied this code. |f applicable, add the follow ng

bel ow the License Header, with the fields enclosed by brackets []
repl aced by your own identifying informtion:

"Portions Copyrighted [year] [nanme of copyright owner]"

Contributor(s):

If you wi sh your version of this file to be governed by only the
CDDL or only the GPL Version 2, indicate your decision by adding
"[Contributor] elects to include this software in this
distribution under the [CDDL or GPL Version 2] license." If you
don't indicate a single choice of license, a recipient has the
option to distribute your version of this file under either the
CDDL, the GPL Version 2 or to extend the choice of license to its
l'icensees as provided above. However, if you add GPL Version 2
code and therefore, elected the GPL Version 2 license, then the
option applies only if the new code is made subject to such
option by the copyright hol der.

</ xsd: docunent at i on>
</ xsd: annot ati on>

<xsd: annot ati on>

<xsd: docunent at i on>

<! [ CDATA[
This is the XM. Schema for the persistence configuration file.
The file must be named "META-| NF/ persistence.xm" in the
persi stence archive.
Persi stence configuration files nust indicate
the persistence schema by using the persistence nanespace:
http://java. sun. com xml / ns/ per si st ence
and indicate the version of the schema by
using the version el ement as shown bel ow
<persi stence xm ns="http://java.sun.conl xm / ns/ persi st ence"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schera- i nst ance"
xsi : schemaLocati on="http://java. sun. com xm / ns/ per si st ence
http://java. sun. coml xm / ns/ per si st ence/ per si stence_2_0. xsd"
ver si on="2. 0" >

</ persi st ence>
11>
</ xsd: docunent at i on>
</ xsd: annot ati on>

<xsd: si npl eType name="versi onType">
<xsd:restriction base="xsd:token">
<xsd: pattern value="[0-9] +(\.[0-9]+)*" />

69




Persistence

</xsd:restriction>
</ xsd: si npl eType>
<!__ R R R R SR R R R R R R R R R R R R RS R R R R SRR RS )
<xsd: el enent nane="persistence">
<xsd: conpl exType>
<xsd: sequence>
<!__ R R R R SR R R R R R R R R R R R R R R R R R R R SRR E R )
<xsd: el ement name="persistence-unit"
m nCQccur s="1" maxCccur s="unbounded" >
<xsd: conmpl exType>
<xsd: annot ati on>
<xsd: docunent at i on>
Configuration of a persistence unit.
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<!__ R R R R S R R R R R R R R R R R R R SRR E R R R EEE S )
<xsd: el ement nanme="descri ption"
type="xsd: string" m nCccurs="0">
<xsd: annot ati on>
<xsd: docunent at i on>
Description of this persistence unit.
</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el enent >
<!__ R R R RS R R R R R R R R R R R R SRR R R R RS R RS )
<xsd: el ement name="provi der"
type="xsd: string" m nCccurs="0">
<xsd: annot ati on>
<xsd: docunent ati on>
Provi der class that supplies EntityManagers for this
persistence unit.
</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el enent >
<!__ R R R RS R R R R R R R R R R R R R R R SRR R R R SRR EEE R )
<xsd: el ement nanme="jt a- dat a- sour ce"
type="xsd: string" m nCccurs="0">
<xsd: annot ati on>
<xsd: docunent at i on>
The contai ner-specific name of the JTA datasource to use.
</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el enent >
<!__ R R R RS R R R R R R R R R R R R SRR R R R RS R RS )
<xsd: el ement nanme="non-jt a-dat a- source"
type="xsd: string" m nCccurs="0">
<xsd: annot ati on>
<xsd: docunent ati on>
The contai ner-specific name of a non-JTA datasource to use.
</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el enent >
<!__ R R R RS R R R R R R R R R R R R RS R R R R R R EE S )
<xsd: el enent nane="mappi ng-file"
type="xsd: string" m nCccurs="0"
maxQccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent at i on>
Fil e containing mapping i nformation. Loaded as a resource
by the persistence provider.
</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el enent >
<!__ R R R RS R R R R R R R R R R R R R R R R R R R EE R )
<xsd: el enent nane="jar-file"
type="xsd: string" m nCccurs="0"
maxQccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>
Jar file that is to be scanned for managed cl asses.
</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el enent >
<!__ R R R R SR R R R R R R R R R R R RS R R R R R RS EEE R )
<xsd: el ement name="cl ass" type="xsd:string"
m nCQccur s="0" maxCccur s="unbounded" >
<xsd: annot ati on>

70




Persistence

<xsd: docunent ati on>
Managed class to be included in the persistence unit and
to scan for annotations. It should be annotated
with either @ntity, @Enbeddable or @mhppedSupercl ass.
</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el enent >
<!__ R R R RS R R R R R R R R R R R R R R R R R R RS EEE R )
<xsd: el enent nane="excl ude-unli st ed-cl asses"
t ype="xsd: bool ean" defaul t="true"
m nCQccur s="0">
<xsd: annot ati on>
<xsd: docunent at i on>
When set to true then only listed classes and jars wll
be scanned for persistent classes, otherw se the
enclosing jar or directory will also be scanned.
Not applicable to Java SE persistence units.
</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el enent >
<!__ R R R R SR R R R R R R R R R R R R RS R R R R R SRR )
<xsd: el enent nane="shar ed- cache- node"
t ype="per si st ence: per si st ence- uni t - cachi ng-t ype"
m nCQccur s="0">
<xsd: annot ati on>
<xsd: docunent ati on>
Def i nes whether caching is enabled for the
persistence unit if caching is supported by the
persi stence provider. Wen set to ALL, all entities
wi Il be cached. When set to NONE, no entities will
be cached. Wen set to ENABLE SELECTIVE, only entities
speci fied as cacheable will be cached. Wen set to
DI SABLE_SELECTI VE, entities specified as not cacheabl e
wi Il not be cached. When not specified or when set to
UNSPECI FI ED, provider defaults nay apply.
</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el enent >
<!__ R R R R SR R R R R R R R R R R R R R R SRR R R R RS EEE S )
<xsd: el enent nane="val i dati on- node"
t ype="per si st ence: per si st ence-uni t -val i dat i on- node-t ype"
m nQccur s="0">
<xsd: annot ati on>
<xsd: docunent ati on>
The validation node to be used for the persistence unit.
</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el enent >
<!__ R R R RS R R R R R R R R R R R R RS R R E R R EE S )
<xsd: el ement name="properties"
m nCQccur s="0">
<xsd: annot ati on>
<xsd: docunent at i on>
A list of standard and vendor-specific properties
and hints.
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: conmpl exType>
<xsd: sequence>
<xsd: el ement name="property"
m nQccur s="0" maxCccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent at i on>
A nane-val ue pair.
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd:attribute
nanme="nane" type="xsd:string"
use="required" />
<xsd:attribute
nane="val ue" type="xsd:string"
use="required" />
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

71




Persistence

</ xsd: sequence>
<!__ R R R R S R R R R R R R R R R R R R RS R R R R R R EE S )
<xsd: attribute name="name" type="xsd:string"
use="required">
<xsd: annot ati on>
<xsd: docunent ati on>
Nanme used in code to reference this persistence unit.
</ xsd: docunent at i on>
</ xsd: annot ati on>
</xsd:attribute>
<!__ R R R RS R R R R R R R R R R RS R R E R R EEE R )
<xsd: attri bute name="transaction-type"
t ype="per si st ence: per si st ence-uni t-transaction-type">
<xsd: annot ati on>
<xsd: docunent ati on>
Type of transactions used by EntityManagers fromthis
persistence unit.
</ xsd: docunent at i on>
</ xsd: annot ati on>
</xsd:attribute>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
<xsd: attri bute name="version" type="persistence:versi onType"
fixed="2.0" use="required" />
</ xsd: conpl exType>
</ xsd: el enent >
<!__ ER R R R SR R R R R R R R R R R R R R R R R R R R R EE R )
<xsd: si npl eType name="persi stence-unit-transaction-type">
<xsd: annot ati on>
<xsd: docunent at i on>
publ i c enum Persi stenceUnitTransacti onType {JTA, RESOURCE_LOCAL};
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuneration val ue="JTA" />
<xsd: enuner ati on val ue="RESOURCE_LOCAL" />
</xsd:restriction>
</ xsd: si npl eType>
<!__ R R R R S R R R R R R R R R R R R R R SRR E R )
<xsd: si npl eType nanme="persi st ence- unit-cachi ng-type">
<xsd: annot ati on>
<xsd: docunent at i on>
publ i ¢ enum SharedCacheMode { ALL, NONE, ENABLE SELECTI VE,
DI SABLE_SELECTI VE, UNSPECI FI ED} ;
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuner ati on val ue="ALL" />
<xsd: enuner ati on val ue="NONE" />
<xsd: enuner ati on val ue="ENABLE_SELECTI VE" />
<xsd: enuner ati on val ue="DI SABLE_SELECTI VE" />
<xsd: enuner ati on val ue="UNSPECI FI ED' />
</xsd:restriction>
</ xsd: si npl eType>
<!__ R R R R SR R R R R R R R R R R R SRR R R R R R EEE R )
<xsd: si npl eType name="persi stence-unit-validation-node-type">
<xsd: annot ati on>
<xsd: docunent ati on>
public enum Val i dati onMbde { AUTO, CALLBACK, NONE};
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuneration val ue="AUTO" />
<xsd: enuner ati on val ue="CALLBACK" />
<xsd: enuner ati on val ue="NONE" />
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: schenma>

Theroot element of aper si st ence. xm fileis per si st ence, which then contains one or more per si st ence- uni t
definitions. The root element should include the version attribute with the appropriate version, 1. O for aversion 1.0 fileand 2. 0
for aversion 2.0 file. Each persistence unit describes the configuration for the entity managers created by the persistence unit's
entity manager factory. The persistence unit can specify these elements and attributes.

72




Persistence

e nane: Thisisthenameyou passtothe Per si st ence. creat eEnti t yManager Fact or y methods described above.
The name attribute is required.

e transacti on-t ype: Whether to use managed (JTA) or local (RESOURCE_L OCAL) transaction management.

e provi der: If you are using athird-party JPA vendor, this element names its implementation of the
Per si st encePr ovi der bootstrapping interface.

Set thepr ovi der to or g. apache. openj pa. per si st ence. Per si st enceProvi der | npl touse
OpenJPA.

* jta-data-source: TheINDI nameof aJDBC Dat aSour ce that isautomatically enlisted in JTA transactions. This
may be an XA Dat aSour ce.

* non-jta-data-source: TheJNDI nameof aJDBC Dat aSour ce that isnot enlisted in JTA transactions.

» mappi ng- f il e*: Theresource names of XML mapping files for entities and embeddable classes. Y ou can also specify
mapping information in an or m xm fileinyour META- | NF directory. If present, theor m xm mapping file will be read
automatically.

e jar-fil e*: Thenamesof jar files containing entities and embeddable classes. The implementation will scan the jar for
annotated classes.

» cl ass*: The class names of entities and embeddable classes.

* properties: Thiselement contains nested pr operty elements used to specify vendor-specific settings. Each
pr operty hasaname attribute and a value attribute.

Note
The Reference Guide's Chapter 2, Configuration [197] describes OpenJPA's configuration properties.

Hereisatypical per si st ence. xnl filefor anon-EE environment:

Example 6.1. persistence.xml

<?xm version="1.0"?>
<persi stence version="1.0">
<persi stence-unit nane="openjpa">
<provi der >or g. apache. openj pa. per si st ence. Per si st encePr ovi der | npl </ provi der >
<class>tutorial . Ani mal </ cl ass>
<cl ass>tutorial . Dog</cl ass>
<class>tutorial . Rabbi t </cl ass>
<class>tutorial . Snake</cl ass>
<properties>
<property nanme="openj pa. Connecti onURL" val ue="j dbc: hsql db: tut ori al _dat abase"/>
<property nanme="openj pa. ConnectionDriverNanme" val ue="org. hsql db. j dbcDriver"/>
<property nanme="openj pa. Connecti onUser Nane" val ue="sa"/>
<property nanme="openj pa. Connecti onPassword" val ue=""/>
<property nanme="openjpa. Log" val ue="Def aul t Level =WARN, Tool =I NFO'/ >
</ properties>
</ persi stence- uni t >
</ persi stence>

73



http://download.oracle.com/javaee/6/api/javax/persistence/spi/PersistenceProvider.html
http://download.oracle.com/javaee/6/api/javax/persistence/spi/PersistenceProvider.html

Persistence

Non-EE Use

The example below demonstrates the Per si st ence classin action. Y ou will typically execute code like this on application
startup, then cache the resulting factory for future use. This bootstrapping code is only necessary in non-EE environments; in an
EE environment EntityManager Fact ori es aretypicaly injected.

Example 6.2. Obtaining an EntityManagerFactory

/1 if your persistence.xm file does not contain all settings already, you
/1 can add vendor settings to a nap
Properties props = new Properties();

/1 create the factory defined by the "openjpa" entity-nmanager entry
EntityManager Factory enf = Persistence. createEntityManager Factory("openjpa", props);

74




Chapter 7. EntityManagerFactory

javax.persistence

EntityManagerFactory

- createEntityManager(): EntityManager
- createEntityManager(Map) Type: EntityManager

- is0pen(): boolean
- closey)

TheEnt i t yManager Fact ory creates EntityManager instancesfor application use.

OpenJPA extendsthe standard Ent i t yManager Fact or y interface with the OQpenJPAENt i t yManager Fact ory
to provide additional functionality.

7.1. Obtaining an EntityManagerFactory

Within a container, you will typically use injection to accessan Ent i t yManager Fact or y. There are, however, alternative
mechanisms for Ent i t yManager Fact or y construction.

Some vendors may supply public constructors for their  Ent i t yManager Fact or y implementations, but we

recommend using the Java Connector Architecture (JCA) in amanaged environment, or the Per si st ence class

creat eEnti t yManager Fact ory methodsin an unmanaged environment, as described in Chapter 6, Persistence [68].
These strategies allow vendors to pool factories, cutting down on resource utilization.

JPA alowsyou to create and configurean Enti t yManager Fact ory, then storeit in a Java Naming and Directory Interface
(JNDI) treefor later retrieval and use.

7.2. Obtaining EntityManagers

public EntityManager createEntityManager();
public EntityManager createEntityManager(Map map);

Thetwo cr eat eEnt i t yManager methods above create anew Ent i t yManager each timethey are invoked. The optiona
Map is used to supply vendor-specific settings. If you have configured your implementation for JTA transactions and a JTA
transaction is active, thereturned Ent i t yManager will be synchronized with that transaction.

OpenJdPA recognizes the following string keys in the map suppliedto cr eat eEnt i t yManager :

e openj pa. Connecti onUser Nane

75


../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManagerFactory.html

EntityManagerFactory

7.3.

e openj pa. Connect i onPasswor d
e openj pa. Connect i onRet ai nvbde
e openj pa. Transact i onMbde

e openj pa. <pr opert y>, where <property> isany JavaBean property of the
or g. apache. openj pa. per si st ence. OQpenJPAEnt i t yManager .

The last option uses reflection to configure any property of OpenJPA's Ent i t yManager implementation with the

value supplied in your map. The first options correspond exactly to the same-named OpenJPA configuration keys
described in Chapter 2, Configuration [197] of the Reference Guide.

Persistence Context

7.3.1.

A persistence context is a set of entities such that for any persistent identity there is a unique entity instance. Within a persistence
context, entities are managed. The Enti t yManager controlstheir lifecycle, and they can access datastore resources.

When a persistence context ends, previously-managed entities become detached. A detached entity is no longer under the control
of theEnt i t yManager , and no longer has access to datastore resources. We discuss detachment in detail in Section 8.2, “
Entity Lifecycle Management ” [81]. For now, it is sufficient to know that detachment has two obvious consequences:

1. The detached entity cannot load any additional persistent state.
2. TheEnt i t yManager will not return the detached entity from f i nd, nor will queriesinclude the detached entity in their

results. Instead, f i nd method invocations and query executions that would normally incorporate the detached entity will
create a new managed entity with the same identity.

OpenJPA offers several features related to detaching entities. See Section 12.1, “ Detach and Attach ” [350] in the
Reference Guide. Section 12.1.3, “ Defining the Detached Object Graph ” [351] in particular describes how to use
the Det achSt at e setting to boost the performance of merging detached entities.

Injected Ent i t yManager shave atransaction persistence context, while Ent it yManager s obtained through the
Enti t yManager Fact or y have an extended persistence context. We describe these persistence context types below.

Transaction Persistence Context

Under the transaction persistence context model, an Ent i t yManager beginsanew persistence context with each
transaction, and ends the context when the transaction commits or rolls back. Within the transaction, entities you retrieve through
theEnt i t yManager or viaQuer i es are managed entities. They can access datastore resources to lazy-load additional
persistent state as needed, and only one entity may exist for any persistent identity.

When the transaction completes, all entities lose their association with the Ent i t yManager and become detached. Traversing a
persistent field that wasn't already loaded now has undefined results. And usingthe Entit yManager or aQuery toretrieve
additional objects may now create new instances with the same persistent identities as detached instances.

If youusean Ent i t yManager with atransaction persistence context model outside of an active transaction, each method
invocation creates a new persistence context, performs the method action, and ends the persistence context. For example,
consider usingthe Entit yManager . fi nd method outside of atransaction. The Entit yManager will create atemporary

76


../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html

EntityManagerFactory

persistence context, perform the find operation, end the persistence context, and return the detached result object to you. A second
call with the same id will return a second detached object.

When the next transaction begins, the Ent i t yManager will begin anew persistence context, and will again start returning

managed entities. Asyou'll seein Chapter 8, EntityManager [80], you can also merge the previously-detached entities
back into the new persistence context.

Example 7.1. Behavior of Transaction Persistence Context

The following code illustrates the behavior of entitiesunder an  Ent i t yManager using atransaction persistence context.

EntityManager em // injected

/'l outside a transaction:

/1 each operation occurs in a separate persistence context, and returns
/1 a new detached instance

Magazi ne magl = em fi nd(Magazi ne. cl ass, magld);

Magazi ne mag2 = em fi nd(Magazi ne. cl ass, magld);

assert True(mag2 ! = magl);

/'l transaction begins:

/1 within a transaction, a subsequent |ookup doesn't return any of the
/] detached objects. however, two | ookups within the sane transaction
/1 return the sane instance, because the persistence context spans the
/'l transaction

Magazi ne mag3 = em fi nd(Magazi ne. cl ass, magld);

assert True(mag3 ! = magl && mag3 ! = mag2);

Magazi ne mag4 = em find(Magazi ne. cl ass, magld);

assert True(mag4 == mag3);

/'l transaction commits:
/1 once again, each operation returns a new instance

Magazi ne mags = em fi nd(Magazi ne. cl ass, magld);
assert True(mag5 ! = mag3);

7.3.2. Extended Persistence Context

AnEntityManager using an extended persistence context maintains the same persistence context for its entire lifecycle.
Whether inside atransaction or not, all entitiesreturned fromthe Ent i t yManager are managed, and the Ent i t yManager
never creates two entity instances to represent the same persistent identity. Entities only become detached when you finally close
theEnt i t yManager (or whenthey are seriaized).

77



EntityManagerFactory

Example 7.2. Behavior of Extended Persistence Context

The following code illustrates the behavior of entitiesunder an Ent i t yManager using an extended persistence context.

EntityManager Factory enf = ...
EntityManager em = enf.createEntityManager();

/'l persistence context active for entire life of EM so only one entity
/1 for a given persistent identity

Magazi ne magl = em find(Magazi ne. cl ass, magld);

Magazi ne mag2 = em fi nd(Magazi ne. cl ass, magld);

assert True(mag2 == magl);

em get Transacti on(). begi n();

/'l sanme persistence context active within the transaction
Magazi ne mag3 = em fi nd(Magazi ne. cl ass, magld);

assert True(mag3 == magl);
Magazi ne mag4 = em find(Magazi ne. cl ass, magld);
assert True(mag4 == magl);

em get Transacti on. commit () ;

/'l when the transaction commts, instance still nanaged
Magazi ne mag5 = em find(Magazi ne. cl ass, magld);
assert True(mag5 == magl);

/'l instance finally becones detached when EM cl oses
em cl ose();

1.4,

Retrieving Properties Information

There are two sets of properties that may be specified: those that are specific to OpenJPA and those that have been defined by the
JPA specification. In some cases, two properties may be equivalent, but have different keys. For example, openjpa.LockTimeout
and javax.persistence.lock.timeout are two different keys for the same property.

There are two methods that can be used to retrieve information related to properties:

public Map<String, Obj ect> getProperties();
public Set<String> getSupportedProperties();

7.5.

» get Properti es - Providesalist of current properties. If a property has more than one key, the key that will be returned is
the one that was used when the property was set. If the property was not explicitly set, the key defined by the JPA specification
will be returned with the default value.

» get Support edProperti es - Returnsaset of supported property keys. Thisincludes keys defined by the JPA
specification as well as keys specific to OpenJPA. If aproperty has more than one key, all possible keys will be returned.

The get Suppor t edPr oper ti es method isan OpenJPA extension to the JPA specification.

Closing the EntityManagerFactory

78




EntityManagerFactory

publ i c bool ean isOpen();
public void close();

7.6.

Enti t yManager Fact or y instances are heavyweight objects. Each factory might maintain a metadata cache,

object state cache, Ent i t yManager pool, connection pool, and more. If your application no longer needs an

Enti t yManager Fact or y, you should close it to free these resources. When an Ent i t yManager Fact ory closes, al
Ent i t yManager sfrom that factory, and by extension al entities managed by those Ent it yManager s, becomeinvalid.
Attemptingto closean Entit yManager Fact ory whileoneor moreof its Ent i t yManager s has an active transaction
may resultinanl | | egal St at eExcepti on.

Closingan Ent i t yManager Fact or y should not be taken lightly. It is much better to keep a factory open for along period of
time than to repeatedly create and close new factories. Thus, most applications will never close the factory, or only close it when
the application is exiting. Only applications that require multiple factories with different configurations have an obvious reason to
create and close multiple Ent i t yManager Fact ory instances. Once afactory is closed, all methods except i sOpen throw
an |11 egal StateException.

PersistenceUnitUtil

public PersistenceUnitUil getPersistenceUnitUil();

TheEnti t yManager Fact or y method get Per si st enceUni t Uti | providesaccesstoaPer si stenceUnit Uti |
utility. Per si st enceUni t Ut i | can be used to obtain the identity of a managed object and determine the load state of the
entity or one of its attributes. If the object is not managed by one of the entity managers created from the entity manager factory
from which the utility was obtained, theget | dent i f i er method will return null and thei sLoaded methods will return
false.

EntityManager Factory enf = Persistence. createEntityManagerFactory();
PersistenceUnitUil pultil = enf.getPersistenceUnitUil();

if (pultil.getldentifier(deptEntity) == null) {
t hrow new Exception("ldentity is not valid.");

}
if ('pultil.isLoaded(deptEntity, "enployees")) {
t hrow new Excepti on("Enpl oyees not | oaded.");

}

79




Chapter 8. EntityManager

8.1.

javax.persistence

EntityManager
- FlushMode: FlushModeType
- getTransaction(): Entity Transaction

- persistiObject)

- removeObject)

- refresh{Object)

- merge(Object): Object

- lock{Object, LockModeType)

- find(Class<T= Object): T
- getReference(Class<T>, Object): T
- contains{Object): boolean

- fiush(}
- cleary)

- createQuery(String): Query
- createNamedQuery(String): Query
- createNativeQuery(...): Query

- is0pen(): boolean
- close()

The diagram above presents an overview of the Ent i t yManager interface. For acomplete treatment of the
Enti t yManager API, seethe Javadoc documentation. Methods whose parameter signatures consist of an ellipsis(...) are
overloaded to take multiple parameter types.

OpenJPA extendsthe standard Ent i t yManager interface with the
or g. apache. openj pa. per si st ence. OpenJPAENt i t yManager interface to provide additional
functionality.

TheEnt i t yManager isthe primary interface used by application developers to interact with the JPA runtime. The methods of
the Ent i t yManager can be divided into the following functional categories:

* Transact i on association.
* Entity lifecycle management.
« Entity identity management.

» Cache management.

* Query factory.

* Entity locking.

e Closing.

Transaction Association

80


http://download.oracle.com/javaee/6/api/javax/persistence/EntityManager.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html

EntityManager

public EntityTransaction get Transaction();

8.2.

Every Ent i t yManager hasaone-to-onerelationwithan Ent i t yTransacti on instance. In fact, many vendors use a
single classto implement both the Ent i t yManager andEnti t yTransacti on interfaces. If your application requires
multiple concurrent transactions, you will use multiple Ent i t yManager s.

You canretrievetheEnt i t yTr ansact i on associated with an Ent i t yManager through theget Tr ansacti on method.
Note that most JPA implementations can integrate with an application server's managed transactions. If you take advantage of
this feature, you will control transactions by declarative demarcation or through the Java Transaction API (JTA) rather than
throughtheEnt i t yTransacti on.

Entity Lifecycle Management

Ent i t yManager s perform several actions that affect the lifecycle state of entity instances.

public void persist(Object entity);

Transitions new instances to managed. On the next flush or commit, the newly persisted instances will be inserted into the
datastore.

For agiven entity A, the per si st method behaves as follows:
» If Aisanew entity, it becomes managed.
 If Aisan existing managed entity, it isignored. However, the persist operation cascades as defined below.

 If Aisaremoved entity, it becomes managed.

If Aisadetached entity, an |1 | egal Ar gunent Except i on isthrown.
» The persist operation recurses on all relation fields of A whose cascadesinclude CascadeType. PERSI ST.

This action can only be used in the context of an active transaction.

public void renove(Object entity);

Transitions managed instances to removed. The instances will be deleted from the datastore on the next flush or commit.
Accessing aremoved entity has undefined results.

For agiven entity A, ther enove method behaves as follows:
» If Aisanew entity, it isignored. However, the remove operation cascades as defined below.
 If Aisan existing managed entity, it becomes removed.

 If Aisaremoved entity, it isignored.

81




EntityManager

e If Aisadetached entity,an 111 egal Ar gunent Except i on isthrown.
» Theremove operation recurses on all relation fields of A whose cascadesinclude CascadeType. REMOVE.

This action can only be used in the context of an active transaction.

public void refresh(Object entity);

Usether ef r esh action to make sure the persistent state of an instance is synchronized with the values in the datastore.
r ef r esh isintended for long-running optimistic transactions in which there is a danger of seeing stale data.

For agiven entity A, ther ef r esh method behaves as follows:
» If Aisanew entity, it isignored. However, the refresh operation cascades as defined below.
» If Aisan existing managed entity, its state is refreshed from the datastore.

» If Aisaremoved entity, it isignored.

If Aisadetached entity, an 111 egal Ar gunment Except i on isthrown.

The refresh operation recurses on all relation fields of A whose cascadesinclude CascadeType. REFRESH.

public Cbject nerge(Cbject entity);

A common use case for an application running in aservlet or application server isto "detach" objects from all server
resources, modify them, and then "attach" them again. For example, a servlet might store persistent data in a user session between
amodification based on a series of web forms. Between each form request, the web container might decide to seriaize the
session, requiring that the stored persistent state be disassociated from any other resources. Similarly, a client/server application
might transfer persistent objectsto aclient via serialization, allow the client to modify their state, and then have the client return
the modified data in order to be saved. Thisis sometimes referred to as the data transfer object or value object pattern, and it
allows fine-grained manipulation of data objects without incurring the overhead of multiple remote method invocations.

JPA provides support for this pattern by automatically detaching entities when they are serialized or when a persistence context
ends (see Section 7.3, “ Persistence Context ” [76] for an exploration of persistence contexts). The JPA merge API re-attaches
detached entities. This allows you to detach a persistent instance, modify the detached instance offline, and merge the instance
back into an Ent i t yManager (either the same one that detached the instance, or a new one). The changes will then be applied
to the existing instance from the datastore.

A detached entity maintains its persistent identity, but cannot load additional state from the datastore. Accessing any persistent
field or property that was not loaded at the time of detachment has undefined results. Also, be sure not to alter the version or
identity fields of detached instancesif you plan on merging them later.

The ner ge method returns a managed copy of the given detached entity. Changes made to the persistent state of the detached
entity are applied to this managed instance. Because merging involves changing persistent state, you can only merge within a
transaction.

If you attempt to merge an instance whose representation has changed in the datastore since detachment, the merge operation will
throw an exception, or the transaction in which you perform the merge will fail on commit, just asif anormal optimistic conflict
were detected.

82




EntityManager

OpenJPA offers enhancements to JPA detachment functionality, including additional options to control which fields are
detached. See Section 12.1, “ Detach and Attach ” [350] in the Reference Guide for details.

For agiven entity A, the mer ge method behaves as follows:

» If Aisadetached entity, its stateis copied into existing managed instance A' of the same entity identity, or a new managed
copy of Aiscreated.

» If Aisanew entity, anew managed entity A'  is created and the state of Aiscopiedinto A" .

» If Aisan existing managed entity, it isignored. However, the merge operation still cascades as defined below.
» If Aisaremoved entity, an 11| egal Ar gurrent Except i on isthrown.

» The merge operation recurses on all relation fields of A whose cascadesinclude CascadeType. MERGE.

The following diagram illustrates the lifecycle of an entity with respect to the APIs presented in this section.

persist rollback® new

persistfrollback”
‘er ‘eSh
—
— remove

commitrollbackiclose merge

commit

rollback

|* = Extended persistence context |

8.3. Lifecycle Examples

The examples below demonstrate how to use the lifecycle methods presented in the previous section. The examples are
appropriate for out-of-container use. Within acontainer, Entit yManager sare usualy injected, and transactions are usually

managed. Y ou would therefore omit the creat eEntit yManager and cl ose cals, aswell asall transaction demarcation
code.

83



EntityManager

Example 8.1. Persisting Objects

/'l create sone objects
Magazi ne mag = new Magazi ne("1B78- YWIL", "JavaWorld");

Conpany pub = new Conpany("Wston House");
pub. set Revenue(1750000D) ;

mag. set Publ i sher (pub);

pub. addMagazi ne( mag) ;

Article art = new Article("JPA Rules!", "Transparent Cbject Persistence");
art . addAut hor (new Aut hor (" Fred", "Hoyle"));
mag. addArticle(art);

/'l persi st

EntityManager em = enf.createEntityManager();
em get Transaction(). begi n();

em per si st (mag) ;

em per si st (pub);

em persist(art);

em get Transaction().commt();

/1 or we could continue using the EntityMnager...
em cl ose();

Example 8.2. Updating Objects

Magazi ne. Magazi neld m = new Magazi ne. Magazi nel d();
m.isbn = "1B78- YUIL";
m.title = "JavaWrl d";

/'l updates should al ways be nade within transactions; note that
/1 there is no code explicitly linking the nagazi ne or conpany
/1 with the transaction; JPA automatically tracks all changes
EntityManager em = enf.createEntityManager();

em get Transacti on(). begi n();

Magazi ne mag = em fi nd(Magazi ne. cl ass, m);

mag. set Pri ce(5.99);

Conpany pub = mag. get Publisher();

pub. set Revenue(1750000D) ;

em get Transaction().commt();

/1 or we could continue using the EntityMnager. ..
em cl ose();




EntityManager

Example 8.3. Removing Objects

/'l assume we have an object id for the conpany whose subscriptions
/1 we want to delete
Object oid = ...;

/1 del etes should al ways be nade within transactions
EntityManager em = enf.createEntityManager();
em get Transaction(). begi n();
Conpany pub = (Conpany) em find(Conpany.class, oid);
for (Subscription sub : pub.getSubscriptions())
em renmove(sub);
pub. get Subscriptions().clear();
em get Transaction().conmmt();

/1 or we could continue using the EntityMnager...
em cl ose();

Example 8.4. Detaching and Merging

This example demonstrates a common client/server scenario. The client requests objects and makes changes to them, while the
server handles the object lookups and transactions.

/1 CLI ENT:
/'l requests an object with a given oid
Record detached = (Record) get FronServer(oid);

/1 SERVER:

/1 send object to client; object detaches on EM cl ose
Obj ect oid = processd ientRequest();

EntityManager em = enf.createEntityManager();

Record record = em find(Record.class, oid);

em cl ose();

sendToC i ent (record);

/1 CLIENT:

/1 makes sonme nodifications and sends back to server
det ached. set SoneFi el d("bar");

sendToSer ver (det ached) ;

/| SERVER:

/1 merges the instance and commit the changes
Record nodi fied = (Record) processC ientRequest();
EntityManager em = enf.createEntityManager();

em get Transaction(). begi n();

Record nerged = (Record) em nerge(nodified);

ner ged. set Last Modi fi ed(SystemcurrentTimeM I lis());
ner ged. set Modi fier(getCientldentityCode());

em get Transaction().commt();

em cl ose();

8.4.

Entity Identity Management

Each Ent i t yManager isresponsible for managing the persistent identities of the managed objects in the persistence context.
The following methods allow you to interact with the management of persistent identities. The behavior of these methods is

85




EntityManager

deeply affected by the persistence context type of the Ent i t yManager ; see Section 7.3, “ Persistence Context ” [76] for an
explanation of persistence contexts.

public <T> T find(d ass<T> cls, Object oid);

This method returns the persistent instance of the given type with the given persistent identity. If the instanceis aready present
in the current persistence context, the cached version will be returned. Otherwise, a new instance will be constructed and |oaded
with state from the datastore. If no entity with the given type and identity existsin the datastore, this method returns null.

public <T> T get Reference(d ass<T> cls, Object oid);

Thismethod issimilar tof i nd, but does not necessarily go to the database when the entity is not found in cache. The
implementation may construct a hollow entity and return it to you instead. Hollow entities do not have any state |oaded.
The state only gets loaded when you attempt to access a persistent field. At that time, the implementation may throw an
Enti t yNot FoundExcept i on if it discoversthat the entity does not exist in the datastore. The implementation may also
throw an Ent i t yNot FoundExcept i on from the get Ref er ence method itself. Unlike fi nd, get Ref er ence does not
return null.

publ i ¢ bool ean contai ns(Object entity);

8.5.

Returnstrue if the given entity is part of the current persistence context, and false otherwise. Removed entities are not
considered part of the current persistence context.

Cache Management

public void flush();

Thef | ush method writes any changes that have been made in the current transaction to the datastore. If the
Enti t yManager doesnot aready have a connection to the datastore, it obtains one for the flush and retains it for the duration
of the transaction. Any exceptions during flush cause the transaction to be marked for rollback. See Chapter 9, Transaction
[90].

Flushing requires an active transaction. If there isn't atransaction in progress, the f | ush method throws a
Transacti onRequi r edExcepti on.

public FlushModeType get Fl ushMode();
public void setFl ushMbde(Fl ushMbdeType fl ushMode);

TheEnt i t yManager 'sFl ushMode property controls whether to flush transactional changes before executing queries.
This allows the query results to take into account changes you have made during the current transaction. Available
j avax. per si st ence. Fl ushMbdeType constants are:

e COW T: Only flush when committing, or when told to do so through the f | ush method. Query results may not take into
account changes made in the current transaction.

86



http://download.oracle.com/javaee/6/api/javax/persistence/FlushModeType.html
http://download.oracle.com/javaee/6/api/javax/persistence/FlushModeType.html

EntityManager

e AUTQ Theimplementation is permitted to flush before queries to ensure that the results reflect the most recent object state.

Y ou can also set the flush mode on individual Quer y instances.

OpenJPA only flushes before a query if the query might be affected by data changed in the current transaction.
Additionally, OpenJPA allows fine-grained control over flushing behavior. See the Reference Guide's Section 4.8, “
Configuring the Use of JDBC Connections” [249].

public void clear();

Clearingthe Ent i t yManager effectively ends the persistence context. All entities managed by the Ent i t yManager
become detached.

8.6. Query Factory

public Query createQuery(String query);

Quer y objects are used to find entities matching certain criteria. The cr eat eQuer y method creates a query using the given
Java Persistence Query Language (JPQL) string. See Chapter 10, JPA Query [93] for details.

public Query createNanmedQuery(String nane);

This method retrieves a query defined in metadata by name. The returned Quer y instance isinitialized with the information
declared in metadata. For more information on named queries, read Section 10.1.11, “ Named Queries” [104].

public Query createNativeQuery(String sql);
public Query createNativeQuery(String sql, Class resultCs);
public Query createNativeQuery(String sql, String resultMpping);

Native queries are queries in the datastore's native language. For relational databases, this is the Structured Query Language
(SQL). Chapter 12, SQL Queries [145] elaborates on JPA's native query support.

8.7. Entity Locking

In the area of concurrency control, the JPA specification supports optimistic and pessimistic locking.

public void |l ock(Object entity, LockMbdeType npde);

This method locks the given entity using the named mode. The j avax. per si st ence. LockModeType enum defines eight
modes:

87


http://download.oracle.com/javaee/6/api/javax/persistence/LockModeType.html

EntityManager

38.8.

e OPTI M STI C: Optimistic locking.

* OPTI M STI C_FORCE_| NCREMENT: Optimistic locking. When a transaction is committed, the entity's version column will
be incremented even if the entity's state did not change in the transaction.

* PESSI M STI C_READ: Pessimistic locking. Other transactions may concurrently read the entity, but cannot concurrently
update it.

e PESSI M STI C_WRI TE: Pessimistic locking. Other transactions cannot concurrently read or write the entity.

» PESSI M STI C_FORCE_| NCREMENT: Pessimistic locking. Other transactions cannot concurrently read or write the entity.
When atransaction is committed, the entity's version column will be incremented even if the entity's state did not change in the
transaction.

* READ: A synonym for OPTI M STI C.
* WRI TE: A synonym for OPTI M STl C_FORCE_| NCREMENT.
» NONE: No locking is performed.

Entities can also be locked at the time when entity state gets loaded from the datastore. Thisis achieved by supplying alock
mode to the respective versions of f i nd and r ef r esh methods. If an entity state isto be loaded by a query, alock mode can be
passed to the Quer y. set LockMbde and TypedQuery. set LockMbde methods.

public LockMbdeType get LockMode(Object entity);

Returns the lock mode currently held by the given entity.

» OpenJPA differentiates between PESSI M STI C_READ and PESSI M STl C_WRI TE lock modes only with
DB2 databases. While running with other databases, there is no distinction between these two modes because
PESSI M STI C_READ lock mode is upgraded to PESSI M STI C_WRI TE.

¢ OpenJPA has additional APIsfor controlling entity locking. See Section 9.3, “ Object Locking ” [325] in the
Reference Guide for detalls.

Retrieving Properties Information

There are two sets of properties that may be specified: those that are specific to OpenJPA and those that have been defined by the
JPA specification. In some cases, two properties may be equivalent, but have different keys. For example, openjpa.LockTimeout
and javax.persistence.lock.timeout are two different keys for the same property.

There are two methods that can be used to retrieve information related to properties:

public Map<String, Object> getProperties();
public Set<String> get SupportedProperties();

e get Properti es - Providesalist of current properties. If a property has more than one key, the key that will be returned is
the one that was used when the property was set. If the property was not explicitly set, the key defined by the JPA specification
will be returned with the default value.

88




EntityManager

8.9.

» get Support edProperti es - Returnsaset of supported property keys. Thisincludes keys defined by the JPA
specification as well as keys specific to OpenJPA. If a property has more than one key, all possible keys will be returned.

The get Support edPr operti es method isan OpenJPA extension to the JPA specification.

Closing

public bool ean isOpen();
public void close();

When an Ent i t yManager isno longer needed, you should call itscl ose method. Closingan Enti t yManager releases
any resourcesit is using. The persistence context ends, and the entities managed by the Ent i t yManager become detached.
Any Query instancesthe Ent i t yManager created becomeinvalid. Calling any method other thani sOpen on aclosed

EntityManager resultsinanl || egal St at eExcepti on. Youcannot closeaEntityManager thatisinthe middle of
atransaction.

If you arein amanaged environment using injected entity managers, you should not close them.

89




Chapter 9. Transaction

9.1.

Transactions are critical to maintaining dataintegrity. They are used to group operations into units of work that act in an all-or-
nothing fashion. Transactions have the following qualities:

» Atomicity. Atomicity refersto the all-or-nothing property of transactions. Either every data update in the transaction
completes successfully, or they al fail, leaving the datastore in its original state. A transaction cannot be only partially
successful.

» Consistency. Each transaction takes the datastore from one consistent state to another consistent state.

» Isolation. Transactions are isolated from each other. When you are reading persistent data in one transaction, you cannot "see"
the changes that are being made to that data in other transactions. Similarly, the updates you make in one transaction cannot
conflict with updates made in concurrent transactions. The form of conflict resolution employed depends on whether you are
using pessimistic or optimistic transactions. Both types are described later in this chapter.

» Durability. The effects of successful transactions are durable; the updates made to persistent data last for the lifetime of the
datastore.

Together, these qualities are called the ACID properties of transactions. To understand why these properties are so important to
maintaining data integrity, consider the following example:

Suppose you create an application to manage bank accounts. The application includes a method to transfer funds from one user to
another, and it looks something like this:

public void transferFunds(User from User to, double amt) {
from decr enent Account (ammt ) ;
to. i ncrenent Account (ammt) ;

Now suppose that user Alice wants to transfer 100 dollars to user Bob. No problem; you simply invoke your t r ansf er Funds
method, supplying Alicein thef r omparameter, Bobinthe t o parameter, and 100. 00 astheamrmt . Thefirst line of

the method is executed, and 100 dollars is subtracted from Alice's account. But then, something goes wrong. An unexpected
exception occurs, or the hardware fails, and your method never completes.

Y ou are |eft with a situation in which the 100 dollars has simply disappeared. Thanks to the first line of your method, itisno
longer in Alice's account, and yet it was never transferred to Bob's account either. The datastore isin an inconsistent state.

The importance of transactions should now be clear. If the two lines of thet r ansf er Funds method had been placed together
in atransaction, it would be impossible for only the first line to succeed. Either the funds would be transferred properly or they
would not be transferred at all, and an exception would be thrown. Money could never vanish into thin air, and the data store
could never get into an inconsistent state.

Transaction Types

There are two major types of transactions: pessimistic transactions and optimistic transactions. Each type has both advantages and
disadvantages.

Pessimistic transactions generally lock the datastore records they act on, preventing other concurrent transactions from using
the same data. This avoids conflicts between transactions, but consumes database resources. Additionally, locking records can
result in deadlock, a situation in which two transactions are both waiting for the other to release its locks before completing.
Theresults of adeadlock are datastore-dependent; usually one transaction is forcefully rolled back after some specified timeout
interval, and an exception is thrown.

90




Transaction

9.2.

This document will often use the term datastor e transaction in place of pessimistic transaction. Thisis to acknowledge that some
datastores do not support pessimistic semantics, and that the exact meaning of a non-optimistic JPA transaction is dependent on
the datastore. Most of the time, a datastore transaction is equivalent to a pessimistic transaction.

Optimistic transactions consume less resources than pessimistic/datastore transactions, but only at the expense of reliability.
Because optimistic transactions do not lock datastore records, two transactions might change the same persistent information
at the same time, and the conflict will not be detected until the second transaction attempts to flush or commit. At thistime, the
second transaction will realize that another transaction has concurrently modified the same records (usually through a timestamp
or versioning system), and will throw an appropriate exception. Note that optimistic transactions still maintain data integrity; they
are simply more likely to fail in heavily concurrent situations.

Despite their drawbacks, optimistic transactions are the best choice for most applications. They offer better performance, better
scalability, and lower risk of hanging due to deadlock.

OpenJdPA uses optimistic semantics by default, but supports both optimistic and datastore transactions. OpenJPA also
offers advanced locking and versioning APIs for fine-grained control over database resource allocation and object
versioning. See Section 9.3, “ Object Locking” [325] of the Reference Guide for details on locking. Section 5.2.6,

“ Version ” [36] of this document covers standard object versioning, while Section 7.7, “ Additional JPA Mappings
" [301] of the Reference Guide discusses additional versioning strategies available in OpenJPA.

The EntityTransaction Interface

javax.persistence

EntityTransaction

~Dbegin()
- commit()
- rollback()
- isActive(): boolean

JPA integrates with your container's managed transactions, allowing you to use the container's declarative transaction
demarcation and its Java Transaction APl (JTA) implementation for transaction management. Outside of a container, though, you
must demarcate transactions manually through JPA. TheEnt i t yTr ansact i on interface controls unmanaged transactionsin
JPA.

public void begin();
public void comit();
public void rollback();

Thebegi n,conmi t, andr ol | back methods demarcate transaction boundaries. The methods should be self-explanatory:
begi n startsatransaction, conmi t attempts to commit the transaction's changes to the datastore, and r ol | back abortsthe
transaction, in which case the datastore is "rolled back" to its previous state. JPA implementations will automatically roll back
transactions if any exception is thrown during the commit process.

Unless you are using an extended persistence context, committing or rolling back aso ends the persistence context. All managed
entitieswill be detached from the Ent i t yManager .

91




Transaction

publ i c bool ean isActive();

Finally, thei sAct i ve method returnst r ue if thetransaction isin progress (begi n has been called more recently than
conmi t orrol | back),andf al se otherwise.

Example9.1. Grouping Operationswith Transactions

public void transferFunds(EntityManager em User from User to, double amt) {
// note: it would be better practice to nobve the transaction demarcation
/'l code out of this nmethod, but for the purposes of exanple...
Transaction trans = em get Transaction();
trans. begin();
try
{

from decr enent Account (amt ) ;
to.increment Account (ammt);
trans.commit();

}
catch (RuntimeException re)

{
if (trans.isActive())
trans.rol | back(); /1 or could attenpt to fix error and retry
throw re;
}

92




Chapter 10. JPA Query

Javax.jdo

Query

- selHint(String, Object): Query
- selFlushMode(FlushModeType): Query

- setFirstResult{ing: Query
- setMaxResults{int): Query

- setParameter(String, ...): Query
- setParameterfint, ...): Query

- getResultList): List
- getSingleResulty): Object
- executelUpdate(): int

Thej avax. per si st ence. Query interface is the mechanism for issuing queriesin JPA. The primary query language used
is the Java Persistence Query Language, or JPQL. JPQL is syntactically very similar to SQL, but is object-oriented rather than
table-oriented.

The API for executing JPQL queries will be discussed in Section 10.1, “ JPQL API ” [93], and afull language reference
will be covered in Section 10.2, “ JPQL Language Reference” [105].

10.1. JPQL API

10.1.1. Query Basics

SELECT x FROM Magazi ne x

The preceding isa simple JPQL query for all Magazi ne entities.

public Query createQuery(String jpql);

The Enti t yManager . cr eat eQuer y method creates a Quer y instance from a given JPQL string.

public List getResultList();

Invoking Query. get Resul t Li st executesthe query and returnsalLi st containing the matching objects. The following
example executes our Magazi ne query above:

EntityManager em= ...
Query g = em createQuery("SELECT x FROM Magazi ne x");
Li st <Magazi ne> results = (List<Magazine>) q.getResultList();

93


http://download.oracle.com/javaee/6/api/javax/persistence/EntityManager.html
http://download.oracle.com/javaee/6/api/javax/persistence/Query.html#getResultList()

JPA Query

A JPQL query has an internal namespace declared in the f r omclause of the query. Arbitrary identifiers are assigned to entities
so that they can be referenced elsewhere in the query. In the query example above, the identifier x is assigned to the entity
Magazi ne .

The as keyword can optionally be used when declaring identifiersin the f r omclause. SELECT x FROM Magazi ne
x and SELECT x FROM Magazi ne AS x are Synonymous.

Following thesel ect clause of the query isthe object or objects that the query returns. In the case of the query above, the
query's result list will contain instances of the Magazi ne class.

When selecting entities, you can optionally use the keyword obj ect . Theclausessel ect x and SELECT
OBJECT( x) are synonymous.

The optional wher e clause places criteria on matching results. For example:

SELECT x FROM Magazi ne x WHERE x.title = 'JDJ'

Keywords in JPQL expressions are case-insensitive, but entity, identifier, and member names are not. For example, the
expression above could also be expressed as:

sel ect x from Magazi ne x where x.title = 'JDJ'

But it could not be expressed as:

SELECT x FROM Magazi ne x WHERE x. TITLE = ' JDJ'

Aswiththesel ect clause, alias namesinthewher e clause are resolved to the entity declared inthef r om clause. The
guery above could be described in English as "for @l Magazi ne instances x, return alist of every x suchthat x'stitl e field
isequal to'JDJ".

JPQL uses SQL-like syntax for query criteria. The and and or logical operators chain multiple criteriatogether:

SELECT x FROM Magazi ne x WHERE x.title = 'JDJ' OR x.title = 'JavaPro'

The = operator tests for equality. <> testsfor inequality. JPQL also supports the following arithmetic operators for numeric
comparisons. >, >=, <, <=, Forexample

SELECT x FROM Magazi ne x WHERE x.price > 3.00 AND x. price <= 5.00

This query returns all magazines whose priceis greater than 3.00 and less than or equal to 5.00.

%




JPA Query

SELECT x FROM Magazi ne x WHERE x.price <> 3.00

This query returns all Magazines whose price is not equal to 3.00.

Y ou can group expressions together using parentheses in order to specify how they are evaluated. Thisis similar to how
parentheses are used in Java. For example:

SELECT x FROM Magazi ne x WHERE (x.price > 3.00 AND x.price <= 5.00) OR x.price < 7.00

This expression would match magazines whose priceis less than 7.00. Alternately:

SELECT x FROM Magazi ne x WHERE x.price > 3.00 AND (x.price <= 5.00 OR x.price < 7.00)

This expression would match magazines whose price is 4.00, 5.00 or 6.00, but not 1.00, 2.00 or 3.00.

JPQL also includes the following conditionals:

[ NOT] BETWEEN: Shorthand for expressing that a value falls between two other values. The following two statements are
Synonymous:

SELECT x FROM Magazi ne x WHERE x.price >= 3.00 AND x. price <= 5.00

SELECT x FROM Magazi ne x WHERE x. price BETWEEN 3. 00 AND 5. 00

[ NOT] LI KE: Performs a string comparison with wildcard support. The specia character ' ' in the parameter meansto
match any single character, and the special character ‘%' means to match any sequence of characters. The following statement
matchestitlefields "JDJ' and "JavaPro", but not "IT Insider":

SELECT x FROM Magazine x WHERE x.title LIKE 'J%

The following statement matches the title field "JDJ" but not "JavaPro":

SELECT x FROM Magazine x WHERE x.title LIKE "J__'

[ NOT] | N: Specifiesthat the member must be equal to one element of the provided list. The following two statements are
Synonymous:

95




JPA Query

SELECT x FROM Magazi ne x WHERE x.title IN ('JDJ', 'JavaPro', 'IT Insider")

SELECT x FROM Magazi ne x WHERE x.title = 'JDJ' OR x.title = 'JavaPro’ OR x.title = "IT Insider’

* | S [NOT] EMPTY: Specifiesthat the collection field holds no elements. For example:

SELECT x FROM Magazi ne x WHERE x.articles is enpty

This statement will return all magazineswhose arti cl es member contains no elements.

* | S [NOT] NULL: Specifiesthat thefield isegual to null. For example:

SELECT x FROM Magazi ne x WHERE x. publisher is null

This statement will return all Magazine instances whose "publisher" field issettonul | .

» NOT: Negates the contained expression. For example, the following two statements are synonymous.

SELECT x FROM Magazi ne x WHERE NOT(x. price = 10.0)

SELECT x FROM Magazi ne x WHERE x.price <> 10.0

10.1.2. Relation Traversal

Relations between objects can be traversed using Javarlike syntax. For example, if the Magazine class has afield named
"publisher" of type Company, that relation can be queried as follows:

SELECT x FROM Magazi ne x WHERE x. publisher.name = ' Random House'

This query returns all Magazi ne instanceswhose publ i sher fieldisset to aConpany instance whose name is "Random
House".

Single-valued relation traversal implies that the relation is not null. In SQL terms, thisis known as an inner join. If you want to
also include relations that are null, you can specify:

SELECT x FROM Magazi ne x WHERE x. publisher.name = ' Random House' or x.publisher is null

You can aso traverse collection fields in queries, but you must declare each traversal in the f r omclause. Consider:

96



JPA Query

SELECT x FROM Magazine x, |IN(x.articles) y WHERE y. authorName = ' John Doe'

This query saysthat for each Magazi ne x ,traversethearti cl es relation and check each Arti cl e y, and passthefilter
if y'saut hor Nane field is equal to "John Doe". In short, this query will return all magazines that have any articles written by
John Doe.

Thel N() syntax can also be expressed with the keywordsi nner j oi n. The statements SELECT x FROM
Magazi ne x, IN(x.articles) y WHERE y. aut hor Nanme = ' John Doe' and SELECT x FROM
Magazi ne x inner join x.articles y WHERE y. aut hor Nanme = ' John Doe' are synonymous.

10.1.3. Embeddable Traversal

Similar to relation traversal, nested embeddable objects can be traversed using Java-like syntax. For example, if the Conpany
class has afield named "address' of an embeddable type Addr ess, and the Addr ess has afield named "geocode" of an
embeddable type Geocode, thegeocode of acompany's address can be queried as follows:

SELECT c. addr ess. geocode FROM Conpany ¢ WHERE c. name = ' Random House'

The geocode returned by the above query will not be part of the state of any managed entity. Modifications to these
embeddable instances are not allowed.

Traversal into embeddable's state field is also allowed as shown in the following query:

SELECT c. addr ess. geocode. | ati t ude FROM Conpany ¢ WHERE c. nane = ' Random House'

Embeddabl e objects may contain single-valued or collection-valued relations. These relations can also be traversed using Java-
like syntax. For example, if the Address has arelation field named "phoneLists" of an entity type PhoneNunber , the following
guery returnsthe PhoneNunber entities of the Conpany named 'Random House':

SELECT p FROM Conpany c¢, |N(c.address. phonelLists) p WHERE c. nane = ' Random House'

10.1.4. Fetch Joins

JPQL queries may specify oneor morej oi n f et ch declarations, which allow the query to specify which fields in the returned
instances will be pre-fetched.

97



JPA Query

SELECT x FROM Magazine x join fetch x.articles WHERE x.title = 'JDJ'

The query above returns Magazi ne instances and guarantees that thear t i cl es field will already be fetched in the returned
instances.

Multiple fields may be specified in separatej oi n f et ch declarations:

SELECT x FROM Magazine x join fetch x.articles join fetch x.authors WHERE x.title = "'JDJ'

Notice that in the above query, bothar t i cl es and aut hor s arerelation property in Magazi ne. JPQL syntax does not allow
range variable declared for paths on the right-hand side of j 0oi n f et ch. Therefore, if Arti cl e entity hasarelation property
of publ i sher s, itisnot possible to specify a query that returns Magazi ne instances and pre-fetchthear ti cl es and the
publ i sher s. Thefollowing query will result in syntax error:

SELECT x FROM Magazine x join fetch x.articles a join fetch a.publishers p WHERE x.title = 'JDJ'

Specifying thej oi n f et ch declaration is functionally eguivalent to adding the fields to the Query's
Fet chConf i gur ati on. See Section 5.7, “ Fetch Groups” [276].

10.1.5. JPQL Functions

Aswell as supporting direct field and relation comparisons, JPQL supports a pre-defined set of functions that you can apply.

« CONCAT(stringl, string2): Concatenatestwo string fields or literals. For example:

SELECT x FROM Magazi ne x WHERE CONCAT(x.title, 's') = 'JDJs'

* SUBSTRI NG(string, startlndex, [length]):Returnsthepartof thestri ng argument starting at
st art | ndex (1-based) and optionally ending at | engt h characterspast st art | ndex. If thel engt h argument is not
specified, the substring from the st ar t | ndex to the end of thest ri ng isreturned.

SELECT x FROM Magazi ne x WHERE SUBSTRING(x.title, 1, 1) = "'J'

 TRRM[LEADING | TRAILING | BOTH [character FROM stri ng: Trimsthe specified character from either
the beginning ( LEADI NG ) end ( TRAI LI NG) or both ( BOTH ) of the string argument. If no trim character is specified, the
space character will be trimmed.

SELECT x FROM Magazi ne x WHERE TRIM BOTH 'J' FROM x.title) ='D

 LOWER(stri ng) : Returnsthe lower-case of the specified string argument.

98



JPA Query

SELECT x FROM Magazi ne x WHERE LOVER(x.title) = "'jdj"'

UPPER( st r i ng) : Returns the upper-case of the specified string argument.

SELECT x FROM Magazi ne x WHERE UPPER(x.title) = 'JAVAPRO

LENGTH( st ri ng) : Returns the number of charactersin the specified string argument.

SELECT x FROM Magazi ne x WHERE LENGTH(x.title) = 3

LOCATE(searchString, candidateString [, startlndex]):Returnsthefirstindex of searchStringin
candi dat eSt ri ng. Positions are 1-based. If the string is not found, returns 0.

SELECT x FROM Magazi ne x WHERE LOCATE('D, x.title) = 2

ABS( nunber ) : Returns the absolute value of the argument.

SELECT x FROM Magazi ne x WHERE ABS(x.price) >= 5.00

SQRT( nunber) : Returns the square root of the argument.

SELECT x FROM Magazi ne x WHERE SQRT(x.price) >= 1.00

MOD( nurber, di vi sor) : Returnsthe modulo of nunber anddi vi sor.

SELECT x FROM Magazi ne x WHERE MOD(x. price, 10) = 0

| NDEX(i dentification_vari abl e): Returnsan integer value corresponding to the position of its argument in an
ordered list. The INDEX function can only be applied to identification variables denoting types for which an order column has
been specified.

In the following example, st udent Wi t | i st isalist of students for which an order column has been specified, the query
returns the name of the first student on the waiting list of the course named 'Calculus:

SELECT w. name FROM Course ¢ JO N c.studentWaitlist w WHERE c. nanme = ‘Cal cul us’ AND | NDEX(w) = 0

99




JPA Query

e CURRENT _DATE: Returnsthe current date.
e CURRENT_TI ME: Returnsthe current time.

e CURRENT_TI MESTAMP: Returns the current timestamp.

10.1.6. Polymorphic Queries

All JPQL queries are polymorphic, which means the f r omclause of a query includes not only instances of the specific entity
classtowhich it refers, but all subclasses of that class aswell. The instances returned by a query include instances of the
subclasses that satisfy the query conditions. For example, the following query may return instancesof Magazi ne , aswell as
Tabl oi d and Di gest instances, where Tabl oi d and Di gest are Magazi ne subclasses.

SELECT x FROM Magazi ne x WHERE x.price < 5

Non-polymorphic queries or queries whose polymorphism is restricted can be specified using entity type expressions (see
Section 10.2.6.4, “ Entity Type Expressions” [128] ) in the WHERE clause to restrict the domain of the query. For example,
the following query returns instances of Di gest :

SELECT x FROM Magazi ne WHERE TYPE(x) = Di gest

10.1.7. Query Parameters

JPQL provides support for parameterized queries. Either named parameters or positional parameters may be specified in the
guery string. Parameters allow you to re-use query templates where only the input parameters vary. A single query can declare
either named parameters or positional parameters, but is not alowed to declare both named and positional parameters.

public Query setParaneter (int pos, Object value);

Specify positional parametersin your JPQL string using an integer prefixed by a question mark. Y ou can then populate the
Quer y object with positional parameter valuesviacallsto the set Par anet er method above. The method returnsthe Quer y
instance for optional method chaining.

EntityManager em = ...

Query g = em createQuery("SELECT x FROM Magazi ne x WHERE x.title = ?1 and x.price > ?2");
g.set Paranmeter (1, "JDJ").setParanmeter(2, 5.0);

Li st <Magazi ne> results = (List<Magazine>) q.getResultList();

This code will substitute JDJ for the ?1 parameter and 5. 0 for the ?2 parameter, then execute the query with those values.

public Query setParaneter(String nane, Object value);

Named parameters are denoted by prefixing an arbitrary name with a colon in your JPQL string. Y ou can then populate the
Quer y object with parameter values using the method above. Like the positional parameter method, this method returns the
Quer y instance for optional method chaining.

100



JPA Query

EntityManager em = ...

Query g = em createQuery("SELECT x FROM Magazi ne x WHERE x.title = :titleParam and x.price > :priceParant);
g.set Paraneter ("titleParant, "JDJ").setParanmeter("priceParant, 5.0);

Li st <Magazi ne> results = (List<Magazi ne>) q.getResultList();

This code substitutes JDJ forthe :titl eParam parameter and5. O for the: pri cePar am parameter, then executes the
guery with those values.

All input parameters must be single-valued, except in IN expressions (see Section 10.2.5.9, “ JPQL In Expressions” [122]),
which support the use of collection-valued input parameters.

10.1.8. Query Hints

JPQL provides support for hints which are name/value pairs used to control locking and optimization keywordsin SQL. The
following example shows how to use the JPA hint API to set the ReadLockMbde and Resul t Count in the OpenJPA fetch
plan. Thiswill result in a database-specific SQL keyword (usually FOR UPDATE) to be emitted into the SQL provided that a
pessimistic LockManager is being used. Additionally, if a DB2 database is being used, the OPTIMIZE FOR 2 ROWS clause will
also be emitted.

Example 10.1. Query Hints

Query q = emcreateQuery("sel ect mfrom Magazi ne mwhere ... ");
g. set H nt (" openj pa. hint. Opti m zeResul t Count”, new Integer(2));
g. set H nt (" openj pa. Fet chPl an. ReadLockMbde", "WRI TE") ;

List r = g.getResultList();

Hints which can not be processed by a particular database or are unknown to OpenJPA are ignored. Hints known to OpenJPA but
supplied with an incompatible value will resultinan | | | egal Ar gunent Except i on being thrown.

10.1.8.1. Locking Hints

To avoid deadlock and optimistic update exceptions among multiple updaters, use a pessimistic LockManager, specified in
the persistence unit definition, and use a hint name of "openjpa.FetchPlan.ReadL. ockMode" on queries for entities that must be
locked for seriaization. The value of ReadLockMbde can be either "READ" or "WRITE". This results in a database-specific
locking keyword (usually FOR UPDATE) to be emitted into the SQL.

Using aReadLockMbde hint with JPA optimistic locking (i.e. specifying LockManager = "version™) will result in the entity
version field either being reread at end of transaction in the case of avalue of "READ" or the version field updated at end of
transaction in the case of "WRITE". You must define a version field in the entity mapping when using a version LockM anager
and using ReadL ockMode.

Table 10.1. Interaction of ReadL ockMode hint and LockManager

ReadL ockM ode L ockManager =pessimistic LockManager =version
READ SQL with FOR UPDATE SQL without FOR UPDATE;

reread version field at the end of
transaction and check for no change.

WRITE SQL with FOR UPDATE SQL without FOR UPDATE;

101



JPA Query

ReadL ockM ode L ockM anager =pessimistic L ockM anager =version
force update version field at the end of
transaction

not specified SQL without FOR UPDATE SQL without FOR UPDATE

10.1.8.2. Lock Timeout Hint

To specify alock timeout hint in milliseconds to those databases that support it, specify ahint name of "openjpa.LockTimeout" or
"javax.persistence.lock.timeout" with an integer value greater than zero, or zero for no timeout which is the default behavior.

10.1.8.3. Query Timeout Hint

To specify aquery timeout hint in milliseconds to those database drivers that support it, specify a hint name of
"javax.persistence.query.timeout” with an integer value greater than zero, or zero for no timeout which is the default behavior.

10.1.8.4. Result Set Size Hint

To specify aresult set size hint to those databases that support it, specify a hint name of "openjpa.hint.OptimizeResultCount"
with an integer value greater than zero. This causes the SQL keyword OPTIMIZE FOR to be generated.

10.1.8.5. Isolation Level Hint

To specify an isolation level, specify ahint name of "openjpa.FetchPlan.Isolation”. The value will be used to specify isolation
level using the SQL WITH <isolation> clause for those databases that support it. This hint only works in conjunction with the
ReadlL ockMode hint.

10.1.8.6. Other Fetchplan Hints

Any property of an OpenJPA FetchPlan can be changed using a hint by using a name of the form "openjpa.FetchPlan." <property
name>. Valid property namesinclude: MaxFet chDept h, Fet chBat chSi ze, LockTi meQut , Eager Fet chMbde,
Subcl assFet chMbde and | sol ati on.

10.1.8.7. Database-Specific Hints

The hint names "openjpa.hint. MySQL SelectHint" and " openjpa.hint.OracleSelectHint" can be used to specify a string value of
aquery hint that will be inserted into SQL for MySQL and Oracle databases. See Section 2.19.1, “ Using Query Hintswith
MySQL " [387] and Section 2.20.1, “ Using Query Hintswith Oracle” [387] for examples.

10.1.8.8. Named Query Hints

Hints can also be included as part of a NamedQuery definition.

Example 10.2. Named Query using Hints

@NanmedQuer y( name="nmagsOver Pri ce",
query="SELECT x FROM Magazi ne x WHERE x.price > 21",
hi nt s={
@uer yH nt (nane="openj pa. hint. Opti m zeResul t Count", val ue="2"),
@uer yHi nt (name="openj pa. Fet chPl an. ReadLockMbde", val ue="WRI TE")

102



JPA Query

10.1.8.9. Handling of Multiple Similar Query Hints

When similar hintsin different prefix scopes are specified in a query, the following prefix precedence order is used to select the
effective hint:

* javax.persistence.*
* openjpa.FetchPlan.*
 openjpajdbc.*

* openjpa.*

Example 10.3. Setting Multiple Similar Query Hints

Query g = emcreateQuery(..... );

g. set Hi nt (" openj pa. Fet chPl an. LockTi meout ", 1000);

g. set H nt ("] avax. persi stence. | ock. ti meout", 2000);

g. set Hi nt (" openj pa. LockTi meout”, 3000);

// Lock tinme out of 2000 ms is in effect for query q

10.1.9. Ordering

JPQL queries may optionally contain an or der by clause which specifies one or more fields to order by when returning query
results. You may follow theor der by fi el d clausewiththeasc or desc keywords, which indicate that ordering should
be ascending or descending, respectively. If the direction is omitted, ordering is ascending by default.

SELECT x FROM Magazine x order by x.title asc, x.price desc

The query above returns Magazi ne instances sorted by their title in ascending order. In cases where the titles of two or more
magazines are the same, those instances will be sorted by price in descending order.

10.1.10. Aggregates

JPQL queries can select aggregate data as well as objects. JPQL includesthe mi n, max, avg, and count aggregates. These
functions can be used for reporting and summary queries.

The following query will return the average of all the prices of all the magazines:

EntityManager em = ...
Query q = em createQuery("SELECT AVGE x. price) FROM Magazi ne x");
Nunber result = (Nunmber) g.getSingleResult();

The following query will return the highest price of all the magazinestitled "JDJ":

EntityManager em= ...
Query g = em createQuery("SELECT MAX(x.price) FROM Magazi ne x WHERE x.title = 'JDJ'");

103



JPA Query

Nunber result = (Number) g.getSingleResult();

10.1.11. Named Queries

Query templates can be statically declared using the NanmedQuery and NanmedQuer i es annotations. For example:

@ntity
@NanmedQueri es({
@NanmedQuer y( name="nmagsOver Pri ce",
quer y="SELECT x FROM Magazi ne x WHERE x.price > ?1"),
@NanmedQuer y(nane="nmagsByTitl e",
query="SELECT x FROM Magazine x WHERE x.title = :titleParant)
9]

public class Magazine {

}

These declarations will define two named queries called magsOver Pri ce and nagsByTi tl e.

public Query createNamedQuery(String name);

Y ou retrieve named queries with the above Ent i t yManager method. For example:

EntityManager em= ...

Query g = em creat eNamedQuery("magsOverPrice");

g. set Paraneter (1, 5.0f);

Li st <Magazi ne> results = (List<Magazine>) q.getResultList();

EntityManager em = ...

Query g = em creat eNamedQuery("magsByTitle");

g.set Parameter("titl eParant, "JDJ");

Li st <Magazi ne> results = (List<Magazine>) q.getResultList();

10.1.12. Delete By Query

Queries are useful not only for finding objects, but for efficiently deleting them as well. For example, you might delete all records
created before a certain date. Rather than bring these objects into memory and delete them individually, JPA allows you to
perform asingle bulk delete based on JPQL criteria.

Delete by query uses the same JPQL syntax as normal queries, with one exception: begin your query string with the del et e
keyword instead of the sel ect keyword. To then execute the delete, you call the following Quer y method:

public int executeUpdate();

This method returns the number of objects deleted. The following example deletes all subscriptions whose expiration date has
passed.

104



JPA Query

Example 10.4. Delete by Query

Query g = em createQuery("DELETE FROM Subscription s WHERE s. subscriptionDate < :today");
g. set Paranet er ("t oday", new Date());
int deleted = q.executeUpdate();

10.1.13. Update By Query

Similar to bulk deletes, it is sometimes necessary to perform updates against alarge number of queriesin a single operation,
without having to bring all the instances down to the client. Rather than bring these objects into memory and modifying them
individually, JPA allows you to perform a single bulk update based on JPQL criteria.

Update by query uses the same JPQL syntax as normal queries, except that the query string begins with the updat e keyword
instead of sel ect . To execute the update, you call the following Quer y method:

public int executeUpdate();

This method returns the number of objects updated. The following example updates all subscriptions whose expiration date has
passed to have the "paid" field set to true..

Example 10.5. Update by Query

Query g = em createQuery("UPDATE Subscription s SET s.paid = :paid WHERE s. subscriptionDate < :today");
g. set Paraneter ("today", new Date());

g. set Paraneter ("pai d', true);

int updated = g.executeUpdate();

10.2

JPQL Language Reference

The Java Persistence Query Language (JPQL) is used to define searches against persistent entities independent of the mechanism
used to store those entities. As such, JPQL is "portable”, and not constrained to any particular data store. The Java Persistence
guery language is an extension of the Enterprise JavaBeans query language, EJB QL, adding operations such as bulk deletes
and updates, join operations, aggregates, projections, and subqueries. Furthermore, JPQL queries can be declared statically in
metadata, or can be dynamically built in code. This chapter provides the full definition of the language.

Much of this section is paraphrased or taken directly from Chapter 4 of the JSR 317 Java Persistence APl Specification.

10.2.1. JPQL Statement Types

A JPQL statement may be either a SELECT statement, an UPDATE statement, or a DELETE statement. This chapter refers
to al such statements as "queries'. Where it isimportant to distinguish among statement types, the specific statement typeis
referenced. In BNF syntax, a query language statement is defined as:

» QL_statement ::= select_statement | update_statement | delete_statement

105




JPA Query

The complete BNF for JPQL is defined in Section 10.2.13, “ JPQL BNF " [137]. Any JPQL statement may be constructed
dynamically or may be statically defined in a metadata annotation or XML descriptor element. All statement types may have
parameters, as discussed in Section 10.2.5.4, “ JPQL Input Parameters” [119].

10.2.1.1.

JPQL Select Statement

A select statement is a string which consists of the following clauses:

a SELECT clause, which determines the type of the objects or values to be selected.

a FROMclause, which provides declarations that designate the domain to which the expressions specified in the other clauses of
the query apply.

an optional WHERE clause, which may be used to restrict the results that are returned by the query.
an optional GROUP BY clause, which allows query results to be aggregated in terms of groups.
an optional HAVI NG clause, which alows filtering over aggregated groups.

an optional ORDER BY clause, which may be used to order the results that are returned by the query.

In BNF syntax, a select statement is defined as:

select_statement ::= select_clause from_clause [where clause] [groupby_clause] [having_clause] [orderby _clause]

A select statement must always have a SELECT and a FROMclause. The square brackets [] indicate that the other clauses are
optional.

10.2.1.2.

JPQL Update and Delete Statements

Update and del ete statements provide bulk operations over sets of entities. In BNF syntax, these operations are defined as:

update statement ::= update clause [where clause]

delete statement ::= delete _clause [where_clause]

The update and delete clauses determine the type of the entities to be updated or deleted. The WHERE clause may be used to
restrict the scope of the update or delete operation. Update and del ete statements are described further in Section 10.2.10, “
JPQL Bulk Update and Delete” [136].

10.2.2.

JPQL Abstract Schema Types and Query Domains

The Java Persistence query language is atyped language, and every expression has atype. The type of an expression is derived
from the structure of the expression, the abstract schematypes of the identification variable declarations, the types to which the
persistent fields and relationships evaluate, and the types of literals.

The abstract schematype of an entity or embeddable is derived from the entity class and the metadata information provided by
Javalanguage annotations or in the XML descriptor.

Informally, the abstract schematype of an entity or embeddable can be characterized as follows:

 For every persistent field or get accessor method (for a persistent property) of the entity class, thereisafield ("state-field")
whose abstract schema type correspondsto that of the field or the result type of the accessor method.

» For every persistent relationship field or get accessor method (for a persistent relationship property) of the entity class, thereis
afield ("association-field") whose type is the abstract schematype of the related entity (or, if the relationship is a one-to-many
or many-to-many, a collection of such).

106



JPA Query

Abstract schematypes are specific to the query language data model. The persistence provider is not required to implement or
otherwise materialize an abstract schematype.

The domain of aquery consists of the abstract schematypes of all entities and embeddables that are defined in the same
persistence unit.

The domain of aquery may berestricted by the navi gabi | i t y of the relationships of the entity and associated embeddable
classes on which it is based. The association-fields of an entity's or embeddable's abstract schema type determine navigability.
Using the association fields and their values, a query can select related entities and use their abstract schematypesin the query.

10.2.2.1. JPQL Entity Naming

Entities are designated in query strings by their entity names. The entity name is defined by the name element of the Entity
annotation (or the entity-name XML descriptor element), and defaults to the unqualified name of the entity class. Entity names
are scoped within the persistence unit and must be unigque within the persistence unit.

10.2.2.2. JPQL Schema Example

This example assumes that the application developer provides several entity classes, representing magazines, publishers, authors,
and articles. The abstract schema types for these entitiesare Magazi ne, Publ i sher, Aut hor,andArti cl e.

Severa Entities with Abstract Persistence Schemas Defined in the Same Persistence Unit. The entity Publ i sher has a one-to-
many relationships with Magazi ne. Thereis also a one-to-many relationship between Magazi ne and Art i cl e . The entity
Articl eisrelated to Aut hor in aone-to-one relationship.

Queriesto select magazines can be defined by navigating over the association-fields and state-fields defined by Magazi ne and
Aut hor . A query to find all magazines that have unpublished articlesis as follows:

SELECT DI STI NCT mag FROM Magazi ne AS mag JO N mag.articles AS art WHERE art. published = FALSE

This query navigates over the association-field aut hor s of the abstract schematype Magazi ne to find articles, and uses the
state-field publ i shed of Arti cl e to select those magazines that have at least one article that is not published. Although
predefined reserved identifiers, such asDl STI NCT, FROM AS, JO N, WHERE, and FAL SE appear in upper casein this
example, predefined reserved identifiers are case insensitive.

The SELECT clause of this example designates the return type of this query to be of type Magazi ne.

Because the same persistence unit defines the abstract persistence schemas of the related entities, the developer can also specify
aquery over articles that utilizes the abstract schematype for products, and hence the state-fields and association-fields of both
the abstract schematypes Magazi ne and Aut hor . For example, if the abstract schematype Aut hor has a state-field named
firstNane, aquery over articles can be specified using this state-field. Such a query might be to find all magazines that have
articles authored by someone with the first name "John".

SELECT DI STI NCT nag FROM Magazine mag JO N mag. articles art JON art.author auth WHERE aut h. firstName = ' John'

Because Magazi ne isrelated to Aut hor by means of the relationships between Magazi ne and Art i cl e and between
Arti cl e and Aut hor , navigation using the association-fieldsaut hor s and pr oduct isused to expressthe query. This
query is specified by using the abstract schemaname Magazi ne, which designates the abstract schema type over which the
guery ranges. The basis for the navigation is provided by the association-fieldsaut hor s and pr oduct of the abstract schema
types Magazi ne and Art i cl e respectively.

107



JPA Query

10.2.3. JPQL FROM Clause and Navigational Declarations

The FROMclause of a query defines the domain of the query by declaring identification variables. An identification variable is an
identifier declared in the FROMclause of a query. The domain of the query may be constrained by path expressions (See section
Section 10.2.3.4, “ JPQL Path Expressions” [112].

| dentification variables designate instances of a particular entity abstract schematype. The FROM clause can contain multiple
identification variable declarations separated by acommal(,).

» from_clause ::= FROM identification variable declaration {, {identification variable declaration |
collection_member_declaration} } *

* identification variable declaration ::=range variable declaration { join |fetch join}*
 range variable declaration ::= abstract_schema _name [AS] identification variable

* join::=join_specjoin_association_path_expression [AS] identification_variable

« fetch join::=join_spec FETCH join_association_path_expression

* join_association_path_expression ::= join_collection_valued_path_expression |
join_single valued_association path_expression

* join_collection_valued path_expression::= identification_variable.
{single_valued_embeddable_object_field.} *collection_vaued field

e join_single valued_path_expression::= identification_variable.
{single valued embeddable object field.} *single valued object field

 join_spec ::=[ LEFT [OUTER] | INNER ] JOIN
+ collection_member_declaration ::= IN (collection_valued path_expression) [AS] identification_variable

The following subsections discuss the constructs used in the FROMclause.

10.2.3.1. JPQL FROM Identifiers

An identifier is acharacter sequence of unlimited length. The character sequence must begin with a Javaidentifier start character,
and al other characters must be Javaidentifier part characters. An identifier start character is any character for which the method
Character.isJaval dentifierStart returnst r ue. Thisincludes the underscore () character and the dollar sign

(%) character. An identifier part character is any character for which the method Char acter.i sJaval dentifi erPart
returnst r ue. The question mark (?) character is reserved for use by the Java Persistence query language. The following are
reserved identifiers:

* ABS
« ALL
* AND
* ANY
* AS

* ASC

* AVG

108



JPA Query

BETWEEN

BOTH

BY

CASE

CLASS
COALESCE
CONCAT

COUNT
CURRENT_DATE
CURRENT_TI ME
CURRENT_TI MESTAMP
DELETE

DESC

DI STI NCT
ELSE

EMPTY

END

ENTRY

ESCAPE

EXI STS

FALSE

FETCH

FRCOM

GROUP

HAVI NG

I'N

I NDEX

I NNER

IS

JON

109



JPA Query

KEY
LEADI NG
LEFT
LENGTH
LI KE
LCCATE

LOAER

MEMBER
M N
MCD
NEW
NOT
NULL
NULLI F
OBJECT
OF

OR
ORDER
QUTER
SELECT
SET

S| ZE
SOVE
SQRT
S| BSTRI NG
SUM
THEN
TRAI LI NG
TRI M

TRUE

110



JPA Query

. TYPE

- UPDATE

- UPPER

. VALUE

« WHEN

. WWHERE

« CHARACTER_LENGTH
« CHAR LENGTH
« Bl T_LENGTH
. POSI TI ON

« UNKNOVWN

Reserved identifiers are case insensitive. Reserved identifiers must not be used as identification variables or result variables.

It is recommended that other SQL reserved words a so not be used as identification variables in queries because they
may be used as reserved identifiersin future releases of the specification.

BIT_LENGTH, CHAR_LENGTH, CHARACTER_LENGTH, POSITION, and UNKNOWN are not currently used:
they are reserved for future use.

10.2.3.2. JPQL Identification Variables

An identification variableisavalid identifier declared in the FROM clause of a query.

All identification variables must be declared in the FROMclause. | dentification variables cannot be declared in other clauses.
An identification variable must not be areserved identifier or have the same name as any entity in the same persistence unit.
Identification variables are case insensitive.

An identification variable evaluates to a value of the type of the expression used in declaring the variable. For example, consider
the previous query:

SELECT DI STI NCT mag FROM Magazine mag JO N neg.articles art JON art.author auth WHERE auth.firstName = ' John'

In the FROMclause declaration nmag. arti cl es art, theidentification variablear t evaluatestoany Arti cl e value
directly reachable from Magazi ne. The association-field ar t i cl es isacollection of instances of the abstract schematype
Arti cl e and theidentification variableart refersto an element of this collection. The type of aut h isthe abstract schema
type of Aut hor .

111



JPA Query

An identification variable can range over an entity, embeddable, or basic abstract schematype. Anidentification variable
designates an instance of an entity abstract schematype or an element of a collection of entity abstract schema type instances.

Note that for identification variables referring to an instance of an association or collection represented asaj ava. uti | . Map,
the identification variable is of the abstract schematype of the map val ue.

Anidentification variable always designates a reference to asingle value. It is declared in one of three ways: in arange variable
declaration, in ajoin clause, or in a collection member declaration. The identification variable declarations are evaluated from
left to right in the FROMclause, and an identification variable declaration can use the result of a preceding identification variable
declaration of the query string.

All identification variables used in the SELECT, WHERE, ORDER BY, GROUP BY, or HAVI NGclause of a SELECT or DELETE
statement must be declared in the FROMclause. The identification variables used in the WHERE clause of an UPDATE statement
must be declared in the UPDATE clause.

Identification variables are existentially quantified in these clauses. This means that an identification variable represents a
member of a collection or an instance of an entity’s abstract schematype. An identification variable never designates a collection
initsentirety.

An identification variable is scoped to the query (or subquery) in which it is defined and is also visible to any subqueries within
that query scope that do not define an identification variable of the same name.

10.2.3.3. JPQL Range Declarations

The syntax for declaring an identification variable as arange variableis similar to that of SQL; optionally, it usesthe AS
keyword. A range variable designates an entity abstract schematype.

A range variable must not designate an embeddable class abstract schematype.

 range variable declaration ::= entity_name [AS] identification variable
Range variable declarations alow the developer to designate a "root" for objects which may not be reachable by navigation.

In order to select values by comparing more than one instance of an entity abstract schema type, more than one identification
variable ranging over the abstract schematype is needed in the FROMclause.

The following query returns magazines whose price is greater than the price of magazines published by "Adventure" publishers.
This exampleillustrates the use of two different identification variables in the FROMclause, both of the abstract schematype
Magazine. The SELECT clause of this query determines that it is the magazines with prices greater than those of "Adventure”
publisher's that are returned.

SELECT DI STI NCT magl FROM Magazi ne magl, Magazi ne nag2
WHERE negl. price > mag2.price AND nag2. publisher.name = ' Adventure'

10.2.3.4. JPQL Path Expressions

An identification variable followed by the navigation operator (.) and a state-field or association-field is a path expression. The
type of the path expression is the type computed as the result of navigation; that is, the type of the state-field or association-field
to which the expression navigates.

An identification variable qualified by the KEY, VALUE, or ENTRY operator is a path expression. The KEY, VALUE, and ENTRY
operators may only be applied to identification variables that correspond to map-valued associations or map-valued element

112



JPA Query

collections. The type of the path expression is the type computed as the result of the operation; that is, the abstract schema type of
the field that is the value of the KEY, VALUE, or ENTRY operator (the map key, map value, or map entry respectively).

Note that use of VALUE is optional, as an identification variable referring to an association of typej ava. uti |l . Map is
of the abstract schema type of the map value.

The syntax for qualified identification variablesis as follows.

» qualified_identification_variable :: = KEY (identification_variable) | VALUE(identification_variable) |
ENTRY (identification variable)

A path expression using the KEY or VALUE operator may be further composed. A path expression using the ENTRY operator is
terminal. It cannot be further composed and can only appear in the SELECT list of a query.

In the following query, phot os isamap from photo label to filename.

SELECT i . name, VALUE(p)
FROM Itemi JO N i.photos p
WHERE KEY(p) LIKE ‘egret’

In the above query the identification variable p designates an abstract schematype corresponding to the map value. The results of
VALUE( p) and KEY( p) arethe map value and the map key associated with p, respectively. The following query is equivalent:

SELECT i.nane, p
FROM Itemi JO N i.photos p
VWHERE KEY(p) LIKE ‘egret’

Depending on navigability, a path expression that leads to a association-field or to afield whose type is an embeddable class may
be further composed. Path expressions can be composed from other path expressionsif the origina path expression evaluatesto a
single-valued type (not a collection) corresponding to a association-field.

In the following example, cont act | nf o denotes an embeddable class consisting of an address and set of phones. Phone isan
entity.

SELECT p. vendor
FROM Enpl oyee e JO N e. cont act | nf o. phones p
VWHERE e. cont act | nf 0. addr ess. zi pcode = ' 95054’

Path expression navigability is composed using "inner join" semantics. That is, if the value of a non-terminal association-field in
the path expression is null, the path is considered to have no value, and does not participate in the determination of the result.

The following query is equivalent to the query above:

SELECT p. vendor
FROM Enpl oyee e JO N e.contactlnfo ¢ JON c. phones p
VWHERE e. cont act | nf 0. addr ess. zi pcode = ' 95054’

113




JPA Query

The syntax for single-valued path expressions and collection valued path expressions is as follows:

» single valued path expression ::= qualified identification variable | state field_path expression |
single valued object_path _expression

state field_path _expression ::= general_identification_variable{single valued object field.}*state field

single valued object_path expression ::= general_identification_variable.
{single_valued_object field.}*single valued object field

 collection_valued path expression ::= genera_identification variable{single valued object field.}*collection valued field

A singl e val ued_obj ect fi el disdesignated by the name of an association-field in a one-to-one or many-to-one
relationship or afield of embeddable classtype. Thetype of asi ngl e_val ued_obj ect _fi el d isthe abstract schematype
of the related entity or embeddable class.

A state_ fi el disdesignated by the name of an entity or embeddable class state field that corresponds to a basic type.

A collection_valued_field is designated by the name of an association-field in a one-to-many or a many-to-many relationship
or by the name of an element collection field. Thetypeof acol | ecti on_val ued_fi el d isacollection of values of the
abstract schematype of the related entity or element type.

Anidentification variableused inasi ngl e_val ued_obj ect _pat h_expressionorina
col | ection_val ued_pat h_expr essi on may be an unqualified identification variable or an identification variable to
which the KEY or VALUE function has been applied.

» general_identification_variable ::= identification_variable | KEY (identification_variable) | VALUE(identification_variable)

Itissyntacticaly illegal to compose a path expression from a path expression that evaluates to a collection. For example, if
nmag designates Magazi ne, the path expression nag. arti cl es. aut hor isillega since navigation to authors resultsin
acollection. This case should produce an error when the query string is verified. To handle such a navigation, an identification
variable must be declared in the FROMclause to range over the elements of thear t i cl es collection. Another path expression
must be used to navigate over each such element in the WHERE clause of the query, asin the following query which returns all
authors that have any articles in any magazines.

SELECT DI STI NCT art. aut hor FROM Magazi ne AS mag, | N(nmag.articles) art

Itisillegal touseacol | ecti on_val ued_pat h_expr essi on other than in the FROMclause of aquery except in an
enpty_col |l ecti on_conpari son_expressi on,inacol | ecti on_nenber _expr essi on, or asan argument to the
Sl ZE operator. See Section 10.2.5.12, “ JPQL Empty Collection Comparison Expressions” [123], Section 10.2.5.13, “
JPQL Collection Member Expressions” [124], and Section 10.2.6.2.2, “ JPQL Arithmetic Functions” [127].

10.2.3.5. JPQL Joins

Aninner join may beimplicitly specified by the use of a cartesian product in the FROMclause and ajoin condition in the WHERE
clause. In the absence of ajoin condition, this reduces to the cartesian product.

The main use case for this generalized style of join iswhen ajoin condition does not involve aforeign key relationship that is
mapped to an entity relationship, for example:

SELECT ¢ FROM Custoner c, Enployee e WHERE c. hatsize = e. shoesize

114



JPA Query

In general, use of this style of inner join (also referred to as theta-join) isless typical than explicitly defined joins over
relationships.

The syntax for explicit join operationsis as follows:

 join::=join_specjoin_association path_expression [AS] identification variable

« fetch join::=join_spec FETCH join_association path_expression

 join_association_path _expression ::=join_collection valued path_expression | join_single valued path expression

 join_collection_valued path_expression::= identification_variable.
{single_valued_embeddable_object_field.} *collection_valued field

* join_single valued_path_expression::= identification variable.
{single_valued_embeddable _object_field.} *single valued_object field

« join_spec ::= [ LEFT [OUTER] | INNER ] JOIN

Theinner and outer join operation types described in Section 10.2.3.5.1, “ JPQL Inner Joins (Relationship Joins) " [115]
and Section 10.2.3.5.2, * JPQL Outer Joins” [116] are supported.

10.2.3.5.1. JPQL Inner Joins (Relationship Joins)

The syntax for the inner join operation is
* [ INNER] JOIN join_association_path_expression [AS] identification variable

For example, the query below joins over the relationship between publishers and magazines. This type of join typically equatesto
ajoin over aforeign key relationship in the database.

SELECT pub FROM Publ i sher pub JO N pub. nagazi nes mag WHERE pub. revenue > 1000000

The keyword | NNER may optionally be used:

SELECT pub FROM Publ i sher pub I NNER JO N pub. magazi nes mag WHERE pub.revenue > 1000000

Thisis equivaent to the following query using the earlier I N construct. It selects those publishers with revenue of over 1 million
for which at least one magazine exists:

SELECT OBJECT(pub) FROM Publisher pub, |N(pub.nmagazi nes) mag WHERE pub.revenue > 1000000

The query below joins over Employee, Contactlnfo and Phone. Contactinfo is an embeddable class that consists of an address and
set of phones. Phone is an entity.

SELECT p. vendor
FROM Enpl oyee e JO N e.contactlnfo ¢ JON c. phones p
VWHERE c. addr ess. zi pcode = ' 95054’

115



JPA Query

10.2.3.5.2. JPQL Outer Joins

LEFT JO Nand LEFT QUTER JA N are synonymous. They enable the retrieval of a set of entities where matching valuesin
the join condition may be absent. The syntax for aleft outer join is:

o LEFT [OUTER] JOIN join_association_path_expression [AS] identification variable

For example:

SELECT pub FROM Publ i sher pub LEFT JO N pub. magazi nes mag WHERE pub. revenue > 1000000

The keyword OUTER may optionally be used:

SELECT pub FROM Publ i sher pub LEFT OUTER JO N pub. nagazi nes nmags WHERE pub. revenue > 1000000

An important use case for LEFT JO Nisin enabling the prefetching of related dataitems as a side effect of aquery. Thisis
accomplished by specifyingthe LEFT JO Nasa FETCH JO N.

10.2.3.5.3. JPQL Fetch Joins

A FETCH JO N enables the fetching of an association as a side effect of the execution of aquery. A FETCH JO Nis specified
over an entity and its related entities. The syntax for afetch joinis

 fetch join::=[ LEFT [OUTER] | INNER ] JOIN FETCH join_association_path_expression

The association referenced by theright side of the FETCH JO N clause must be an association that belongsto an entity that is
returned as aresult of the query. It is not permitted to specify an identification variable for the entities referenced by the right side
of the FETCH JA N clause, and hence references to the implicitly fetched entities cannot appear elsewhere in the query.

The following query returns a set of magazines. As a side effect, the associated articles for those magazines are also retrieved,
even though they are not part of the explicit query result. The persistent fields or properties of the articles that are eagerly fetched
arefully initialized. Theinitialization of the relationship properties of thear t i cl es that areretrieved is determined by the
metadatafor the Art i cl e entity class.

SELECT mag FROM Magazi ne mag LEFT JO N FETCH mag. articles WHERE mag.id = 1

A fetch join has the same join semantics as the corresponding inner or outer join, except that the related objects specified on the
right-hand side of the join operation are not returned in the query result or otherwise referenced in the query. Hence, for example,
if magazineid 1 hasfive articles, the above query returns five references to the magazine 1 entity.

The FETCH JO N construct must not be used in the FROM clause of a subquery.

10.2.3.6. JPQL Collection Member Declarations

Anidentification variable declared by acol | ecti on_nenber _decl ar at i on ranges over values of a collection obtained
by navigation using a path expression. Such a path expression represents a navigation involving the association-fields of an entity
abstract schematype. Because a path expression can be based on another path expression, the navigation can use the association-
fields of related entities.

An identification variable of a collection member declaration is declared using a special operator, the reserved identifier | N. The
argument to the | N operator is a collection-valued path expression. The path expression evaluates to a collection type specified as
aresult of navigation to a collection-valued association-field of an entity or embeddable class abstract schematype.

116



JPA Query

The syntax for declaring a collection member identification variable is as follows:
* collection_member_declaration ::= IN (collection_valued path expression) [AS] identification variable

For example, the query

SELECT DI STINCT mag FROM Magazi ne nmag
JON mag. articles art
JO N art.author auth
WHERE aut h. | ast Nane = ' Gi shani

can equivalently be expressed as follows, using the | N operator:

SELECT DI STI NCT mag FROM Magazi ne nag,
IN(mag. articles) art
WHERE art. aut hor. | astNane = ' Gishani

Inthisexample, ar ti cl es isthe name of an association-field whose value is a collection of instances of the abstract schema
type Arti cl e. Theidentification variable ar t designates a member of this collection, asingle Ar t i ¢l e abstract schematype
instance. In this example, mag is an identification variable of the abstract schematype Magazi ne.

10.2.3.7. JPQL FROM Clause and SQL

The Java Persistence query language treats the FROM clause similarly to SQL in that the declared identification variables affect
the results of the query even if they are not used in the WHERE clause. Application devel opers should use caution in defining
identification variables because the domain of the query can depend on whether there are any values of the declared type.

For example, the FROMclause below defines a query over all orders that have line items and existing products. If there are no
Pr oduct instancesin the database, the domain of the query is empty and no order is selected.

SELECT o
FROM Order AS o JON o.lineltenms | JON I.product p

10.2.3.8. JPQL Polymorphism

Java Persistence queries are automatically polymorphic. The FROM clause of a query designates not only instances of the
specific entity classes to which explicitly refers but of subclasses aswell. The instances returned by a query include instances of
the subclasses that satisfy the query criteria

Non-polymorphic queries or queries whose polymorphism is restricted can be specified using entity type expressionsin the
VWHERE clause to restrict the domain of the query. See Section 10.2.6.4, “ Entity Type Expressions” [128].

10.2.4. JPQL WHERE Clause

The WHERE clause of a query consists of a conditional expression used to select objects or values that satisfy the expression. The
WHERE clause restricts the result of a select statement or the scope of an update or delete operation.

A WHERE clause is defined as follows:
» where _clause ::= WHERE conditional _expression

The GROUP BY construct enables the aggregation of values according to the properties of an entity class. The HAVI NG construct
enables conditions to be specified that further restrict the query result as restrictions upon the groups.

117



JPA Query

The syntax of the HAVI NG clauseisasfollows:
 having_clause ::= HAVING conditional_expression

The GROUP BY and HAVI NG constructs are further discussed in Section 10.2.7, “ JPQL GROUP BY, HAVING " [129].

10.2.5. JPQL Conditional Expressions

The following sections describe the language constructs that can be used in a conditional expression of the WHERE clause or
HAVI NG clause.

State-fields that are mapped in serialized form or as LOBs may not be portably used in conditional expressions.

The implementation is not expected to perform such query operations involving such fields in memory rather than in the
database.

10.2.5.1. JPQL Literals

A string literal is enclosed in single quotes--for example: 'literal’. A string literal that includes a single quote is represented by two
single quotes--for example: 'literal"s. String literals in queries, like Java String literals, use unicode character encoding. The use
of Java escape notation is not supported in query string literals.

Exact numeric literals support the use of Javainteger literal syntax aswell as SQL exact numeric literal syntax.
Approximate literals support the use of Javafloating point literal syntax aswell as SQL approximate numeric literal syntax.
Enum literals support the use of Java enum literal syntax. The enum class name must be specified.

Appropriate suffixes can be used to indicate the specific type of anumeric literal in accordance with the Java Language
Specification. The boolean literals are TRUE and FALSE. Although predefined reserved literals appear in upper case, they are
case insensitive.

The JDBC escape syntax may be used for the specification of date, time, and timestamp literals. For example:

SELECT o

FROM Custonmer ¢ JO N c.orders o

VWHERE c.nane = 'Snith'

AND o. submi ssionDate < {d '2008-12-31'}

Date, time, and timestamp literals are passed as is to the JDBC driver in use.
Entity type literals are specified by entity names—for example: Cust omer .

Although reserved literals appear in upper case, they are case insensitive.

10.2.5.2. JPQL Identification Variables

All identification variables used in the WHERE or HAVI NG clause of a SELECT or DELETE statement must be declared in the
FROMclause, as described in Section 10.2.3.2, “ JPQL ldentification Variables” [111]. The identification variablesused in
the WHERE clause of an UPDATE statement must be declared in the UPDATE clause.

118




JPA Query

Identification variables are existentially quantified in the WHERE and HAVI NG clause. This means that an identification variable
represents amember of a collection or an instance of an entity's abstract schematype. An identification variable never designates
acollection in its entirety.

10.2.5.3. JPQL Path Expressions

Itisillegal touseacol | ecti on_val ued_pat h_expr essi on withina WHERE or HAVI NG clause as part of a conditional
expression exceptinanenpty_col | ecti on_conpari son_expression,inacol | ecti on_nenber _expressi on,
or as an argument to the S| ZE operator.

10.2.5.4. JPQL Input Parameters

Either positional or named parameters may be used. Positional and named parameters may not be mixed in asingle query.
Input parameters can only be used in the WHERE clause or HAVI NG clause of a query.

Note that if an input parameter value is null, comparison operations or arithmetic operations involving the input parameter will
return an unknown value. See Section 10.2.11, “ JPQL Null Values” [137].

All input parameters must be single-valued, except in IN expressions (see Section 10.2.5.9, “ JPQL In Expressions” [122] ),
which support the use of collection-valued input parameters.

10.2.5.4.1. JPQL Positional Parameters

The following rules apply to positional parameters.

* Input parameters are designated by the question mark (?) prefix followed by an integer. For example: ?71.
* Input parameters are numbered starting from 1.

» The same parameter can be used more than once in the query string.

» The ordering of the use of parameters within the query string need not conform to the order of the positional parameters.

10.2.5.4.2. JPQL Named Parameters

A named parameter is an identifier that is prefixed by the":" symbol. It follows the rules for identifiers defined in
Section 10.2.3.1, “ JPQL FROM Identifiers” [108]. Named parameters are case sensitive.

Example:

SELECT pub FROM Publ i sher pub WHERE pub. revenue > :rev

The same named parameter can be used more than once in the query string.

10.2.5.5. JPQL Conditional Expression Composition

Conditional expressions are composed of other conditional expressions, comparison operations, logical operations, path
expressions that evaluate to boolean values, boolean literals, and boolean input parameters.

The scalar expressions described in Section 10.2.6, “ JPQL Scalar Expressions” [126] can be used in conditional
eXpressions.

Standard bracketing () for ordering expression evaluation is supported.

119



JPA Query

Aggregate functions can only be used in conditional expressionsina HAVI NGclause. See Section 10.2.7, “ JPQL GROUP
BY, HAVING ” [129].

Conditional expressions are defined as follows:

10.2.5.6.

conditional_expression ::= conditional_term | conditional _expression OR conditional_term
conditional_term ::= conditional_factor | conditional_term AND conditional_factor
conditional_factor ::= [ NOT ] conditional_primary

conditional_primary ::= simple_cond_expression | (conditional_expression)

simple_cond_expression ::= comparison_expression | between_expression | like_expression | in_expression |
null_comparison_expression | empty_collection_comparison_expression | collection_member_expression | exists_expression

JPQL Operators and Operator Precedence

The operators are listed below in order of decreasing precedence.

Navigation operator (.)
Arithmetic operators: +, - unary *, / multiplication and division +, - addition and subtraction

Comparison operators: =, >, >=, <, <=, <> (not equal), [ NOT ] BETWEEN, [ NOT ] LI KE, [ NOT ]I N, I S[ NOT ] NULL, I S|
NOT ] EMPTY, [ NOT ] MEMBER[ OF ]

Logical operators: NOT, AND, OR

The following sections describe other operators used in specific expressions.

10.2.5.7.

JPQL Comparison Expressions

The syntax for the use of comparison expressionsin a conditional expression is asfollows:

comparison_expression ::= string_expression comparison_operator { string_expression | all_or_any_expression} |
boolean_expression { =|<>} {boolean_expression | al_or_any_expression} | enum_expression { =|<>} {enum_expression
| all_or_any expression} | datetime_expression comparison_operator { datetime_expression | all_or_any expression} |
entity_expression { = | <>} {entity_expression | all_or_any_ expression} | arithmetic_expression comparison_operator
{arithmetic_expression | all_or_any_expression} | entity type expression{ =| <>} entity _type expression}

comparison_operator ::==|>|>=|<|<=| <>

Examples:

itemcost * 1.08 <= 100. 00

CONCAT( person. | ast Name, ‘, ', person.firstNanme)) = ‘Jones, Sami

TYPE(e) = Exenpt Enpl oyee

120




JPA Query

Comparisons over instances of embeddable class types are not supported.

10.2.5.8. JPQL Between Expressions

The syntax for the use of the comparison operator [ NOT ] BETWEEN in a conditional expression is asfollows:
arithmetic_expression [NOT] BETWEEN arithmetic_expression AND arithmetic_expression | string_expression [NOT]
BETWEEN string_expression AND string_expression | datetime_expression [NOT] BETWEEN datetime_expression AND
datetime_expression

The BETWEEN expression

x BETWEEN y AND z

is semantically eguivalent to:

y <= X AND x <= z

Therules for unknown and NULL values in comparison operations apply. See Section 10.2.11, “ JPQL Null Values” [137] .

Examples are:

p. age BETWEEN 15 and 19

isequivalent to:

p.age >= 15 AND p. age <= 19

The following expression:

p. age NOT BETWEEN 15 and 19

excludes therange, and is equivalent to;

p.age < 15 OR p.age > 19

In the following example, t r ansact i onHi st ory isalist of credit card transactions defined using an order column.

SELECT t
FROM CreditCard ¢ JON c.transactionH story t
VWHERE c. hol der. nane = ‘ John Doe’ AND | NDEX(t) BETWEEN O AND 9

121



JPA Query

10.2.5.9. JPQL In Expressions

The syntax for the use of the comparison operator [ NOT ] | Nin aconditional expressionisasfollows:

* in_expression ::= state field path expression [NOT] IN {(in_item{, in_item}* ) | (subquery) |
collection_valued_input_parameter }

 in_item ::=litera | single valued input_parameter
Thestate_fiel d_pat h_expressi on must have astring, numeric, date, time, timestamp, or enum value.

Theliteral and/or input_parameter values must be | i ke the same abstract schematype of the
state field_path_expressionintype (SeeSection 10.2.12, “ JPQL Equality and Comparison Semantics
" [137]).

The results of the subquery must bel i ke the same abstract schematype of thest at e_fi el d_pat h_expr essi on intype.
Subqueries are discussed in Section 10.2.5.16, “ JPQL Subqueries” [125].

Examples:

o.country IN ("UK, '"US, 'France')

istruefor UK and false for Peru, and is equivalent to the expression:

(o.country = "UK') OR (o.country = 'US'") OR (o.country ="' France')

In the following expression:

o.country NOT IN ("UK', 'US, 'France')

isfasefor UK and true for Peru, and is equivalent to the expression:

NOT ((o.country = '"UK') OR (o.country = 'US') OR (o.country = 'France'))

There must be at |east one element in the comma separated list that defines the set of values for the | N expression.

If thevalueof astate_fiel d_path_expressionorin_iteminanl Nor NOT | NexpressionisNULL or unknown,
the value of the expression is unknown.

Note that use of a collection-valued input parameter will mean that a static query cannot be precompiled.

10.2.5.10. JPQL Like Expressions

The syntax for the use of the comparison operator [ NOT ] LI KE in aconditional expression is as follows:
like_expression ::= string_expression [NOT] LIKE pat t er n_val ue [ESCAPE escape_char act er]

Thestring_expressi on must haveastring value. The pat t er n_val ue isastring literal or astring-valued input
parameter in which an underscore () stands for any single character, a percent (%) character stands for any sequence of
characters (including the empty sequence), and all other characters stand for themselves. The optional escape_character isa

122



JPA Query

single-character string literal or a character-valued input parameter (i.e., char or Character) and is used to escape the special
meaning of the underscore and percent charactersin pattern_value.

Examples:

addr ess. phone LIKE ' 1293’

istruefor '123' '12993' and false for '1234'

asentence.word LIKE 'I_se'

istruefor 'lose' and false for 'loose’

awor d. underscored LIKE '\_% ESCAPE '\’

istruefor' foo' and false for 'bar'

addr ess. phone NOT LIKE ' 1293'

isfalsefor '123' and '12993' and true for '1234'.

If thevalue of thest ri ng_expressi on orpattern_val ue isNULL or unknown, the value of the LI KE expressionis
unknown. If theescape_char act er isspecified and is NULL, the value of the LI KE expression is unknown.

10.2.5.11. JPQL Null Comparison Expressions

The syntax for the use of the comparison operator | S NULL in aconditional expression is as follows:
null_comparison_expression ::= {single valued_path expression | input_parameter } IS[NOT] NULL
A null comparison expression tests whether or not the single-valued path expression or input parameter isa NULL value.

Null comparisons over instances of embeddable class types are not supported.

10.2.5.12. JPQL Empty Collection Comparison Expressions

The syntax for the use of the comparison operator | S EMPTY inanenpty_col | ecti on_conpari son_expressi onis
asfollows:

empty_collection_comparison_expression ::= collection_valued_path_expression IS[NOT] EMPTY

This expression tests whether or not the collection designated by the collection-valued path expression is empty (i.e. has no
elements).

For example, the following query will return all magazines that don't have any articles at all:

SELECT mag FROM Magazi ne mag WHERE mag. articles |S EMPTY

123



JPA Query

If the value of the collection-valued path expression in an empty collection comparison expression is unknown, the value of the
empty comparison expression is unknown.

10.2.5.13. JPQL Collection Member Expressions

The syntax for the use of the comparison operator MEMBER CF inancol | ecti on_nmenber _expr essi on isasfollows:
* collection_member_expression ::= entity_or_value expression [NOT] MEMBER [OF] collection_valued path expression

* entity_or_value expression ::= single_valued object_path _expression | state field_path_expression |
simple_entity or_value expression

» simple_entity_or_value expression ::= identification_variable | input_parameter | literal

This expression tests whether the designated value is a member of the collection specified by the collection-valued path
expression.

Expressions that evaluate to embeddabl e types are not supported in collection member expressions.

If the collection valued path expression designates an empty collection, the value of the MEMBER OF

expression is FALSE and the value of the NOT MEMBER OF expression is TRUE. Otherwise, if the value of the

col l ection_val ued_pat h_expressionorentity_or_val ue_expressi on inthe collection member expression
isNULL or unknown, the value of the collection member expression is unknown.

The use of the reserved word OF is optional in this expression.

Example:

SELECT p
FROM Per son p
VWHERE ' Joe' MEMBER OF p. ni cknanes

10.2.5.14. JPQL Exists Expressions

An EXI STS expression is a predicate that is true only if the result of the subquery consists of one or more values and that is false
otherwise. The syntax of an exists expression is

e exists expression ::= [NOT] EXISTS (subquery)

Example:

SELECT DI STI NCT auth FROM Aut hor auth
WHERE EXI STS
( SELECT spouseAut hor FROM Aut hor spouseAut hor WHERE spouseAut hor = aut h. spouse)

Theresult of this query consists of all authors whose spouse is aso an author.

10.2.5.15. JPQL All or Any Expressions

An ALL conditional expression is apredicate over a subquery that istrue if the comparison operation istrue for al valuesin
the result of the subquery or the result of the subquery is empty. An ALL conditional expression isfalseif the result of the
comparison isfalse for at least one value of the result of the subquery, and is unknown if neither true nor false.

124



JPA Query

An ANY conditional expression is a predicate over a subquery that istrue if the comparison operation is true for some valuein
the result of the subquery. An ANY conditional expression isfalseif the result of the subquery is empty or if the comparison
operation is false for every valuein the result of the subquery, and is unknown if neither true nor false. The keyword SOVE is
synonymous with ANY.

The comparison operators used with ALL or ANY conditional expressions are =, <, <=, >, >=, <>, The result of the subquery must
be like that of the other argument to the comparison operator in type. See Section 10.2.12, “ JPQL Equality and Comparison
Semantics” [137]. The syntax of an ALL or ANY expression is specified as follows:

o dl_or_any expression::={ ALL |ANY | SOME} (subquery)

The following example select the authors who make the highest salary for their magazine:

SELECT auth FROM Aut hor auth
WHERE aut h. sal ary >= ALL(SELECT a.sal ary FROM Aut hor a WHERE a. magazi ne = aut h. magazi ne)

10.2.5.16. JPQL Subqueries

Subqueries may be used in the WHERE or HAVI NG clause. The syntax for subqueriesis as follows:
» subquery ::= simple_select_clause subquery from clause [where clause] [groupby_clause] [having_clause]
» simple_select_clause ::= SELECT [DISTINCT] simple_select_expression

» subquery_from_clause ::= FROM subselect_identification_variable declaration {,
subselect_identification variable declaration | collection_member_declaration } *

» subselect_identification_variable declaration ::= identification variable declaration | derived path expression [AS]
identification_variable {join}* | derived collection_member_declaration

» simple_select_expression ::= single_valued_path_expression | scalar_expression | aggregate_expression |
identification_variable

 derived_path_expression ::= superquery_identification_variable{single valued object_field.}*collection valued field |
superquery_identification_variable{single valued object field.} *single valued object field

« derived_collection_member_declaration ::= IN superquery_identification variable.
{single valued_object field.}*collection valued field

Subqueries are restricted to the WHERE and HAVI NG  clausesin this release. Support for subqueriesin the FROM  clause will be
considered in alater release of the specification.

Examples:

SELECT DI STI NCT auth FROM Aut hor auth
VWHERE EXI STS ( SELECT spouseAut h FROM Aut hor spouseAut h WHERE spouseAut h = aut h. spouse)

SELECT mag FROM Magazi ne mag
VWHERE ( SELECT COUNT(art) FROM neg.articles art) > 10

Note that some contexts in which a subquery can be used require that the subquery be a scalar subquery (i.e., produce asingle
result). Thisisillustrated in the following example involving a numeric comparison operation.

125



JPA Query

SELECT goodPubl i sher FROM Publ i sher goodPubl i sher
WHERE goodPubl i sher.revenue < (SELECT AVGE p.revenue) FROM Publisher p)

SELECT goodCust oner

FROM Cust oner goodCust oner

VWHERE goodCust oner . bal anceOned < (

SELECT AV@ c. bal anceOned) /2. 0 FROM Cust oner c)

10.2.6. JPQL Scalar Expressions

Numeric, string, datetime, case, and entity type expressions result in scalar values.
Scalar expressions may be used in the SELECT clause of aquery aswell asin the WHERE and HAVI NG clauses.

scalar_expression::= arithmetic_expression | string_primary | enum_primary | datetime_primary | boolean_primary |
case_expression | entity_type_expression

10.2.6.1. Arithmetic Expressions

The arithmetic operators are:

o+ - unary

e * [ multiplication and division

* +, - addition and subtraction

Arithmetic operations use numeric promotion.

Arithmetic functions are described in Section 10.2.6.2.2, “ JPQL Arithmetic Functions” [127].

10.2.6.2. String, Arithmetic, and Datetime Functional Expressions

JPQL includes the built-in functions described in subsections Section 10.2.6.2.1, “ JPQL String Functions” [126],
Section 10.2.6.2.2, “ JPQL Arithmetic Functions” [127], Section 10.2.6.2.3, “ JPQL Datetime Functions” [127],
which may be used in the SELECT, WHERE or HAVI NG clause of a query.

If the value of any argument to a functional expression is null or unknown, the value of the functional expression is unknown.

10.2.6.2.1. JPQL String Functions

« functions_returning_strings ::= CONCAT(string_primary, string_primary) | SUBSTRING(string_primary,
simple_arithmetic_expression[, simple_arithmetic_expression]) | TRIM([[trim_specification] [trim_character] FROM]
string_primary) | LOWER(string_primary) | UPPER(string_primary)

* trim_specification ::= LEADING | TRAILING | BOTH

* functions_returning_numerics ::= LENGTH(string_primary) | LOCATE(string_primary, string_primary[,
simple_arithmetic_expression])

The CONCAT function returns a string that is a concatenation of its arguments.

126



JPA Query

The second and third arguments of the SUBSTRI NG function denote the starting position and length of the substring to be
returned. These arguments are integers. The third argument is optional. If it is not specified, the substring from the start position
to the end of the string isreturned. The first position of a string is denoted by 1. The SUBSTRI NG function returns a string.

The TRI Mfunction trims the specified character from a string. If the character to be trimmed is not specified, it is assumed to be
space (or blank). The optional trim_character is a single-character string literal or a character-valued input parameter (i.e., char or
Character). If atrim specification is not provided, BOTHis assumed. The TRI Mfunction returns the trimmed string.

The LONER and UPPER functions convert a string to lower and upper case, respectively. They return a string.

The LOCATE function returns the position of a given string within a string, starting the search at a specified position. It returns
the first position at which the string was found as an integer. The first argument is the string to be located; the second argument is
the string to be searched; the optional third argument is an integer that represents the string position at which the search is started
(by default, the beginning of the string to be searched). Thefirst position in astring is denoted by 1. If the string is not found, O is
returned.

The LENGTH function returns the length of the string in characters as an integer.

10.2.6.2.2. JPQL Arithmetic Functions

« functions_returning_numerics ::= ABS(simple_arithmetic_expression) | SQRT(simple_arithmetic_expression) |
MOD(simple_arithmetic_expression, simple_arithmetic_expression) | SIZE(collection_valued path_expression) |
INDEX (identification_variable)

The ABS function takes a numeric argument and returns a number (integer, float, or double) of the same type as the argument to
the function.

The SQRT function takes a numeric argument and returns a double.

Note that not all databases support the use of atrim character other than the space character; use of this argument may result in
gueriesthat are not portable. Note that not all databases support the use of the third argument to LOCATE; use of this argument
may result in queries that are not portable.

The MOD function takes two integer arguments and returns an integer.

The Sl ZE function returns an integer value, the number of elements of the collection. If the collection is empty, the SI ZE
function evaluates to zero. Numeric arguments to these functions may correspond to the numeric Java object types as well asthe
primitive numeric types.

The INDEX function returns an integer value corresponding to the position of its argument in an ordered list. The INDEX
function can only be applied to identification variables denoting types for which an order column has been specified.

10.2.6.2.3. JPQL Datetime Functions

functions_returning_datetime:= CURRENT_DATE | CURRENT_TIME | CURRENT_TIMESTAMP

The datetime functions return the value of current date, time, and timestamp on the database server.

10.2.6.3. Case Expressions

The following forms of case expressions are supported: general case expressions, simple case expressions, coalesce expressions,
and nullif expressions. CASEEL SEEND

» case_expression::= general_case expression | simple_case _expression | coalesce_expression | nullif_expression

e genera_case expression::= CASE when_clause {when_clause}* ELSE scalar_expression END

127



JPA Query

» when_clause::= WHEN conditional_expression THEN scalar_expression

» case operand::= state field path expression | type_discriminator

e simple when_clause::= WHEN scalar_expression THEN scalar_expression
 coalesce_expression::= COALESCE(scalar_expression {, scalar_expression} +)
* nullif_expression::= NULLI F(scalar_expression, scalar_expression)

Examples:

UPDATE Enpl oyee e
SET e.salary =
CASE WHEN e.rating
WHEN e. rating
ELSE e. sal ary

1 THEN e.salary * 1.1
2 THEN e.salary * 1.05
1.01

*

END

UPDATE Enpl oyee e
SET e.salary =
CASE e.rating WHEN 1 THEN e.salary * 1.1
WHEN 2 THEN e.salary * 1.05
ELSE e.salary * 1.01
END

SELECT e. nane,
CASE TYPE(e) WHEN Exenpt THEN ' Exenpt'
WHEN Contractor THEN ' Contractor’
WHEN Intern THEN 'Intern'
ELSE ' NonExenpt '
END
FROM Enpl oyee e
VWHERE e. dept. nane = ' Engi neeri ng'

SELECT e. name,
f. nane,
CONCAT( CASE WHEN f. annual M I es > 50000 THEN ' Pl ati num '
WHEN f.annual M | es > 25000 THEN ' CGol d '
ELSE "'
END,
' Frequent Flyer')
FROM Enpl oyee e JON e.frequentFlierPlan f

10.2.6.4. Entity Type Expressions

An entity type expression can be used to restrict query polymorphism. The TYPE operator returns the exact type of the argument.
The syntax of an entity type expression is as follows:
* entity _type expression ::=type _discriminator | entity_type literal | input_parameter

* type_discriminator ::= TY PE(identification_variable | single_valued_object_path_expression | input_parameter )

128



JPA Query

Anentity type |iteral isdesignated by the entity name.
The Java class of the entity is used as an input parameter to specify the entity type.

Examples:

SELECT e
FROM Enpl oyee e
WHERE TYPE(e) I N (Exenpt, Contractor)

SELECT e
FROM Enpl oyee e
VWHERE TYPE(e) IN (:enpTypel, :enpType2)

SELECT e
FROM Enpl oyee e
VWHERE TYPE(e) IN :enpTypes

SELECT TYPE( e)
FROM Enpl oyee e
VWHERE TYPE(e) <> Exenpt

10.2.7. JPQL GROUP BY, HAVING

The GROUP BY construct enables the aggregation of values according to a set of properties. The HAVI NG construct enables
conditions to be specified that further restrict the query result. Such conditions are restrictions upon the groups.

The syntax of the GROUP BY and HAVI NG clausesis as follows:

» groupby_clause ::= GROUP BY groupby_item {, groupby_item}*
 groupby_item ::= single_valued_path_expression | identification_variable
* having_clause ::= HAVING conditional_expression

If aquery contains both a WHERE clause and a GROUP BY clause, the effect isthat of first applying the where clause, and then
forming the groups and filtering them according to the HAVI NG  clause. The HAVI NG clause causes those groups to be retained
that satisfy the condition of the HAVI NG clause.

The requirements for the SELECT clause when GROUP BY is used follow those of SQL: namely, any item that appearsin the
SELECT clause (other than as an argument to an aggregate function) must also appear in the GROUP BY clause. In forming the
groups, null values are treated as the same for grouping purposes.

Grouping by an entity is permitted. In this case, the entity must contain no serialized state fields or LOB-valued state fields that
are eagerly fetched.

Grouping by embeddablesis not supported.

The HAVI NG clause must specify search conditions over the grouping items or aggregate functions that apply to grouping items.

129



JPA Query

If thereisno GROUP BY clause and the HAVI NG clauseis used, the result istreated as a single group, and the select list can
only consist of aggregate functions. The use of HAVI NGin the absence of GROUP BY is not required to be supported by a JPA
implementation. Portable applications should not rely on HAVI NG without the use of GROUP BY.

OpenJPA supports the use of HAVI NGin the absence of GROUP BY if the underlying database supportsit.

Examples:

SELECT c.status, AVGEc.filledO derCount), COUNT(c)
FROM Cust orrer ¢

GROUP BY c.status

HAVI NG c.status IN (1, 2)

SELECT c. country, COUNT(c)
FROM Cust orrer ¢

GROUP BY c.country

HAVI NG COUNT(c) > 30

10.2.8. JPQL SELECT Clause

The SELECT clause denotes the query result. More than one value may be returned from the SELECT clause of a query.
The SELECT clause can contain one or more of the following elements: a single range variable or identification variable that
ranges over an entity abstract schematype, a single-valued path expression, a scalar expression, an aggregate expression, a
constructor expression.

The SELECT clause has the following syntax:

e select clause::= SELECT [DISTINCT] select_item {, select_item}*

» select_item ::= select_expression [ [AS] result_variable]

» select_expression ::=single valued path_expression | scalar_expression | aggregate expression | identification variable |
OBJECT (identification_variable) | constructor_expression

* constructor_expression ::= NEW constructor_name ( constructor_item {, constructor_item} *)
 constructor_item ::= single valued path_expression | scalar_expression | aggregate _expression | identification variable

» aggregate _expression ::={ AVG | MAX |MIN | SUM } ([DISTINCT] state_field_path_expression) | COUNT ([DISTINCT]
identification variable | state field_path_expression | single_valued_object_path_expression)

For example:

SELECT pub.id, pub.revenue
FROM Publ i sher pub JO N pub. magazi nes mag WHERE mag. price > 5.00

In the following example, videolnventory is a Map from the entity Movie to the number of copiesin stock:

130



JPA Query

SELECT v.location.street, KEY(i).title, VALUE(I)
FROM Vi deoStore v JO N v. vi deol nventory i
WHERE v. | ocati on. zi pcode = '94301' AND VALUE(i) > 0

Note that the SELECT clause must be specified to return only single-valued expressions. The query below is therefore not valid:

SELECT mmg. aut hors FROM Magazi ne AS nmag

The DI STI NCT keyword is used to specify that duplicate values must be eliminated from the query result.
If DI STI NCT is not specified, duplicate values are not eliminated.
Theresult of DISTINCT over embeddable objects or map entry results is undefined.

Standalone identification variables in the SELECT clause may optionally be qualified by the OBJECT operator. The SELECT
clause must not use the OBJECT operator to qualify path expressions.

Aresult_vari abl e may beusedto nameasel ect _i t emin the query result. For example,

SELECT ¢, COUNT(l) AS itenCount

FROM Custonmer ¢ JON c.Oders o JON o.lineltens |
VWHERE c. address. state = ‘ CA’

ORDER BY it enCount

10.2.8.1. JPQL Result Type of the SELECT Clause

The type of the query result specified by the SELECT clause of aquery is an entity abstract schematype, a state-field type, the
result of of ascalar expression, the result of an aggregate function, the result of a construction operation, or some sequence of
these.

Theresult type of the SELECT clause is defined by the result types of the select_expressions contained in it. When multiple
select expressions are used in the SELECT clause, the result of the query is of type Object[], and the elements in this result
correspond in order to the order of their specification in the SELECT clause and in type to the result types of each of the select
expressions.

Thetype of theresult of asel ect _expr essi on isasfollows:

» Theresulttypeof ani denti fi cati on_vari abl e isthetype of the entity object or embeddable object to which the
identification variable corresponds. Thetypeof ani denti fi cati on_vari abl e that refersto an entity abstract schema
typeisthe type of the entity to which that identification variable corresponds or a subtype as determined by the object/
relational mapping.

e Theresult typeof asi ngl e_val ued_pat h_expressi onthatisastate fiel d_path_expressionresultsin
an object of the same type as the corresponding state field of the entity or embeddable class. If the state field of the entity isa
primitive type, the result type is the corresponding object type.

e Theresult typeof asi ngl e_val ued_pat h_expressi onthatisasi ngl e_val ued_obj ect _pat h_expressi on
isthe type of the entity object or embeddable object to which the path expression corresponds. A
singl e_val ued_obj ect _pat h_expr essi on that resultsin an entity object will result in an entity of the type of the
relationship field or the subtype of the relationship field of the entity object as determined by the object/relational mapping.

131



JPA Query

e Theresult typeof asi ngl e_val ued_pat h_expr essi on that is an identification_variable to which the KEY or VALUE
function has been applied is determined by the type of the map key or value respectively, as defined by the above rules

» Theresult type of asi ngl e_val ued_pat h_expr essi on thatisani denti fi cati on_vari abl e towhich
the ENTRY function has been applied isj ava. uti | . Map. Ent ry, where the key and value types of the map entry are
determined by the above rules as applied to the map key and map value respectively.

» Theresult typeof ascal ar _expr essi on isthetype of the scalar value to which the expression evaluates. The result type
of anumericscal ar _expr essi on isdefined in Section 10.2.6, “ JPQL Scalar Expressions” [126]

» Theresulttypeof anentity_t ype_expressi on scaar expression isthe Java class to which the resulting abstract schema
type corresponds.

» Theresult type of aggregate expression is defined in Section 10.2.8.5, “ JPQL Aggregate Functions” [133].

e Theresult typeof aconst ruct or _expr essi on isthetype of the class for which the constructor is defined. The types of
the arguments to the constructor are defined by the above rules.

10.2.8.2. JPQL Constructor Expressions

A constructor may be used in the SELECT list to return one or more Javainstances. The specified classis not required to be an
entity or to be mapped to the database. The constructor name must be fully qualified.

If an entity class nameis specified in the SELECT NEWCclause, the resulting entity instances are in the new state.

If asi ngl e_val ued_pat h_expressionoridentification_vari abl e that isan argument to the constructor
references an entity, the resulting entity instance referenced by that si ngl e_val ued_pat h_expr essi on or
i dentification_variabl e will beinthe managed state.

If Publ i sher | nf o isan entity class, the following 2 queries return instances of Publ i sher | nf o that will bein the
new state. In the second example, mag isani denti fi cati on_vari abl e passed as an argument to the constructor
Publ i sher | nf o( Magazi ne mnag) ; the entity instances of Magazi ne created during query evaluation will bein the
managed state. Example:

SELECT NEW com conpany. Publ i sher| nfo(pub.id, pub.revenue, mag.price)
FROM Publ i sher pub JO N pub. magazi nes mag WHERE mag. price > 5.00

SELECT NEW com conpany. Publ i sher | nf o( mag)
FROM Publ i sher pub JO N pub. magazi nes mag WHERE mag. price > 5. 00

10.2.8.3. JPQL Null Values in the Query Result

If the result of aquery corresponds to a association-field or state-field whose valueis null, that null valueis returned in the result
of the query method. Thel S NOT NULL construct can be used to eliminate such null values from the result set of the query.

Note, however, that state-field types defined in terms of Java numeric primitive types cannot produce NULL  values in the query
result. A query that returns such a state-field type as a result type must not return anull value.

10.2.8.4. JPQL Embeddables in the Query Result

If the result of aquery corresponds to an identification variable or state field whose value is an embeddabl e, the embeddable
instance returned by the query will not be in the managed state (i.e., it will not be part of the state of any managed entity).

132



JPA Query

In the following example, the Addr ess instances returned by the query will reference Phone instances. While the Phone
instances will be managed, the Addr ess> instances referenced by the addr result variable will not be. Modifications to these
embeddable instances are not allowed.

@ntity
public class Enployee {
@d int id;

Addr ess address;

}

@nbeddabl e
public class Address {
String street;

@neToOne Phone phone; // fetch=EAGER
}

@ntity
public class Phone {
@d int id;

@neToOne( mappedBy="addr ess. phone") Enpl oyee enp; // fetch=EAGER
}

SELECT e. address AS addr
FROM Enpl oyee e

10.2.8.5. JPQL Aggregate Functions

The result of a query may be the result of an aggregate function applied to a path expression.
The following aggregate functions can be used in the SELECT clause of a query: AVG, COUNT, MAX, M N, SUM

For all aggregate functions except COUNT, the path expression that is the argument to the aggregate function must terminatein a
state-field. The path expression argument to COUNT may terminate in either a state-field or a association-field, or the argument to
COUNT may be an identification variable.

Arguments to the functions SUMand AVG must be numeric. Arguments to the functions MAX and M N must correspond to
orderable state-field types (i.e., numeric types, string types, character types, or date types).

The Javatype that is contained in the result of a query using an aggregate function is as follows:
e COUNT returns Long.

* MAX, M Nreturn the type of the state-field to which they are applied.

* AVGreturns Double.

» SUMreturns Long when applied to state-fields of integral types (other than Biglnteger); Double when applied to state-fields of
floating point types; Biglnteger when applied to state-fields of type Biglnteger; and BigDecimal when applied to state-fields of
type BigDecimal.

If SUM , AVG MAX, or M N isused, and there are no values to which the aggregate function can be applied, the result of the
aggregate function is NULL.

If COUNT is used, and there are no values to which  COUNT can be applied, the result of the aggregate function is 0.

The argument to an aggregate function may be preceded by the keyword DI STI NCT to specify that duplicate values are to be
eliminated before the aggregate function is applied. It islegal to specify DI STI NCT with MAX or M N, but it does not affect the
result.

133



JPA Query

Null values are eliminated before the aggregate function is applied, regardless of whether the keyword DI STI NCT is specified.

Theuse of DI STI NCT with COUNT is not supported for arguments of embeddable types or map entry types.

10.2.8.5.1. JPQL Aggregate Examples

The following query returns the average price of all magazines:

SELECT AVG meg. price) FROM Magazi ne mag

The following query returns the sum of all the prices from all the magazines published by 'Larry":

SELECT SUM mag. pri ce) FROM Publisher pub JO N pub. magazi nes mag WHERE pub. firstName = 'Larry’

The following query returns the total number of magazines:

SELECT COUNT(rmag) FROM Magazi ne nmag

10.2.8.5.2. JPQL Numeric Expressions in the SELECT Clause

The type of anumeric expression in the query result is determined as follows:
An operand that corresponds to a persistent state-field is of the same type as that persistent state-field.

An operand that corresponds to one of arithmetic functions described in Section 10.2.6.2.2, “ JPQL Arithmetic Functions
" [127] is of the type defined by Section 10.2.6.2.2, “ JPQL Arithmetic Functions” [127].

An operand that corresponds to one of an aggregate functions described in Section 10.2.8.5, “ JPQL Aggregate Functions
" [133] is of the type defined by Section 10.2.8.5, “ JPQL Aggregate Functions” [133].

The result of a case expression, coalesce expression, nullif expression, or arithmetic expression (+, -, *, /) is determined by
applying the following rule to its operands.

« If thereisan operand of type Double or double, the result of the operation is of type Double;
 otherwise, if thereis an operand of type Float or float, the result of the operation is of type Float;

« otherwise, if thereis an operand of type BigDecimal, the result of the operation is of type Big- Decimal;
 otherwise, if thereis an operand of type Biglnteger, the result of the operation is of type Biglnteger;

» otherwise, if thereisan operand of type Long or long, the result of the operation is of type Long;

» otherwise, if thereis an operand of integral type, the result of the operation is of type Integer.

10.2.9. JPQL ORDER BY Clause

The ORDER BY clause allows the objects or values that are returned by the query to be ordered. The syntax of the ORDER BY
clauseis

 orderby clause::= ORDER BY orderby _item {, orderby_item}*

134



JPA Query

» orderby_item ::={ state field_path_expression | result_variable} [ASC | DESC]
An orderby_item must be one of the following:

« Astate_field_path_expression that evaluatesto an orderable state field of an entity or embeddable class abstract
schematype designated in the SELECT clause by one of the following:

e ageneral _identification_variable
e asingl e_val ued_obj ect _pat h_expressi on

» Astate_field_path_expression that evaluatesto the same state field of the same entity or embeddabl e abstract
schematypeasastate_fiel d_path_expressi oninthe SELECT clause.

* Aresult_vari abl e that refersto an orderableitem in the SELECT clause for which thesamer esul t _vari abl e
has been specified. This may be the result of an aggr egat e_expr essi on,ascal ar _expressi on, ora
state fiel d_path_expressioninthe SELECT clause.

For example, the five queries below are legal.

SELECT pub FROM Publ i sher pub ORDER BY pub.revenue, pub. nane

SELECT o

FROM Custonmer ¢ JON c.orders o JON c.address a
WHERE a.state = ‘ CA

ORDER BY 0. quantity DESC, o.totalcost

SELECT o. quantity, a.zipcode

FROM Custonmer ¢ JON c.orders o JON c.address a
WHERE a.state = ‘ CA

ORDER BY o0. quantity, a.zipcode

SELECT o.quantity, o.cost*1.08 AS taxedCost, a.zipcode
FROM Custonmer ¢ JON c.orders o JON c.address a
WHERE a.state = ‘CA” AND a.county = ‘Santa dara’
ORDER BY 0. quantity, taxedCost, a.zipcode

SELECT AVG 0. quantity) as g, a.zipcode

FROM Custonmer ¢ JON c.orders o JON c.address a
WHERE a.state = ‘CA

GROUP BY a. zi pcode

ORDER BY q DESC

The following two queries are not legal because the or der by _i t emis not reflected in the SELECT clause of the query.

SELECT p. product _nane

135




JPA Query

FROM Order o JON o.lineltems | JONI.product p JON o.custoner ¢
WHERE c.lastname = ‘Smith’ AND c.firstnane = ‘ John’
ORDER BY p. price

SELECT p. product _nane

FROM Order o, IN(o.lineltems) | JON o.customer c
WHERE c.lastname = ‘Smith’ AND c.firstnane = ‘John’
ORDER BY 0. quantity

If morethan oneor der by _i t emis specified, the left-to-right sequence of the or der by _i t emelements determines the
precedence, whereby the leftmost or der by _i t emhas highest precedence.

The keyword ASC specifies that ascending ordering be used; the keyword DESC specifies that descending ordering be used.
Ascending ordering is the default.

SQL rulesfor the ordering of null values apply: that is, all null values must appear before all non-null values in the ordering or all
null values must appear after al non-null valuesin the ordering, but it is not specified which.

The ordering of the query result is preserved in the result of the query method if the ORDER BY clauseis used.

10.2.10. JPQL Bulk Update and Delete

Bulk update and delete operations apply to entities of asingle entity class (together with its subclasses, if any). Only one entity
abstract schema type may be specified in the FROMor UPDATE clause. The syntax of these operationsis as follows:

» update_statement ::= update _clause [where _clause]

» update clause::= UPDATE entity name[[AS] identification_variable] SET update item {, update item}*
 update_item ::= [identification_variable]{ state field | single_valued object field} = new_value

* new_value::=scalar_expression | simple_entity expression | NULL

» delete statement ::= delete_clause [where clause]

 delete clause::= DELETE FROM entity_name [[AS] identification_variable]

The syntax of the WHERE clause is described in Section 10.2.4, * JPQL WHERE Clause” [117].

A delete operation only applies to entities of the specified class and its subclasses. It does not cascade to related entities.
Thenew_val ue specified for an update operation must be compatible in type with the state-field to which it is assigned.

Bulk update maps directly to a database update operation, bypassing optimistic locking checks. Portable applications must
manually update the value of the version column, if desired, and/or manually validate the value of the version column.

The persistence context is not synchronized with the result of the bulk update or delete.

Caution should be used when executing bulk update or delete operations because they may result in inconsistencies between the
database and the entities in the active persistence context. In general, bulk update and del ete operations should only be performed
within atransaction in a new persistence context or at the beginning of atransaction (before entities have been accessed whose
state might be affected by such operations).

Examples:

136



JPA Query

DELETE FROM Publ i sher pub WHERE pub. revenue > 1000000. 0

DELETE FROM Publ i sher pub WHERE pub.revenue = 0 AND pub. nagazi nes 1S EMPTY

UPDATE Publ i sher pub SET pub.status = 'outstanding'
VWHERE pub. revenue < 1000000 AND 20 > ( SELECT COUNT(neg) FROM pub. nagazi nes nag)

10.2.11. JPQL Null Values

When the target of areference does not exist in the database, its valueis regarded as NULL. SQL 92 NULL semantics defines the
evaluation of conditional expressions containing NULL values. The following is a brief description of these semantics:

» Comparison or arithmetic operations with a NULL value always yield an unknown value.
» Two NULL values are not considered to be equal, the comparison yields an unknown value.
» Comparison or arithmetic operations with an unknown value always yield an unknown value.

* Thel S NULL andl S NOT NULL operators convert aNULL state-field or single-valued association-field value into the
respective TRUE or FALSE value.

Note: The JPQL defines the empty string, ", as a string with 0 length, which is not equal to a NULL value. However, NULL

values and empty strings may not always be distinguished when queries are mapped to some databases. Application developers
should therefore not rely on the semantics of query comparisons involving the empty string and NULL  value.

10.2.12. JPQL Equality and Comparison Semantics

Only thevalues of | i ke types are permitted to be compared. A typeis| i ke another typeif they correspond to the same Java
language type, or if oneis a primitive Java language type and the other is the wrappered Java class type equivalent (e.g., i nt and
I nt eger areliketypesin this sense). Thereis one exception to thisrule: it isvalid to compare numeric values for which the
rules of numeric promotion apply. Conditional expressions attempting to compare non-like type values are disallowed except for
this numeric case.

Note that the arithmetic operators and comparison operators are permitted to be applied to state-fields and input parameters of the
wrappered Java class equivalents to the primitive numeric Java types.

Two entities of the same abstract schematype are equal if and only if they have the same primary key value.
Equality/inequality comparisons over enums are supported.

Comparisons over instances of embeddable class or map entry types are not supported.

10.2.13. JPQL BNF

Thefollowing is the BNF for the Java Persistence query language, from section 4.14 of the JSR 317 specification.

select_item ::= select_expression [[AS] result_variable]

» QL_statement ::= select_statement | update_statement | delete_statement

137



JPA Query

select_statement ::= select_clause from_clause [where clause] [groupby_clause] [having_clause] [orderby _clause]
update_statement ::= update clause [where clause]
delete statement ::= delete clause [where_clause]

from_clause ::= FROMidentification_variable_declaration {, {identification_variable declaration |
collection_member_declaration} } *

identification_variable _declaration ::= range variable declaration { join | fetch_join }*

range variable declaration ::= entity_name[ AS] identification_variable

join ::=join_specjoin_association path_expression [ AS] identification variable

fetch_join ::=join_spec FETCH join_association_path_expression

join_spec ::=[ LEFT [ QUTER]| I NNER]JA N

join_association_path_expression ::= join_collection_valued_path_expression | join_single valued path_expression

join_collection_valued path_expression ::= identification_variable.
{single_valued_embeddable _object_field.} *collection_valued field

join_single valued_path _expression ::= identification variable.
{single valued_embeddable object_field.} *single valued_object field

collection_member_declaration ::= | N (join_collection_valued_path _expression) [ AS ] identification variable

qualified identification variable ::= KEY (identification_variable) | VALUE(identification_variable) |
ENTRY (identification_variable)

single valued path expression ::= qualified identification variable | state field path expression |
single valued object_path _expression

general_identification_variable ::= identification variable | KEY (identification variable) | VALUE(identification variable)
state field_path_expression ::= general_identification_variable{single valued object field.}*state field

single valued object_path expression ::= general_identification_variable{single valued object field.}*
single valued object_field

collection_valued path_expression ::= general_identification variable{single valued object field.} *collection valued field
update clause ::= UPDATE entity_name[[ AS ] identification variable] SET update item {, update item}*

update _item ::=[identification_variable.]{ state field | single valued_object field} = new_value

new_value ::= scalar_expression | simple_entity expression | NULL

delete clause ::= DELETEFROMentity name[[ AS] identification variable]

select_clause ::= SELECT [ DI STI NCT ] select_item {, select_item}*

select_expression ::= single_valued_path_expression | scalar_expression | aggregate_expression | identification_variable |
OBJECT (identification_variable)| constructor_expression

138



JPA Query

constructor_expression ::= NEWconstructor_name( constructor_item {, constructor_item}*)
constructor_item ::= single valued_path_expression | scalar_expression | aggregate_expression | identification variable

aggregate_expression ::={ AVG| MAX|M N|SUM}([ DI STI NCT ] state field path_expression) | COUNT ([ DI STI NCT ]
identification variable | state field path_expression | single_valued object_path_expression)

where_clause ::= WHERE conditional_expression

groupby_clause ::= GROUPBY groupby_item {, groupby_item}*

groupby_item ::= single_valued path_expression | identification_variable

having_clause ::= HAVI NG conditional _expression

orderby clause ::= ORDERBY orderby_item {, orderby_item}*

orderby_item ::= state field_path_expression | result_variable [ ASC | DESC]

subquery ::= simple_select _clause subquery_from_clause [where clause] [groupby _clause] [having_clause]

subquery_from_clause ::= FROMsubselect_identification_variable declaration {, subselect_identification variable declaration
| collection_member_declaration} *

subselect_identification_variable declaration ::= identification variable declaration | derived path expression[ AS |
identification_variable | derived_collection_member_declaration

derived path_expression ::= superquery_identification variable.{single valued_object field.}*collection valued field |
superquery_identification_variable{single valued object field.}*single valued object field

derived_collection_member_declaration ::= IN superquery_identification_variable.
{single_valued_object _field.}*collection_valued field

simple_select_clause ::= SELECT [ DI STI NCT ] simple_select_expression

simple_select_expression ::= single_valued_path_expression | scalar_expression | aggregate_expression |
identification_variable

scalar_expression ::= simple_arithmetic_expression | string_primary | enum_primary | datetime_primary | boolean_primary |
case_expression | entity_type_expression

conditional_expression ::= conditiona_term | conditional_expression OR conditional_term
conditional_term ::= conditional_factor | conditional_term AND conditional _factor
conditional_factor ::=[ NOT ] conditional_primary

conditional_primary ::= simple_cond_expression |(conditional_expression)

simple_cond_expression ::= comparison_expression | between_expression | like_expression | in_expression |
null_comparison_expression | empty_collection_comparison_expression | collection_member_expression | exists_expression

between_expression ::= arithmetic_expression [ NOT | BETWEEN arithmetic_expression AND arithmetic_expression |
string_expression [ NOT ]| BETWEEN string_expression AND string_expression | datetime_expression [ NOT | BETWEEN
datetime_expression AND datetime_expression

in_expression ::= {state field_path_expression | type_discriminator} [ NOT ] | N{(in_item {, in_item}*) | (subquery) |
collection valued input_parameter }

139



JPA Query

in_item ::=literal | single_valued_input_parameter

like_expression ::= string_expression [ NOT | LI KE pattern_value [ ESCAPE escape_character]
null_comparison_expression ::= {single_valued path_expression | input_parameter} | S[ NOT ] NULL
empty_collection_comparison_expression ::= collection_valued path expression| S| NOT | EMPTY
collection_member_expression ::= entity_expression [ NOT | MEMBER|[ OF ] collection_valued path_expression

entity_or_value_expression ::= single_valued_object_path_expression | state field_path_expression |
simple_entity or_value expression

simple_entity_or_value_expression ::= identification_variable | input_parameter | literal

exists expression ::=[ NOT ] EXI STS (subquery)

al_or_any_expression ::={ ALL | ANY | SOVE } (subquery)

comparison_expression ::= string_expressioncomparison_operator{ string_expressionfall_or_any expression} |
boolean_expression { =|<>} {boolean_expression | all_or_any expression} | enum_expression { =|<>} { enum_expression
| all_or_any expression} | datetime_expression comparison_operator { datetime _expression | al_or_any expression} |
entity_expression {= |<>} {entity_expression | all_or_any expression} | arithmetic_expression comparison_operator
{arithmetic_expression | all_or_any expression} | entity type expression { =|<>>} entity type expression}
comparison_operator ::== |> >= |< |<= |<>

arithmetic_expression ::= simple_arithmetic_expression |[(subquery)

simple_arithmetic_expression ::= arithmetic_term | smple_arithmetic_expression {+ |- } arithmetic_term
arithmetic_term ::= arithmetic_factor | arithmetic_term {* |/ } arithmetic_factor

arithmetic_factor ::= [{ + |-}] arithmetic_primary

arithmetic_primary ::= state field path_expression | numeric_literal | (ssmple_arithmetic_expression) | input_parameter |
functions_returning_numerics | aggregate_expression | case_expression

string_expression ::= string_primary |(subquery)

string_primary ::= state field_path_expression | string_literal | input_parameter | functions_returning_strings |
aggregate_expression | case_expression

datetime_expression ::= datetime_primary |(subquery)

datetime_primary ::= state field path expression | input_parameter | functions _returning_datetime | aggregate_expression |
case_expression | date_time_timestamp_literal

boolean_expression ::= boolean_primary |(subquery)

boolean_primary ::= state field path_expression | boolean_literal | input_parameter | case_expression
enum_expression ::= enum_primary |(subquery)

enum_primary ::= state field _path_expression | enum_literal | input_parameter | case_expression
entity_expression ::= single_valued_object_path_expression | simple_entity expression

simple_entity_expression ::= identification_variable | input_parameter

140



JPA Query

entity_type_expression ::= type_discriminator | entity_type_literal | input_parameter

type_discriminator ::= TYPE(identification_variable | single valued object path expression | input_parameter)
functions_returning_numerics ::= LENGTH (string_primary)| LOCATE (string_primary,string_primary [,
simple_arithmetic_expression]) | ABS (simple_arithmetic_expression) | SQRT (simple_arithmetic_expression) |

MOD (simple_arithmetic_expression, simple_arithmetic_expression) | SI ZE (collection_valued path_expression) |

| NDEX(identification_variable)

functions_returning_datetime ::= CURRENT_DATE | CURRENT_TI ME | CURRENT_TI MESTAMP
functions_returning_strings ::= CONCAT (string_primary, string_primary) | SUBSTRI NG (string_primary,
simple_arithmetic_expression[,simple_arithmetic_expression])| TRI M ([[trim_specification] [trim_character] FROM]
string_primary) | LOVER (string_primary) | UPPER  (string_primary)

trim_specification ::= LEADI NG| TRAI LI NG| BOTH

case_expression ::= genera_case_expression | smple_case_expression | coalesce_expression | nullif_expression
general_case expression::= CASE when_clause { when_clause} * ELSE scalar_expression END

when_clause::= WHEN conditional_expression THEN scalar_expression

simple_case expression::= CASE case_operand simple when_clause {smple when_clause}* ELSE scalar_expression END
case_operand::= state field_path_expression | type_discriminator

simple_when_clause::= WHEN scalar_expression THEN scalar_expression

coalesce_expression::= COALESCE(scalar_expression {, scalar_expression} +)

nullif_expression::= NULL| F(scalar_expression, scalar_expression)

141



Chapter 11. JPA Criteria

11.1

JPA 2.0 specification introduces anew API to define queries dynamically via construction of an object-based

j avax. persistence. CriteriaQuery instance, rather than string-based approach used in JPQL (Java Persistence Query
Language). This dynamic query definition capability, referred as Criteria API, is based on the abstract persistent schema of the
entities, their embedded objects and their relationships. The syntax is designed to construct a Query Tree whose nodes represent
the semantic query elements such as projections, conditional predicates of WHERE clause or GROUP BY elements etc.

Constructing a CriteriaQuery

The CriteriaBuilder interface is the factory for CriteriaQuery. A CriteriaBuilder is obtained from either an EntityM anagerFactory
or an EntityManager as follows:

EntityManager em= ... ;
CriteriaBuilder queryBuilder = emgetCriteriaBuilder();
CriteriaQuery qdef = queryBuil der.createQuery();

Thefirst step in constructing a query definition is specification of query roots. Query roots specify the domain objects on
which the query is evaluated. Query root is an instance of the Root<T> interface. A query root is added to a CriteriaQuery by
addRoot (O ass c¢) method.

Root <Cust onmer > cust omer = qdef. fron{Custoner.class);

A query domain can be further refined by joining to other domain objects. For example, for the above query definition to operate
over customers and their orders, usej oi n(String attribute):

Root <Order > order = custoner.join(customner.get(Customer_.orders));

where Customer_.orders represent afield of canonical metamodel class for Customer. These canonical metamodel classes are
generated during compilation by processing the persistent annotation in the source code of Customer.java.

The condition of aquery definition is set viawher e( Pr edi cat e p) where the argument designates a conditional predicate.
Conditional predicates are often composed of one or more comparisons between the attribute values of the domain objects and
some variable. For example, to select the Customer whose nameis " John Doe" and has orders that are not yet delivered, you can
build the predicate and set it to the query definition as:

gdef . wher e( cust orer . get ( Cust onrer _. nane) . equal ("John Doe")
.and(order.get (O der_.status).equal (OrderStatus. DELI VERED). not()));

Thesel ect () method defines the result of the query. If left unspecified, the select projection is assumed to be the root domain
object. However, you can specify the selected projections explicitly asalist:

142




JPA Criteria

qgdef . sel ect (cust omer. get (Cust omer _. nane), order.get(Order_.status));

11.2

An attribute of a domain object can also be specified by navigating viaget (St ri ng attr) . Theattribute should refer to a
valid persistent property of the receiving domain object, however no such validation is enforced during the construction of the
guery definition. All validation is deferred until the query is actually executed. On the other hand, using canonical metamodel for
path navigate enforces compile type checking.

Executing a CriteriaQuery

A CriteriaQuery is executed in a similar fashion to a string-based JPQL query viathe EntityManager and Query interfaces.

EntityManager em= ...
Query query = em createQuery(qdef);
List result = query.getResultList();

11.3

A query definition can use named parameters, and the parameter values are set as usual in the Query instance.

A developerworks article explains details and further usage of Criteria APl and its OpenJPA extensions.

Extension to Criteria API

Criteria API has provided an alternative means to string-based JPQL to execute a query. However, JPA 2.0 specification has not
explicitly specified any equivalence between a dynamically constructed CriteriaQuery and a JPQL string. OpenJPA provides a
mechanism to convert a CriteriaQuery to an equivalent JPQL query string via the extended OpenJPA CriteriaQuery API.

public interface OpenJPACriteriaQuery extends CriteriaQuery {

/**

* Gets equivalent JPQL String for the given CriteriaQuery.
*/

public String toCQL();

11.4

Generation of Canonical MetaModel classes

Annotation processing tool generates source code for a metamodel class given the annotated source code of persistent entity. This
tool isinvoked during compilation for JDK6 compiler if OpenJPA and JPA libraries are specified in the compiler - cl asspat h
option and Annotation processor option - Aopenj pa. met anodel =t r ue is specified.

$ javac -classpath path/to/openjpa-all.jar -Aopenjpa.netanodel =true nypackage/ M/Entity.java

will generate source code for canonical meta-model classmypackage. MyEnt i ty . The source code is generated relative to
the directory specified in - s option of j avac compiler and defaulted to the current directory.

The Annotation Processor recognizes the following options specified in the command-line with - A (none of them are
mandatory).

143



http://www.ibm.com/developerworks/java/library/j-typesafejpa/

JPA Criteria

-Aopenjpa.log=TRACE|INFO[WARN|ERROR : The logging level. Default is WARN.
-Aopenjpa.source=<n> : where <n> denotes the integral number for Java source version of the generated code. Default is 6.

-Aopenjpa.naming=class name : fully-qualified name of a classimplementing

or g. apache. openj pa. net a. Met aDat aFact or y that determines the name

of ameta-class given the name of the original persistent Java entity class. Defaultsto

or g. apache. openj pa. per si st ence. Per si st enceMet aDat aFact or y which appends an underscore character
(L) to the original Java class name.

-Aopenjpa.header=<url> : A url whose content will appear as comment header to the generated file(s). Recognizes special
value ASL for Apache Source License header as comment. By default, adds an OpenJPA proprietary text as comment block.

144



Chapter 12. SQL Queries

12.1

JPQL isapowerful query language, but there are times when it is not enough. Maybe you're migrating a JDBC application to JPA
on astrict deadline, and you don't have time to translate your existing SQL selects to JPQL. Or maybe a certain query requires
database-specific SQL your JPA implementation doesn't support. Or maybe your DBA has spent hours crafting the perfect select
statement for a query in your application's critical path. Whatever the reason, SQL queries can remain an essential part of an
application.

Y ou are probably familiar with executing SQL queriesby obtaininga j ava. sql . Connect i on, using the JDBC APIsto
createa St at enent, and executing that St at enrent to obtain aResul t Set . And of course, you are free to continue using
this low-level approach to SQL execution in your JPA applications. However, JPA also supports executing SQL queries through
thej avax. persi st ence. Query interfaceintroduced in Chapter 10, JPA Query [93]. Using a JPA SQL query, you can
retrieve either persistent objects or projections of column values. The following sections detail each use.

Creating SQL Queries

TheEnti t yManager hastwo factory methods suitable for creating SQL queries:

public Query createNativeQuery(String sql String, Cass resultd ass);
public Query createNati veQuery(String sql String, String resultSetMpping);

The first method is used to create anew Quer y instance that will return instances of the specified class.

The second method uses a Sql Resul t Set Mappi ng to determine the type of object or objects to return. The example below
shows these methods in action.

Example 12.1. Creating a SQL Query

EntityManager em= ...;
Query query = em createNativeQuery("SELECT * FROM MAG', Magazi ne. cl ass);
processMagazi nes(query. get Resul tList());

12.2

In addition to SELECT statements, OpenJPA supports stored procedure invocations as SQL queries. OpenJPA will
assume any SQL that does not begin with the SELECT keyword (ignoring case) is a stored procedure call, and invoke it
as such at the JDBC level.

Retrieving Persistent Objects with SQL

When you give a SQL Quer y acandidate class, it will return persistent instances of that class. At aminimum, your SQL must
select the class' primary key columns, discriminator column (if mapped), and version column (also if mapped). The JPA runtime
uses the values of the primary key columns to construct each result object's identity, and possibly to match it with a persistent
object already inthe Ent i t yManager 's cache. When an object is not already cached, the implementation creates a new object
to represent the current result row. It might use the discriminator column value to make sure it constructs an object of the correct
subclass. Finally, the query records available version column data for use in optimistic concurrency checking, should you later
change the result object and flush it back to the database.

145




SQL Queries

Aside from the primary key, discriminator, and version columns, any columns you select are used to populate the persistent
fields of each result object. JPA implementations will compete on how effectively they map your selected datato your persistent
instance fields.

L et's make the discussion above concrete with an example. It uses the following simple mapping between a class and the
database;

org.mag

Magazine
- isbn: String
- title: String
- price: double
- copiesSold: int

Example 12.2. Retrieving Persistent Objects

Query query = em createNati veQuery("SELECT I SBN, TITLE, PRICE, "

+ "VERS FROM MAG WHERE PRICE > 5 AND PRI CE < 10", Magazine.cl ass);
Li st <Magazi ne> results = (List<Magazi ne>) query.getResultList();
for (Magazine nag : results)

processMagazi ne( mag) ;

The query above works as advertised, but isn't very flexible. Let's update it to take in parameters for the minimum and maximum
price, so we can reuse it to find magazinesin any price range:

Example 12.3. SQL Query Parameters

Query query = em createNativeQuery("SELECT I SBN, TITLE, PRICE, "
+ "VERS FROM MAG WHERE PRI CE > ?1 AND PRI CE < ?2", Magazi ne. cl ass);

query. set Paranmeter (1, 5d);
query. set Paraneter (2, 10d);

Li st <Magazi ne> results = (List<Magazi ne>) query.getResultList();
for (Magazine mag : results)
processMagazi ne( mag) ;

Like JDBC prepared statements, SQL queries represent parameters with question marks, but are followed by an integer to
represent its index.

146




Chapter 13. Mapping Metadata

Object-relational mapping is the process of mapping entities to relational database tables. In JPA, you perform object/relational
mapping through mapping metadata. Mapping metadata uses annotations to describe how to link your object model to your
relational model.

OpenJPA offers tools to automate mapping and schema creation. See Chapter 7, Mapping [290] in the Reference
Guide.

Throughout this chapter, we will draw on the object model introduced in Chapter 5, Metadata [28]. We present that model
again below. Aswe discuss various aspects of mapping metadata, we will zoom in on specific areas of the model and show how
we map the object layer to the relational layer.

org.mag org.mag.pub
Author
autharg™ * [-id: long
- firstName: String
nR Article - lastName: String
=Ny - arts® — - version: int
- title: String
- content: byte] T
- version: int address
Address
- street: String
coverArticle articles” - city: String
| | - state: String
Magazine - Zip: String
- isbn: String |
- title: String ;
- price: double publisher ardresa
- copiesSold: int o Company
- version: int - mags® — -id: long
- name: String
- revenue: double
- version: int
I
magazine subscriptions™
Lineltem Subscription LifetimeSubscription
- comments: String -id: long elieClub: boolean
- price: double 4 ilems® 4 - startDate: Date 3
- num: long - payment: double
- version: int
l TrialSubscription
Doc - endDate: Date
Contract 7d: Tong L
. - version: int
org.mag.subscribe

All mapping metadata is optional. Where no explicit mapping metadatais given, JPA uses the defaults defined by the
specification. As we present each mapping throughout this chapter, we also describe the defaults that apply when the mapping is
absent.

147



Mapping Metadata

Mapping metadata is used primarily with schema generation. This metadata should not be relied upon for validation
prior to communicating with the database. For example using the @Column(nullable=false) annotation does not do up
front validation that the value in the entity is correct.

13.1. Table

The Tabl e annotation specifies the table for an entity class. If you omit the Tabl e annotation, base entity classes default to a
table with their unqualified class name. The default table of an entity subclass depends on the inheritance strategy, as you will see
in Section 13.6, “ Inheritance” [157].

Tabl eshavethe following properties:

* String name: The name of the table. Defaults to the unqualified entity class name.

e String schena: Thetable's schema. If you do not name a schema, JPA uses the default schema for the database
connection.

e String catal og: Thetabl€'s catalog. If you do not name a catalog, JPA uses the default catalog for the database
connection.

* Uni queConstraint[] uni gqueConstrai nts:Anarray of unique constraints to place on the table. We cover unique
constraints below. Defaults to an empty array.

The equivalent XML element ist abl e. It has the following attributes, which correspond to the annotation properties above:
¢ name

* schema

e catal og

Thet abl e element also accepts nested uni que- const r ai nt elements representing unique constraints. We will detail
unique constraints shortly.

Sometimes, some of the fields in a class are mapped to secondary tables. In that case, use the class Tabl e annotation to name
what you consider the class primary table. Later, we will see how to map certain fields to other tables.

The example below maps classes to tables to separate schemas. The CONTRACT, SUB, and LI NE_I TEM tablesarein the
CNTRCT schema; all other tables are in the default schema

148



I
@ntity

@abl e( name="ART")
public class Article {

}

package org. mag. pub;
@ntity

@abl e( name=" COVP")
public class Conpany {

}
@ntity

@abl e( name="AUTH")
public class Author {

}

@nbeddabl e
public class Address {

}

package org. mag. subscri be;

@mppedSuper cl ass
public abstract class Document {

}

Aot it

<entity-mappi ngs xm ns="http://java. sun. conl xm / ns/ persi stence/ or nf
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schera- i nst ance"
xsi :schemalLocation="http://java. sun. conl xm / ns/ persi stence/ormorm1_0. xsd"
version="1.0">
<mapped- super cl ass cl ass="org. mag. subscri be. Docunent " >

</ mapped- super cl ass>
<entity class="org. mag. Magazi ne">
<t abl e nane="MAG'/ >
<i d-cl ass="org. nag. Magazi ne. Magazi nel d"/ >

</entity>
<entity class="org.mg.Article">
<t abl e nane="ART"/>

</entity>
<entity class="org. mg. pub. Conpany" >
<t abl e nane="COW"/ >

</entity>
<entity class="org. mag. pub. Aut hor">
<t abl e nane="AUTH'/ >

</entity>
<entity class="org. mg. subcribe. Contract">
<t abl e schema="CNTRCT"/ >

</entity>
<entity class="org. mag. subcribe. Subscription">
<t abl e name="SUB" schema="CNTRCT"/>

</entity>
<entity class="org. mag. subscribe. Subscri ption. Lineltent >
<tabl e nane="LI NE_I TEM' schenma="CNTRCT"/>
</entity>
<entity class="org. mag. subscribe. Lifeti neSubscription" nane="Lifetime">
</entity>
<entity class="org. mag. subscribe. Tri al Subscription" name="Trial ">
</entity>
<enbeddabl e cl ass="org. mag. pub. Addr ess" >

</ embeddabl e>
</ entity-nmappi ngs>

149




Mapping Metadata

13.2.

Unique Constraints

Unique constraints ensure that the datain a column or combination of columns is unique for each row. A table's primary

key, for example, functions as an implicit unique constraint. In JPA, you represent other unigque constraints with an array

of Uni queConst r ai nt annotations within the table annotation. The unique constraints you define are used during table
creation to generate the proper database constraints, and may also be used at runtime to order | NSERT, UPDATE , and DELETE
statements. For example, suppose there is a unique constraint on the columns of field F. In the same transaction, you remove an
object A and persist a new object B, both with the same F value. The JPA runtime must ensure that the SQL deleting A is sent to
the database before the SQL inserting B to avoid a unique constraint violation.

Uni queConst r ai nt hasthese properties:

e String nane: The name of the constraint. OpenJPA will choose aname if you do not provide one, or will create an
anonymous constraint.

* String[] col unmNames: The names of the columns the constraint spans.

In XML, unique constraints are represented by nesting uni que- constrai nt elementswithinthe t abl e element. Each
uni que- constrai nt elementinturn nestscol umMm- nane text elements to enumerate the constraint's columns.

Example 13.2. Defining a Unique Constraint

The following defines a unique constraint on the Tl TLE column of the ART table:

@ntity
@abl e(name="ART", uni queConstrai nt s=@Jni queConst rai nt (name="TlI TLE_CNSTR', col utmNanmes="T| TLE"))
public class Article {

}

The same metadata expressed in XML form:

<entity class="org.mg. Article">
<t abl e nane="ART" >
<uni que- constrai nt >
<name>T| TLE_CNSTR</ name>
<col um- nanme>TI TLE</ col um- name>
</ uni que- constrai nt >
</t abl e>

</entity>

13.3.

Column

In the previous section, we saw that aUni queConst r ai nt usesan array of column names. Field mappings, however, use full-
fledged Col umm annotations. Column annotations have the following properties:

e String nane: The column name. Defaults to the field name.

e String col umbDefi niti on: The database-specific column type name. This property isonly used by vendors
that support creating tables from your mapping metadata. During table creation, the vendor will use the value of the

150




Mapping Metadata

13.4

col umDef i ni t i on asthe declared column type. If no col unmDef i ni t i on isgiven, the vendor will choose an
appropriate default based on the field type combined with the column's length, precision, and scale.

e int | ength: Thecolumnlength. This property istypically only used during table creation, though some vendors might use
it to validate data before flushing. CHAR and VARCHAR columns typically default to alength of 255; other column types use
the database defaullt.

e int precision: Theprecision of anumeric column. This property is often used in conjunction with scal e to form the
proper column type name during table creation.

e int scal e: Thenumber of decimal digits a numeric column can hold. This property is often used in conjunction with
preci si on toform the proper column type name during table creation.

e bool ean nul | abl e: Whether the column can store null values. Vendors may use this property both for table creation and
at runtime; however, it is never required. Defaultstot r ue.

e bool ean i nsert abl e: By setting thisproperty to f al se, you can omit the column from SQL | NSERT statements.
Defaultstot r ue.

e bool ean updat abl e: By setting this property to f al se, you can omit the column from SQL UPDATE statements.
Defaultstot r ue.

e String tabl e: Sometimesyou will need to map fields to tables other than the primary table. This property allows you
specify that the column resides in a secondary table. We will see how to map fields to secondary tables later in the chapter.

The equivalent XML element iscol umm. This element has attributes that are exactly equivalent to the Col unm annotation's
properties described above:

e name
e colum-definition
e length

e precision

e scale

* insertabl e

updat abl e

 table

ldentity Mapping

With our new knowledge of columns, we can map the identity fields of our entities. The diagram below now includes primary
key columns for our model's tables. The primary key column for Aut hor uses nonstandard type | NTEGER64, and the
Magazi ne. i sbn fieldismapped to a VARCHAR( 9) columninstead of a VARCHAR( 255) column, which isthe default for
string fields. We do not need to point out either one of these oddities to the JPA implementation for runtime use. If, however,
we want to use the JPA implementation to create our tables for us, it needs to know about any desired non-default column types.
Therefore, the example following the diagram includes this datain its encoding of our mappings.

151



Mapping Metadata

org.mag

Magazine
-igbn: String | -
- title: String

Article
~Td: long - -

Trial
Subseription [

Subscription
- id: lomg

]
e e

Lineltem F--- ._

| — org.mag.subscribe

Lifetime |
Subscription

Note that many of our identity fields do not need to specify column information, because they use the default column name and
type.

152



public static class Magazineld {

}
}

@ntity
@abl e(name="ART", uni queConstrai nt s=@Jni que(col unmNanmes="TI| TLE"))
public class Article {

@d private long id;

package org. mag. pub;
@ntity

@abl e( name="COVP")
public class Conpany {

@ol um( name="Cl D")
@d private long id;

}

@ntity

@abl e( name="AUTH")
public class Author {

@ol um( name="Al D', col umbDefi niti on="1NTEGER64")
@d private long id;

}

@nbeddabl e
public class Address {

}

package org. mag. subscri be;

@mppedSuper cl ass
public abstract class Docunment {

@d
@cener at edVal ue( st rat egy=CGener at i onType. | DENTI TY)
private long id;

}

@ntity

@abl e(schema="CNTRCT")

public class Contract
ext ends Docunent {

<entity class="org. mag. Magazi ne">

<id-class class="org. nag. Magazi ne. Magazi ne. Magazi nel d"/ >
<t abl e nane="MAG'/ >
<attributes>

<id name="isbn">

<col um | engt h="9"/>
</id>
<id name="title"/>

</attributes>
</entity>
<entity class="org. mag. pub. Conpany" >
<t abl e nane="COW"/>
<attributes>
<id name="id">
<col um nanme="Cl D'/ >
</id>

</attributes>
</entity>

@niTty(name="TIrral ")
public class Trial Subscription
ext ends Subscription {

1095




Mapping Metadata

13.5. Generators

One aspect of identity mapping not covered in the previous section is JPA's ability to automatically assign a value to your
numeric identity fields using generators. We discussed the available generator typesin Section 5.2.3,“ 1d ” [35]. Now we show
you how to define named generators.

13.5.1. Sequence Generator

Most databases allow you to create native sequences. These are database structures that generate increasing numeric values. The
SequenceCener at or annotation represents a named database sequence. Y ou can place the annotation on any package, entity
class, persistent field declaration (if your entity usesfield access), or getter method for a persistent property (if your entity uses
property access). SequenceGener at or has the following properties:

e String nanme: The generator name. This property isrequired.

» String sequenceNane: The name of the database sequence. If you do not specify the database sequence, your vendor
will choose an appropriate default.

 int initialVal ue: Theinitial sequencevalue.

e int allocationSize: The number of valuesto allocate in memory for each trip to the database. Allocating valuesin
memory allows the JPA runtime to avoid accessing the database for every sequence request. This number also specifies the
amount that the sequence value is incremented each time the sequence is accessed. Defaults to 50.

* String schenma: The sequence's schema. If you do not name a schema, JPA uses the default schema for the database
connection.

OpenJPA allows you to use one of OpenJPA's built-in generator implementations in the sequenceNane property.
You can aso set the sequenceNane to syst emto use the system sequence defined by the openj pa. Sequence
configuration property. See the Reference Guide's Section 9.6, “ Generators” [331] for details.

The XML element for a sequence generator issequence- gener at or . Itsattributes mirror the above annotation's properties:
* name

* sequence- nane

e initial-value

e allocation-size

* schema

To use a sequence generator, set your Gener at edVal ue annotation's st r at egy property to

Cener ati onType. SEQUENCE, and itsgener at or property to the sequence generator's declared name. Or equivalently, set
your gener at ed- val ue XML element'sst r at egy attribute to SEQUENCE and itsgener at or attribute to the generator
name.

13.5.2. Table Generator

A Tabl eGener at or refersto adatabase table used to store increasing sequence values for one or more entities. As with
SequenceCener at or, you can place the Tabl eGener at or  annotation on any package, entity class, persistent field

154



Mapping Metadata

declaration (if your entity uses field access), or getter method for a persistent property (if your entity uses property access).
Tabl eGener at or hasthe following properties:

String name: The generator name. This property isrequired.

String tabl e: The name of the generator table. If left unspecified, your vendor will choose a default table.
String schema: The named table's schema.

String cat al og: The named tabl€e's catal og.

String pkCol utmNane: The name of the primary key column in the generator table. If unspecified, your implementation
will choose a defaullt.

String val ueCol utmNane: The name of the column that holds the sequence value. If unspecified, your implementation
will choose a default.

String pkCol utmVal ue: The primary key column value of the row in the generator table holding this sequence value.
Y ou can use the same generator table for multiple logical sequences by supplying different pkCol utmVal ue s. If you do
not specify avalue, the implementation will supply a default.

i nt initialVal ue: Thevalue of the generator's first issued number.
i nt allocationSi ze: The number of valuesto allocate in memory for each trip to the database. Allocating valuesin

memory allows the JPA runtime to avoid accessing the database for every sequence request. This number also specifies the
amount that the sequence value is incremented each time the generator table is updated. Defaults to 50.

The XML equivalent isthet abl e- gener at or element. This element's attributes correspond exactly to the above annotation's
properties:

nane
tabl e

schema

cat al og

pk- col unm- nane
val ue- col um- nane
pk- col um-val ue
initial-value

al | ocation-si ze

To use atable generator, set your Gener at edVal ue annotation'sst r at egy property to Gener ati onType. TABLE,
and itsgener at or property to the table generator's declared name. Or equivalently, set your gener at ed- val ue XML
element'sst r at egy attribute to TABLE and itsgener at or attribute to the generator name.

13.5.3.

Example

Let's take advantage of generatorsin our entity model. Here are our updated mappings.

155



@ntity

@abl e(name="ART", uni queConstrai nt s=@Jhni que(col utmNanmes="TIl TLE"))
@equenceGener at or (nane="Arti cl eSeq", sequenceNane="ART_SEQ')
public class Article {

@d
@cener at edVal ue( st rat egy=Gener ati onType. SEQUENCE, generator="Articl eSeq")
private long id;

package org. mag. pub;

@ntity
@abl e( nane="COVP")
public class Conpany {

@Col um( nanme="Cl D")
@d private long id;

}

@ntity
@abl e( nanme="AUTH")
public class Author {

@d

@cener at edVal ue( st rat egy=CGener ati onType. TABLE, gener at or =" Aut hor Gen")

@abl eGener at or (name="Aut hor Gen", tabl e="AUTH GEN', pkCol utmNanme="PK",
val ueCol umNane="Al D")

@Col um( nanme="Al D', col umbDefi niti on="1NTEGER64")

private long id;

}

@nbeddabl e
public class Address {

}

package org. mag. subscri be;

@mppedSuper cl ass
public abstract class Docunment {

@d
@cener at edVal ue( gener at e=Gener at i onType. | DENTI TY)
private long id;

<entity class="org.mg. Article">
<t abl e nane="ART" >
<uni que- constrai nt >
<col um- nane>TI TLE</ col um- nane>
</ uni que- constrai nt >
</t abl e>
<sequence-generator nanme="Articl eSeq" sequence-nanme="ART_SEQ'/>
<attributes>
<id name="id">
<gener at ed- val ue strategy="SEQUENCE" generator="ArticleSeq"/>
</id>

</attributes>
</entity>
<entity class="org. mag. pub. Aut hor">
<t abl e nane="AUTH'/ >
<attributes>
<id name="id">
<col utm nane="Al D' col utm-definition="1NTEGER64"/ >
<gener at ed- val ue strategy="TABLE" generat or =" Aut hor Gen"/ >
<t abl e- generat or name="Aut hor Gen" t abl e=" AUTH_CGEN'
pk- col um- nane="PK" val ue- col um- nanme="Al D'/ >

</id>
</attributes>
</entity>
}

@ntity(name="Trial")
public class Trial Subscription
ext ends Subscription {




Mapping Metadata

13.6. Inheritance

In the 1990's programmers coined the term impedance mismatch to describe the difficulties in bridging the object and relational
worlds. Perhaps no feature of object modeling highlights the impedance mismatch better than inheritance. There is no natural,
efficient way to represent an inheritance relationship in arelationa database.

Luckily, JPA gives you a choice of inheritance strategies, making the best of abad situation. The base entity class defines the
inheritance strategy for the hierarchy with thel nher i t ance annotation. | nher i t ance hasthe following properties:

e I nheritanceType strat egy: Enum value declaring the inheritance strategy for the hierarchy. Defaults to
I nheritanceType. SI NGLE_TABLE. We detail each of the available strategies below.

The corresponding XML elementisi nher i t ance, which has asingle attribute:
e strategy: Oneof SI NGLE_TABLE, JO NED, or TABLE_PER CLASS.

The following sections describe JPA's standard inheritance strategies.

OpenJPA allows you to vary your inheritance strategy for each class, rather than forcing a single strategy per inheritance
hierarchy. See Section 7.7, “ Additional JPA Mappings” [301] in the Reference Guide for details.

13.6.1. Single Table

Thel nheri tanceType. SI NGLE_TABLE strategy maps all classesin the hierarchy to the base class' table.

org.mag.subscribe

Subscription

T

Lifetime
Subscription

In our model, Subscri pti onismappedtothe CNTRCT. SUBtable. Lifeti meSubscri pti on,whichextends
Subscri pti on, addsitsfield data to this table as well.

157



Mapping Metadata

Example 13.5. Single Table Mapping

@ntity

@rabl e(name="SUB", schenma="CNTRCT")
@nheritance(strategy=I nheritanceType. SI NGLE_TABLE)
public class Subscription {

}

@ntity(name="Lifetime")
public class LifetineSubscription
extends Subscription {

The same metadata expressed in XML form:

<entity cl ass="org. mg. subcribe. Subscri ption">
<t abl e nane="SUB" schenma="CNTRCT"/>
<i nheritance strategy="SI NGLE_TABLE"/ >
</entity>
<entity class="org.mag. subscribe. LifetimeSubscription">

</entity>

Single table inheritance is the default strategy. Thus, we could omit the @ nher i t ance annotation in the example above and
get the same result.

Mapping subclass state to the superclass table is often called flat inheritance mapping.

13.6.1.1. Advantages

Single table inheritance mapping is the fastest of al inheritance models, sinceit never requires ajoin to retrieve a persistent
instance from the database. Similarly, persisting or updating a persistent instance requires only asingle | NSERT or UPDATE
statement. Finally, relations to any class within a single table inheritance hierarchy are just as efficient as relations to a base class.

13.6.1.2. Disadvantages

The larger the inheritance model gets, the "wider" the mapped table gets, in that for every field in the entire inheritance hierarchy,
a column must exist in the mapped table. This may have undesirable consequence on the database size, since awide or deep
inheritance hierarchy will result in tables with many mostly-empty columns.

13.6.2. Joined

Thel nheritanceType. JO NED strategy uses a different table for each classin the hierarchy. Each table only includes state
declared inits class. Thusto load a subclass instance, the JPA implementation must read from the subclass table as well as the
table of each ancestor class, up to the base entity class.

Using joined subclass tables is also called vertical inheritance mapping.

158



Mapping Metadata

org.mag.subscribe
Contract | ___
I BIGI 8
Lineltem [----#
1D BIGI

Pri mar yKeyJoi nCol unm annotationstell the JPA implementation how to join each subclass table record to the
corresponding record in its direct superclass table. In our model, the LI NE_| TEM | D column joinsto the CONTRACT. | D
column. The Pri mar yKeyJoi nCol umrm annotation has the following properties:

e String nane: The name of the subclass table column. When there is a single identity field, defaultsto that field's column
name.

e String referencedCol unmNarme: The name of the superclass table column this subclass table column joins to. When
thereisasingleidentity field, defaults to that field's column name.

e String colummDefi nition: Thisproperty hasthe same meaning asthecol urmDef i ni t i on property onthe
Col um annotation, described in Section 13.3, “ Column ” [150].

The XML equivalentisthe pri mar y- key-j oi n- col urm element. Its attributes mirror the annotation properties described
above:

* nane
» referenced- col um- nane

e col um-definition

The example below shows how we use | nher i t anceTabl e. JO NED and aprimary key join column to map our sample
model according to the diagram above. Note that a primary key join column is not strictly needed, because there is only one

identity column, and the subclass table column has the same name as the superclass table column. In this situation, the defaults
suffice. However, we include the primary key join column for illustrative purposes.

159



Mapping Metadata

Example 13.6. Joined Subclass Tables

@ntity
@abl e(schema="CNTRCT")
@ nheritance(strategy=IlnheritanceType. JO NED)
public class Contract
ext ends Docurment {

}

public class Subscription {

@ntity
@abl e(name="LI NE_| TEM', schema="CNTRCT")
@r i mar yKeyJoi nCol uim( nanme="1D", referencedCol unmNane="1D")
public static class Lineltem
extends Contract {

The same metadata expressed in XML form:

<entity cl ass="org. mg. subcribe. Contract">
<t abl e schema="CNTRCT"/ >
<i nheritance strategy="JO NED'/ >

</entity>
<entity cl ass="org. mg. subscribe. Subscri pti on. Li neltent>

<t abl e name="LI NE_I TEM' schema="CNTRCT"/>
<pri mary-key-joi n-col um name="1D" referenced-col um-name="PK"/>

</entity>

When there are multiple identity columns, you must define multiple Pri mar yKeyJoi nCol umms using the aptly-named
Pri mar yKeyJoi nCol unms annotation. This annotation'svalueisan array of Pri mar yKeyJoi nCol um s. We could
rewrite Li nel t ems mapping as:

@ntity
@abl e(name="LI NE_| TEM', schema="CNTRCT")
@r i mar yKeyJoi nCol umms( {
@r i mar yKeyJoi nCol uim( nanme="1D", referencedCol unmNane="1D")
9]
public static class Lineltem
extends Contract {

In XML, simply listasmany pri mary- key-j oi n- col umm elements as necessary.

13.6.2.1. Advantages

Thejoined strategy has the following advantages:

1. Using joined subclass tables results in the most normalized database schema, meaning the schema with the least spurious or
redundant data.

160



Mapping Metadata

2. Asmore subclasses are added to the data model over time, the only schema modification that needs to be made is the addition
of corresponding subclass tables in the database (rather than having to change the structure of existing tables).

3. Relationsto abase class using this strategy can be loaded through standard joins and can use standard foreign keys, as
opposed to the machinations required to load polymorphic relations to table-per-class base types, described below.

13.6.2.2. Disadvantages

Aside from certain uses of the table-per-class strategy described below, the joined strategy is often the slowest of the inheritance
models. Retrieving any subclass requires one or more database joins, and storing subclasses requires multiple | NSERT or
UPDATE statements. Thisis only the case when persistence operations are performed on subclasses; if most operations are
performed on the least-derived persistent superclass, then this mapping is very fast.

When executing a select against a hierarchy that uses joined subclass table inheritance, you must consider how to load
subclass state. Section 5.8, “ Eager Fetching” [280] in the Reference Guide describes OpenJPA's options for
efficient data loading.

13.6.3. Table Per Class

Likethe JO NED strategy, the | nherit anceType. TABLE PER CLASS strategy uses a different table for each classin the
hierarchy. Unlike the JO NED strategy, however, each table includes all state for an instance of the corresponding class. Thus

to load a subclass instance, the JPA implementation must only read from the subclass table; it does not need to join to superclass
tables.

org.mag

Magazine
- isbn: String
- title: String

Tabloid
“data: Object

- -

TAB_DATA: BLOB

Suppose that our sample model's Magazi ne class has asubclass Tabl oi d. The classes are mapped using the table-per-
class strategy, asin the diagram above. In atable-per-class mapping, Magazi ne'stable MAG contains all state declared in
the base Magazi ne class. Tabl oi d mapsto aseparatetable, TABLO D. Thistable contains not only the state declared
inthe Tabl oi d subclass, but all the base class state from Magazi ne aswell. Thusthe TABLO D table would contain
columnsfori sbn,titl e,andother Magazi ne fields. These columns would default to the names used in Magazi ne's
mapping metadata. Section 13.8.3, “ Embedded Mapping " [172] will show you how touse At t ri but eOverri desand
Associ ati onOverri de sto override superclass field mappings.

161



Mapping Metadata

Example 13.7. Table Per Class Mapping

@Entity

@rabl e( name="MAG'")

@ nheritance(strategy=InheritanceType. TABLE_PER CLASS)
public class Magazine {

}

@Entity

@rabl e(name="TABLO D")

public class Tabloid
extends Magazine {

And the same classesin XML:

<entity cl ass="org.mg. Magazi ne">
<t abl e nane="MAG'/ >
<i nheritance strategy="TABLE PER CLASS"/>

</entity>
<entity cl ass="org. mg. Tabl oi d">
<tabl e nane="TABLO D'/ >

</entity>

13.6.3.1. Advantages

The table-per-class strategy is very efficient when operating on instances of aknown class. Under these conditions, the strategy
never requires joining to superclass or subclass tables. Reads, joins, inserts, updates, and deletes are all efficient in the absence
of polymorphic behavior. Also, asin the joined strategy, adding additional classes to the hierarchy does not require modifying
existing class tables.

13.6.3.2. Disadvantages

Polymorphic relations to non-leaf classes in a table-per-class hierarchy have many limitations. When the concrete subclass is not
known, the related object could be in any of the subclass tables, making joins through the relation impossible. This ambiguity
also affects identity lookups and queries; these operations require multiple SQL SELECTs (one for each possible subclass), or a
complex UNI ON.

Section 7.8.1, “ Table Per Class” [315] in the Reference Guide describes the limitations OpenJPA places on table-
per-class mapping.

13.6.4. Putting it All Together

Now that we have covered JPA's inheritance strategies, we can update our mapping document with inheritance information. Here
is the complete model:

162



Mapping Metadata

org.mag org.mag.pub
Magazine Company
- isbn: String -id: lang
- title: String
S
Article Author
~ia: long ~id: long
S T
Trial
Subscription [ 7
Subscription |
~1d: long -
l
]
l
Lifetime | |
Subseription
| — org.mag.subscribe

And hereis the corresponding mapping metadata:

163




XSl :schemaLocatl on="nttp://Java. sun. com Xm / ns/ persistence/ormorm1_0. Xsa"
version="1.0">
<mapped- super cl ass cl ass="or g. mag. subscri be. Docunment " >
<attributes>
<id name="id">
<gener at ed- val ue strategy="1DENTITY"/>
</id>

</attributes>
</ mapped- super cl ass>
<entity class="org. mag. Magazi ne">
<t abl e nane="MAG'/ >
<i d-cl ass="org. nag. Magazi ne. Magazi nel d"/ >
<attributes>
<id name="isbn">
<col um | engt h="9"/>
</id>
<id name="title"/>

</attributes>
</entity>
<entity class="org.mag. Article">
<t abl e nane="ART" >
<uni que- constrai nt >
<col um- name>T| TLE</ col um- nanme>
</ uni que- constrai nt >
</t abl e>
<sequence-generator nane="Articl eSeq" sequence-nanme="ART_SEQ'/>
<attributes>
<id name="id">
<gener at ed- val ue strategy="SEQUENCE" generator="ArticleSeq"/>
</id>

</attributes>
</entity>
<entity class="org. mg. pub. Conpany" >
<t abl e nane="COW"/ >
<attributes>
<id name="id">
<col um nanme="Cl D'/ >
</id>

</attributes>
</entity>
<entity class="org. mag. pub. Aut hor">
<t abl e nane="AUTH'/ >
<attributes>
<id name="id">
<col utm nane="Al D' col utm-definition="1NTEGER64"/ >
<gener at ed- val ue strategy="TABLE" generator="Aut hor Gen"/ >
<t abl e- generat or name="Aut hor Gen" t abl e=" AUTH_CGEN'
pk- col um- nane="PK" val ue- col um- nanme="Al D'/ >
</id>

</attributes>

</entity>

<entity class="org. mg. subcribe. Contract">
<t abl e schema="CNTRCT"/>
<i nheritance strategy="JO NED'/ >
<attributes>

</attributes>
</entity>
<entity class="org. mag. subcribe. Subscription">
<t abl e name="SUB" schema="CNTRCT"/>
<inheritance strategy="SI NGLE_TABLE"/ >
<attributes>
<id name="id">
<gener at ed- val ue strategy="1DENTITY"/>
</id>

</attributes>
</entity>
<entity class="org. mag. subscribe. Subscri ption. Li nel tent >
<tabl e nane="LI NE_I TEM' schena="CNTRCT"/>
<pri mary-key-join-colum nane="1D" referenced-col um-nanme="PK"/ >

</entity>
<entity class="org. mag. subscribe. LifetineSubscription" nane="Lifetime">
</entity>
<entity class="org. mag. subscribe. Tri al Subscription" name="Trial ">
</entity>

</ entity-nmappi ngs>

164




Mapping Metadata

13.7. Discriminator

The single table inheritance strategy results in a single table containing records for two or more different classesin an inheritance
hierarchy. Similarly, using the joined strategy results in the superclass table holding records for superclassinstances as well as
for the superclass state of subclass instances. When selecting data, JPA needs away to differentiate a row representing an object
of one class from arow representing an object of another. That isthe job of the discriminator column.

The discriminator column is alwaysin the table of the base entity. It holds a different value for records of each class, allowing the
JPA runtime to determine what class of object each row represents.

TheDi scri nmi nat or Col umm annotation represents a discriminator column. It has these properties:

e String name: The column name. Defaultsto DTYPE .

| engt h: For string discriminator values, the length of the column. Defaults to 31.

e String columDefi nition: Thisproperty hasthe same meaning asthecol urmDef i ni t i on property onthe
Col um annotation, described in Section 13.3,“ Column ” [150].

* DiscrimnatorType discrim nator Type: Enum value declaring the discriminator strategy of the hierarchy.
The corresponding XML elementis di scri ni nat or - col umm. Its attributes mirror the annotation properties above:

* name

 length

e colum-definition

e di scrimnator-type: Oneof STRI NG CHAR, or | NTEGER.

TheDi scri mi nat or Val ue annotation specifies the discriminator value for each class. Though this annotation's valueis
always a string, the implementation will parseit accordingtothe Di scri i nat or Col untm'sdi scri mi nat or Type
property above. Thetype defaultsto Di scri mi nat or Type. STRI NG, but may be Di scri mi nat or Type. CHAR

or DiscrimnatorType. | NTEGER If you do not specify a Di scri mi nat or Val ue, the provider will choose an

appropriate default.

The corresponding XML element isdi scri m nat or - val ue. The text within this element is parsed as the discriminator
value.

OpenJPA assumes your model employs a discriminator column if any of the following are true:

1. The base entity explicitly declares an inheritance type of SI NGLE TABLE.

2. The base entity sets a discriminator value.

3. The base entity declares a discriminator column.

Only SI NGLE_TABLE inheritance hierarchies require a discriminator column and values. JO NED hierarchies can use

a discriminator to make some operations more efficient, but do not require one. TABLE_PER_CLASS hierarchies have
no use for a discriminator.

165



Mapping Metadata

OpenJdPA defines additional discriminator strategies; see Section 7.7, “ Additional JPA Mappings” [301] in the
Reference Guide for details. OpenJPA aso supports final entity classes. OpenJPA does not use a discriminator on final
classes.

We can now translate our newfound knowledge of JPA discriminatorsinto concrete JPA mappings. We first extend our diagram
with discriminator columns:

org.mag org.mag.pub
Magazine Company
- isbn: String -id: lang
- title: String
Article Author
-1d: long - id: lang
—
Trial
Subscription [ 7} Contract
: T
Subscription |
-id: long L_.
|
! Lineltem
Lifetime J: —
Subscription | -
org.mag.subscribe

Next, we present the updated mapping document. Notice that in this version, we have removed explicit inheritance annotations
when the defaults sufficed. Also, notice that entities using the default DT YPE discriminator column mapping do not need an
explicit Di scri m nat or Col utm  annotation.

166



</1d>

</attributes>
</ mapped- super cl ass>
<entity class="org. mag. Magazi ne">
<t abl e nane="MAG'/ >
<i d-cl ass="org. nag. Magazi ne. Magazi nel d"/ >
<di scri m nat or - val ue>Mag</ di scri m nat or - val ue>
<attributes>
<id name="isbn">
<col um | engt h="9"/>
</id>
<id name="title"/>

</attributes>
</entity>
<entity class="org.mg. Article">
<t abl e nane="ART" >
<uni que- const rai nt >
<col um- name>TI TLE</ col utm- nanme>
</ uni que- constrai nt >
</t abl e>
<sequence-generator nane="Articl eSeq" sequence-nanme="ART_SEQ'/>
<attributes>
<id name="id">
<gener at ed- val ue strategy="SEQUENCE" generator="ArticleSeq"/>
</id>

</attributes>
</entity>
<entity class="org. mg. pub. Conpany" >
<t abl e name="COW"/ >
<attributes>
<id name="id">
<col um nane="Cl D'/ >
</id>

</attributes>
</entity>
<entity class="org. mag. pub. Aut hor">
<t abl e nane="AUTH'/ >
<attributes>
<id name="id">
<col utm nane="Al D' col utm-definition="1NTEGER64"/ >
<gener at ed- val ue strategy="TABLE" generat or ="Aut hor Gen"/ >
<t abl e- generat or name="Aut hor Gen" t abl e=" AUTH_CGEN'
pk- col um- name="PK" val ue- col um- nanme="Al D'/ >
</id>

</attributes>

</entity>

<entity class="org. mg. subcribe. Contract">
<t abl e schema="CNTRCT"/ >
<i nheritance strategy="JO NED'/ >
<di scri m nat or - col um nane="CTYPE"/ >
<attributes>

</attributes>
</entity>
<entity class="org. mag. subcribe. Subscription">
<t abl e name="SUB" schema="CNTRCT"/>
<inheritance strategy="SI NGLE_TABLE"/ >
<di scri m nat or - val ue>1</di scri m nat or - val ue>
<di scrim nator-col um name="KIND' discrim nator-type="1NTECER'/ >
<attributes>
<id name="id">
<gener at ed- val ue strategy="1DENTITY"/>
</id>

</attributes>
</entity>
<entity class="org. mag. subscribe. Subscri ption. Lineltent >
<tabl e nane="LI NE_I TEM' schenma="CNTRCT"/>
<pri mary-key-join-colum nane="1D" referenced-col um-nanme="PK"/ >

</entity>
<entity class="org. mag. subscribe. Lifeti neSubscription" nane="Lifetime">
<di scri m nat or - val ue>2</ di scri m nat or - val ue>

</entity>
<entity class="org. mag. subscribe. Tri al Subscription" name="Trial ">
<di scri m nat or - val ue>3</ di scri m nat or - val ue>
</entity>
</ entity-nmappi ngs>

167




Mapping Metadata

13.8. Field Mapping

The following sections enumerate the myriad of field mappings JPA supports. JPA augments the persistence metadata covered

in Chapter 5, Metadata [28] with many new object-relational annotations. As we explore the library of standard mappings, we
introduce each of these enhancements in context.

OpenJdPA supports many additional field types, and allows you to create custom mappings for unsupported field types
or database schemas. See the Reference Guide's Chapter 7, Mapping [290] for complete coverage of OpenJPA's
mapping capabilities.

13.8.1. Basic Mapping

A basic field mapping stores the field value directly into a database column. The following field metadata types use basic
mapping. These types were defined in Section 5.2, “ Field and Property Metadata” [33].

e | dfidds.
* Ver si on fields.

» Basi c fields.

In fact, you have aready seen examples of basic field mappings in this chapter - the mapping of all identity fieldsin

Example 13.3, “ Identity Mapping " [153]. Asyou saw in that section, to write a basic field mapping you use the Col urm
annotation to describe the column the field value is stored in. We discussed the Col unm annotation in Section 13.3, “ Column
" [150]. Recall that the name of the column defaults to the field name, and the type of the column defaults to an appropriate
type for the field type. These defaults allow you to sometimes omit the annotation altogether.

13.8.1.1. LOBs

Adding the Lob marker annotation to abasic field signals that the datais to be stored as a LOB (Large OBject). If the field holds
string or character data, it will map to a CLOB (Character Large OBject) database column. If the field holds any other datatype,

it will be stored as binary datain a BLOB (Binary Large OBject) column. The implementation will serialize the Javavalue if
needed.

The egquivalent XML element is| ob, which has no children or attributes.

OpenJPA also supports LOB streaming. See Section 7.7.11, “ LOB Streaming " [315] in the Reference Guide for
details.

13.8.1.2. Enumerated

Y ou can apply the Enuner at ed annotation to your Enumfields to control how they map to the database. The Enuner at ed
annotation's value one of the following constants from the Enunily pe enum:

e Enunilype. ORDI NAL: The default. The persistence implementation places the ordinal value of the enum in a numeric
column. Thisisan efficient mapping, but may break if you rearrange the Java enum declaration.

» Enunilype. STRI NG Store the name of the enum value rather than the ordinal. This mapping uses a VARCHAR column rather
than a numeric one.

The Enun®er at ed annotation is optional. Any un-annotated enumeration field defaults to ORDI NAL mapping.

168



Mapping Metadata

The corresponding XML element isenuner at ed. Its embedded text must be one of STRI NGor ORI DI NAL.

13.8.1.3. Temporal Types

The Tenpor al annotation determines how the implementation handles your basic j ava. uti | . Dat e and
java. util. Cal endar fieldsat the JDBC level. The Tenpor al annotation'svalueisa constant from the
Tenpor al Type enum. Available values are;

e Tenpor al Type. TI MESTAMP: The default. Use JIDBC's timestamp APIs to manipul ate the column data.

» Tenpor al Type. DATE: Use JDBC's SQL date APIsto manipulate the column data.

e Tenpor al Type. Tl ME: Use IDBC'stime APIs to manipulate the column data.

If the Tenpor al annotation is omitted, the implementation will treat the data as a timestamp.

The corresponding XML element ist enpor al , whose text value must be one of: Tl ME, DATE, or Tl MESTAMP.

13.8.1.4. The Updated Mappings

Below we present an updated diagram of our model and its associated database schema, followed by the corresponding mapping
metadata. Note that the mapping metadata relies on defaults where possible. Also note that as a mapped superclass, Docunent
can define mappings that will automatically transfer to its subclass' tables. In Section 13.8.3, “ Embedded Mapping ” [172],
you will see how a subclass can override its mapped superclass mappings.

org.mag org.mag.pub
Magazine Company
- isbn: String -id: long
- title: String - name: String
- price: double - revenue: double
- copiesSold: int - version: int
- version: int
N
Article ——
5 :ﬂl: Iog? | - firstName: String
- e - lastName: String
- content: byte(] - version: int
- version: int
e —
org.mag.subscribe
Subscription Document
- id: long . - id: long
- startDate: Date |, - version: int
- payment: double |
- version: int ]
— X Contract
- terms: String
TrialSubscription
- endDate: Date S
e — Lineltem
LifetimeSubscription |/ - comments: String
- eliteClub: boolean - Prica: Gatkeg
- num: long
—
_—

169



</entity>
<entity class="org. mag. pub. Aut hor">
<t abl e nane="AUTH'/ >
<attributes>
<id name="id">
<col um nanme="Al D' col um-defi ni ti on="1 NTEGER64"/ >
<gener at ed- val ue strategy="TABLE" generat or ="Aut hor Gen"/ >
<t abl e- generat or name="Aut hor Gen" t abl e=" AUTH_CGEN'
pk- col um- name="PK" val ue- col um- nanme="Al D'/ >
</id>
<basi ¢ nane="first Nane">
<col utm nane="FNAME"/ >
</ basi c>
<basi ¢ nane="| ast Name" >
<col utm nane="LNAME"/ >
</ basi c>
<versi on name="version">
<col utm nane="VERS"/ >
</ versi on>

</attributes>
</entity>
<entity class="org. mg. subcribe. Contract">
<t abl e schema="CNTRCT"/ >
<i nheritance strategy="JO NED'/ >
<di scri m nat or - col um nane="CTYPE"/ >
<attributes>
<basi c nane="terns">
<l ob/ >
</ basi c>

</attributes>
</entity>
<entity class="org. mag. subcribe. Subscription">
<t abl e nane="SUB" schenma="CNTRCT"/>
<inheritance strategy="SI NGLE_TABLE"/ >
<di scri m nat or - val ue>1</di scri m nat or - val ue>
<di scri m nator-col um name="KIND' discrim nator-type="1NTECER'/ >
<attributes>
<id name="id">
<gener at ed- val ue strategy="1DENTITY"/>
</id>
<basi ¢ nane="paynent" >
<col utm nane="PAY"/ >
</ basi c>
<basi ¢ nane="start Date">
<col utm nane="START"/ >
</ basi c>
<versi on name="version">
<col utm nane="VERS"/ >
</ versi on>

</attributes>
</entity>
<entity class="org. mag. subscribe. Subscri ption. Lineltent >
<tabl e nane="LI NE_I TEM' schenma="CNTRCT"/>
<pri mary-key-join-colum nane="1D" referenced-col um-nanme="PK"/ >
<attributes>
<basi ¢ nane="comments">
<col utm nane="COW'/ >
</ basi c>
<basi ¢ nane="price"/>
<basi ¢ nane="nunt/>

</attributes>
</entity>
<entity class="org. mag. subscribe. Lifeti neSubscription" nane="Lifetime">
<di scri m nat or - val ue>2</ di scri m nat or - val ue>
<attributes>
<basic nane="eliteC ub" fetch="LAZY">
<col utm nane="ELI TE"/ >
</ basi c>

</attributes>
</entity>
<entity class="org. mag. subscribe. Tri al Subscription" name="Trial ">
<di scri m nat or - val ue>3</ di scri m nat or - val ue>
<attributes>
<basi ¢ nane="endDat e" >
<col utm nanme="END'/ >
</ basi c>

</attributes>
</entity>
</ entity-nmappi ngs>

170




Mapping Metadata

13.8.2. Secondary Tables

Sometimes alogical record is spread over multiple database tables. JPA calls aclass declared table the primary table, and calls
other tables that make up alogical record secondary tables. Y ou can map any persistent field to a secondary table. Just write the
standard field mapping, then perform these two additional steps:

1. Setthet abl e attribute of each of the field's columns or join columns to the name of the secondary table.
2. Define the secondary table on the entity class declaration.

Y ou define secondary tables with the Secondar y Tabl e annotation. This annotation has all the properties of the Tabl e
annotation covered in Section 13.1, “ Table” [148] , plusa pkJoi nCol ums property.

The pkJoi nCol umms property isan array of Pr i mar yKeyJoi nCol umms dictating how to join secondary table records to
their owning primary table records. Each Pr i mar yKeyJoi nCol umm  joins a secondary table column to a primary key column
in the primary table. See Section 13.6.2, “ Joined " [158] above for coverage of Pri mar yKeyJoi nCol umm's properties.

The corresponding XML elementissecondar y- t abl e. Thiselement has al the attributes of thet abl e element, but also
accepts nested pr i mar y- key- j oi n- col umm elements.

In the following example, we movethe Arti cl e. cont ent field we mapped in Section 13.8.1, “ Basic Mapping” [168]
into ajoined secondary table, like so:

org.mag

Article
-id: long
- content: bytef]

171



Mapping Metadata

Example 13.11. Secondary Table Field Mapping

package org. nag;

@Entity
@rabl e( name="ART")
@econdar yTabl e( nane=" ART_DATA",
pkJoi nCol ums=@r i mar yKeyJoi nCol utm( nanme="ART_I D', referencedCol umNanme="1D"))
public class Article {

@d private long id;

@col um( t abl e=" ART_DATA")
private byte[] content;

Andin XML:

<entity class="org.mg. Article">
<t abl e nane="ART"/>
<secondary-tabl e name="ART_DATA" >
<pri mary-key-j oi n-col um name="ART_I D' referenced-col um-name="1D"/>
</ secondary-t abl e>
<attributes>
<id name="id"/>
<basi ¢ nane="content">
<col um t abl e=" ART_DATA"/ >
</ basi c>

</attributes>
</entity>

13.8.3. Embedded Mapping

Chapter 5, Metadata [28] describes JPA's concept of embeddable objects. The field values of embedded objects are stored as
part of the owning record, rather than as a separate database record. Thus, instead of mapping a relation to an embeddable object
asaforeign key, you map al the fields of the embeddable instance to columnsin the owning field's table.

org.mag.pub
Company

-name: String | _ _ __ o _____

-revenue: double  F-------- - --------——-

- address: Address > Address
- street: String F-
- gity: String i ,
-state: String [ ZIF VAR
- Zip: String

JPA defaults the embedded column names and descriptions to those of the embeddable class' field mappings. The
AttributeOverride annotationoverrides abasic embedded mapping. This annotation has the following properties:

e String nane: The name of the embedded class field being mapped to this class' table.

e Col utm col umm: The column defining the mapping of the embedded class' field to this class' table.

172



Mapping Metadata

The corresponding XML elementis attri but e-overri de. It hasasingle nane attribute to name the field being
overridden, and asingle col umm child element.

To declare multiple overrides, usethe At t r i but eQver ri des annotation, whosevalueisan array of At t ri but eOverri de
s. In XML, simply list multipleat t ri but e- over ri de elementsin succession.

To override amany to one or one to one relationship, usethe Associ ati onOver ri de annotation in place of
AttributeOverride. Associ ationOverri de hasthefollowing properties:

e String nane: The name of the embedded class field being mapped to this class' table.
e Joi nCol umm[] j oi nCol unms: The foreign key columns joining to the related record.

The corresponding XML elementis associ ati on-overri de. It hasasingle name attribute to name the field being
overridden, and one or morej oi n- col umm child elements.

To declare multiple relation overrides, usethe Associ ati onOverri des annotation, whose valueisan array of
Associ ati onOverride s In XML, smply list multiple associ ati on-overri de elementsin succession.

173



Mapping Metadata

AR SrbR: 12 ns alesiied dedahd MalRPHIgping of Addr ess. st reet and Addr ess. ci t y. All other embedded

pnoc aratalcoan fram tha Addr ac e haoddahla ol ace

package org. mag. pub;

@ntity
@abl e( nane="COW")
public class Conpany {

@nbedded
@\t tributeOverrides({
@\t tributeOverride(nane="street", colum=@Col um(nane="STRT")),
@\t tributeOverride(name="city", colum=@Col um(nane="ACI TY"))
9]

private Address address;

}

@ntity
@rabl e( name="AUTH")
public class Author {

/1 use all defaults from Address class mappi ngs
private Address address;

}

@nbeddabl e
public class Address {

private String street;

private String city;

@2ol um( col umbDefini tion="CHAR(2)")
private String state;

private String zip;

Thao P R B N dinn VAAL -

<entity class="org. mag. pub. Conpany" >
<t abl e nane="COW"/>
<attributes>

<enbedded name="address">
<attribute-override nane="street">
<col um nane="STRT"/ >
</attribute-override>
<attribute-override nane="city">
<col um nane="ACI TY"/ >
</attribute-override>
</ enbedded>
</attributes>
</entity>
<entity class="org. mag. pub. Aut hor">
<t abl e name="AUTH'/ >
<attributes>
<enbedded name="address">
<l-- use all defaults from Address -->
</ enbedded>
</attributes>
</entity>
<enbeddabl e cl ass="org. mag. pub. Addr ess" >
<attributes>
<basi c nane="street"/>
<basic nane="city"/>
<basi c nane="state">
<col um col um-definition="CHAR(2)"/>
</ basi c>
<basi ¢ nane="zip"/>
</attributes>
</ enbeddabl e>

174




Mapping Metadata

Y ou can also use attribute overrides on an entity class to override mappings defined by its mapped superclass or table-per-class
superclass. The example below re-mapsthe Docunent . ver si on fieldtothe Cont ract table's CVERSI ON column.

Example 13.13. Mapping Mapped Superclass Field

@bppedSuper cl ass
public abstract class Docunent {

@col um( nanme="VERS")
@/ersion private int version;

}

@Entity
@rabl e( schema=" CNTRCT")
@ nheritance(strategy=I nheritanceType.JO NED)
@i scri m nat or Col um( name="CTYPE")
@\t tributeOverride(name="version", colum=@ol um(nanme="CVERSI ON"))
public class Contract
extends Docunent {

The same metadata expressed in XML form:

<mapped- super cl ass cl ass="org. mag. subcri be. Docunent " >
<attributes>
<versi on name="version">
<col utm nane="VERS" >
</ versi on>

</attributes>

</ mapped- super cl ass>

<entity cl ass="org. mg. subcribe. Contract">
<t abl e schema="CNTRCT"/ >
<i nheritance strategy="JO NED'/ >
<di scri m nat or-col um nane="CTYPE"/ >
<attribute-override name="version">

<col utm nane=" CVERSI ON'/ >

</attribute-override>
<attributes>

</attributes>
</entity>

13.8.4. Direct Relations

A direct relation is a non-embedded persistent field that holds a reference to another entity. many to one and one to one metadata
field types are mapped as direct relations. Our model has three direct relations: Magazi ne'spubl i sher fieldisadirect
relation to aConpany, Magazi ne'scover Arti cl e fieldisadirect relationto Arti cl e,andtheLi nel t em magazi ne
fieldisadirect relationto aMagazi ne. Direct relations are represented in the database by foreign key columns:

175



Mapping Metadata

org.mag
Magazine

- isbn: String

- title: String A

- publisher: Company

- coverArticle: Article

Article
- id: lang I

S
org.mag.pub

Company
-id: long (—

-
org.mag.subscribe

Lineltem
- magazine: Magazine

Y ou typically map adirect relation with Joi nCol urm annotations describing how the local foreign key columns join to the
primary key columns of the related record. The Joi nCol unm annotation exposes the following properties:

» String nane: The name of the foreign key column. Defaults to the relation field name, plus an underscore, plus the name of
the referenced primary key column.

e String referencedCol unmNare: The name of the primary key column being joined to. If thereis only one identity
field in the related entity class, the join column name defaults to the name of the identity field's column.

e bool ean uni que: Whether this column is guaranteed to hold unique values for all rows. Defaultsto false.

Joi nCol um aso hasthesame nul | abl e ,i nsertabl e, updatabl e, col umbDefinition,andtabl e
propertiesasthe Col umm annotation. See Section 13.3, “ Column ” [150] for details on these properties.

Thej oi n- col um element represents ajoin column in XML. Its attributes mirror the above annotation's properties:
* name

» referenced- col um- nane

e uni que

* null abl e

* insertable

e updat abl e

e col um-definition

* table

When there are multiple columnsinvolved in thejoin, aswhena Li nel t emreferencesaMagazi ne in our model, the
Joi nCol utms annotation allows you to specify an array of Joi nCol unm values. In XML, simply list multiplej oi n-
col umm elements.

176



Mapping Metadata

OpenJPA supports many non-standard joins. See Section 7.6, “ Non-Standard Joins” [300] in the Reference Guide
for details.

177



publ i c class Magazi ne {

@col um( | engt h=9)
@d private String isbn;
@d private String title;

@neToOne

@oi nCol uim( nane="COVER_| D' referencedCol umNanme="1D")
private Article coverArticle;

@banyToOne

@oi nCol um( nanme="PUB_I D' referencedCol umNane="Cl D")
private Conpany publisher;

}

@rabl e( name="ART")
public class Article {

@d private long id;

package org. nag. pub;

@rabl e( name="COVP")
public class Conpany {

@col um( nanme="Cl D")
@d private long id;

<entity class="org. mag. Magazi ne">
<t abl e nane="MAG'/ >
<i d-cl ass="org. nag. Magazi ne. Magazi nel d"/ >
<attributes>
<id name="isbn">
<col um | engt h="9"/>
</id>
<id name="title"/>
<one-to-one nane="coverArticle">
<j oi n- col um nane="COVER_| D' referenced-col um-nanme="1D"/>
</ one-t o- one>
<many-t o- one nane="publisher">
<j oi n-col um nane="PUB_I C' referenced-col um-name="Cl D'/ >
</ many-t o- one>

</ attributes>
</entity>
<entity class="org.mag.Article">
<t abl e nane="ART"/>
<attributes>
<id name="id"/>

</attributes>
</entity>
<entity class="org. mg. pub. Conpany" >
<t abl e nane="COW"/ >
<attributes>
<id name="id">
<col um nane="Cl D'/ >
</id>

</attributes>
</entity>
<entity class="org. mag. subscribe. Subscri ption. Lineltent >
<tabl e nane="LI NE_I TEM' schena="CNTRCT"/>
<pri mary-key-join-colum nane="1D" referenced-col um-nanme="PK"/ >
<attributes>
<many-t o- one nane="nagazi ne">
<j oi n- col um nane="MAG_| SBN' referenced-col um-nanme="1SBN'/ >
<j oi n-col um nane="MAG_TI TLE" referenced- col um- nane="TI TLE"/ >
</ many-t o- one>

</attributes>
</entity>

178




Mapping Metadata

When the entities in aone to one relation join on shared primary key values rather than separate foreign key columns, use the
Pri mar yKeyJoi nCol umm('s) annotationor pri mary- key-j oi n- col unm elementsin place of Joi nCol utm(s) /
j oi n- col um elements.

13.8.5. Join Table

A join table consists of two foreign keys. Each row of ajoin table associates two objects together. JPA usesjoin tables to
represent collections of entity objects: one foreign key refers back to the collection's owner, and the other refersto a collection
element.

oneto many and many to many metadata field types can map to join tables. Several fields in our model use join table mappings,
including Magazi ne. articlesand Article. authors.

org.mag

Magazine
- isbn: String
- title: String
- articles: Collection<Articles> 3

Article

-id: lang
- authors: Collection<Author>

Author  F-------- - :
- id: lang EG - |-

Y ou define join tables with the Joi nTabl e annotation. This annotation has the following properties:

e String nane: Table name. If not given, the name of the table defaults to the name of the owning entity'stable, plus an
underscore, plus the name of the related entity's table.

e String catal og: Table catalog.
e String schema: Table schema

* Joi nCol um[] j oi nCol umms: Array of Joi nCol unm  showing how to associate join table records with the owning
row in the primary table. This property mirrorsthe pkJoi nCol umms property of the Secondar yTabl e annotation in
functionality. See Section 13.8.2, “ Secondary Tables” [171] to refresh your memory on secondary tables.

If thisisabidirectional relation (see Section 5.2.10.1, “ Bidirectional Relations” [40Q] ), the name of ajoin column defaults
to the inverse field name, plus an underscore, plus the referenced primary key column name. Otherwise, the join column name
defaults to the field's owning entity name, plus an underscore, plus the referenced primary key column name.

* Joi nCol umm[] inverseJoi nCol ums: Array of Joi nCol umms showing how to associate join table records with
the records that form the elements of the collection. These join columns are used just like the join columns for direct relations,

179



Mapping Metadata

and they have the same naming defaults. Read Section 13.8.4, “ Direct Relations” [175] for areview of direct relation
mapping.
j oi n-t abl e isthe corresponding XML element. It has the same attributes asthe t abl e element, but includes the ability to
nestj oi n- col um andi nver se-j oi n- col umm elements as children. We have seenj oi n- col unm elements aready;
i nver se-j oi n- col um elements have the same attributes.

Here are the join table mappings for the diagram above.

180



package org. mag;

@ntity
@abl e( name="MAG')
public class Magazine {

@ol umm( | engt h=9)
@d private String isbn;
@d private String title;

@neToMany(. . .)
@ der By
@oi nTabl e( name="MAG_ARTS",
j oi nCol utms={
@oi nCol uim( name="MAG_| SBN', referencedCol uimNanme="1SBN"),
@oi nCol uim( name="MAG_TI TLE", referencedCol umNane="TI TLE")
Iz
i nver seJoi nCol ums=@oi nCol um(nanme="ART_| D', referencedCol umNane="1D"))
private Collection<Article> articles;

}

@ntity
@abl e( name="ART")
public class Article {

@d private long id;

@manyToMany( cascade=CascadeType. PERS| ST)
@ der By("| ast Nanme, firstNane")
@oi nTabl e( name=" ART_AUTHS" ,
j oi nCol ums=@oi nCol uim( name="ART_| D', referencedCol uimNane="1D"),
i nver seJoi nCol ums=@oi nCol um( nanme="AUTH_| D', referencedCol unmNane="Al D"))
private Col | ecti on<Aut hor> aut hors;

<entity class="org. mag. Magazi ne">
<t abl e name="MAG'/ >
<attributes>
<i d name="isbn">
<col um | engt h="9"/>
</id>
<id name="title"/>
<one-to-nmany nane="articl es">
<order - by/>
<j oi n-tabl e nane="MAG_ARTS">
<j oi n-col um nane="MAG_| SBN' referenced-col um-nanme="|SBN'/ >
<j oi n-col um nane="MAG_TI TLE" referenced-col um- nane="TI TLE"/ >
<i nverse-joi n-col um name="ART_| D' referenced-col um-nanme="1D"/>
</j oi n-tabl e>
</ one-t o- many>

</attributes>
</entity>
<entity class="org.mg. Article">
<t abl e nane="ART"/ >
<attributes>
<id name="id"/>
<many-t o- many nanme="aut hors">
<order - by>l ast Nane, firstNane</order-by>
<j oi n-tabl e name="ART_AUTHS" >
<j oi n-col um nane="ART_I D' referenced-col um-nanme="1D"/>
<i nverse-j oi n-col um name="AUTH_ | D' referenced-col um- nane="Al D'/ >
</j oi n-tabl e>
<cascade>
<cascade- persi st/ >
</ cascade>
</ many-t o- many>

</attributes>
</entity>
<entity class="org. mag. pub. Aut hor">
<t abl e name="AUTH'/ >
<attributes>
<id name="id">
<col um nanme="Al D' col um-defi ni ti on="1 NTEGER64"/ >
</id>

</attributes>
</entity>

181




Mapping Metadata

13.8.6. Bidirectional Mapping

Section 5.2.10.1, “ Bidirectional Relations” [40] introduced bidirectional relations. To map a bidirectional relation, you map
one field normally using the annotations we have covered throughout this chapter. Then you usethe nappedBy property of
the other field's metadata annotation or the corresponding mapped- by XML attribute to refer to the mapped field. Look for this
pattern in these bidirectional relations as you peruse the complete mappings below:

* Magazi ne. publ i sher and Conpany. mags.

e Article.authorsandAuthor.articles.

13.8.7. Map Mapping

All map fieldsin JPA are modeled on either one to many or many to many associations. The map key is always derived from an
associated entity's field. Thus map fields use the same mappings as any one to many or many to many fields, namely dedicated
join tables or bidirectional relations. The only additions are the MapKey annotation and map- key element to declare the key
field. We covered these additions in Section 5.2.14, “ Map Key ” [42].

org.mag.subscribe

Subscription |
- items: Map<Long,Lineltem=

Lineltem
- num: lang

The example below maps Subscri pti on'smapof Li neltenstotheSUB | TEMS join table. The key for each map entry is
the Lineltemsnum fieldvaue.

182



Mapping Metadata

Example 13.16. Join Table Map Mapping

package org. mag. subscri be;

@Entity
@rabl e(name="SUB", schema="CNTRCT")
public class Subscription {

@neToMany( cascade={ CascadeType. PERSI ST, CascadeType. REMOVE} )
@bpKey(name="num')
@oi nTabl e( name="SUB_I TEM5", schema="CNTRCT",
j 0i nCol ums=@oi nCol uim( nane="SUB_I D),
i nver seJoi nCol ums=@oi nCol um(nanme="1TEM | D"))
private Map<Long, Li nelten® itens;

@Entity
@rabl e(name="LI NE_| TEM', schema="CNTRCT")
public static class Lineltem

extends Contract {

private | ong num

The same metadata expressed in XML:

<entity class="org.mg. subscribe. Subscri ption">
<t abl e name="SUB" schema="CNTRCT"/>
<attributes>

<one-to-many nane="itens">
<map- key name="nuni >
<j oi n-t abl e name="SUB_I TEMS" schema="CNTRCT" >
<j oi n-col um nanme="SUB_I D'/ >
<i nverse-joi n-col um nanme="|TEM | D'/ >
</j oi n-tabl e>
<cascade>
<cascade- persi st/ >
<cascade-renove/ >
</ cascade>
</ one-t o- many>

</attributes>

</entity>

<entity class="org. mg. subscribe. Subscri pti on. Li neltent>
<t abl e name="LI NE_I TEM' schema="CNTRCT"/>
<attributes>

<basi ¢ name="nuni'/ >

</attributes>
</entity>

13.9. The Complete Mappings

We began this chapter with the goal of mapping the following object model:

183



Mapping Metadata

org.mag org.mag.pub
Author
authors™ *= [ _id: |gng
- firstName: String
nR Article - lastName: String
=Ny - arts® — - version: int
- title: String
- content: byte] T
- version: int address
Address
- street: String
coverArticle articles® - city: String
| - state: String
Magazine - Zip: String
- isbn: String X
- title: String /
- price: double publisher ardresa
- copiesSold: int L Company
- version: int - mags® — -id: long
- name: String
- revenue: double
- version: int
I
magazine subscriptions™
Lineltem Subscription LifetimeSubscription
- comments: String -id: lang ~ eliteClub: boolean
- price: double 4 ilems® 4 - startDate: Date
- num: long - payment: double
- version: int
TrialSubscription
Doc - endDate: Date
Contract 7d: Tong L
- o |- version: int
org.mag.subscribe

That goal has now been met. In the course of explaining JPA's object-relational mapping metadata, we slowly built the requisite
schema and mappings for the complete model. First, the database schema:

184



Mapping Metadata

And finally, the complete entity mappings. We have trimmed the mappings to take advantage of JPA defaults where possible.

185



<enpbedded nanme="address'/ >
</attributes>
</entity>
<entity class="org. mag. subcribe. Contract">
<t abl e schema="CNTRCT"/ >
<i nheritance strategy="JO NED'/ >
<di scri m nat or - col um nane="CTYPE"/ >
<attributes>
<basi c nane="terns">
<l ob/ >
</ basi c>
</attributes>
</entity>
<entity class="org. mag. subcribe. Subscription">
<t abl e nane="SUB" schenma="CNTRCT"/>
<inheritance strategy="SI NGLE_TABLE"/ >
<di scri m nat or - val ue>1</di scri m nat or - val ue>
<di scri m nator-col um name="KI ND' discrim nator-type="1NTECER'/ >
<attributes>
<id name="id">
<gener at ed- val ue strategy="1DENTITY"/>
</id>
<basi ¢ nane="paynent" >
<col utm nane="PAY"/ >
</ basi c>
<basi ¢ nane="start Date">
<col utm nane="START"/ >
</ basi c>
<versi on name="version">
<col utm nane="VERS"/ >
</ versi on>
<one-to-nmany nane="itens">
<map- key name="nunt >
<j oi n-tabl e nane="SUB_| TEM5" schena="CNTRCT" >
<j oi n-col utm nane="SUB_I D'/ >
<i nverse-j oi n-col um narme="1TEM | D'/ >
</j oi n-tabl e>
<cascade>
<cascade- persi st/ >
<cascade-renove/ >
</ cascade>
</ one-t o- many>
</attributes>
</entity>
<entity class="org. mag. subscribe. Subscri ption. Li nel tent >
<tabl e nane="LI NE_I TEM' schena="CNTRCT"/>
<attributes>
<basi ¢ nane="comments">
<col utm nane="COW'/ >
</ basi c>
<basi c nane="price"/>
<basi ¢ nane="nunt/>
<many-t o- one nane="nagazi ne">
<j oi n-col um nane="MAG_| SBN' referenced-col um-nanme="1SBN'/ >
<j oi n-col um nane="MAG_TI TLE" referenced- col um- nane="TI TLE"/ >
</ many-t o- one>
</attributes>
</entity>
<entity class="org. mag. subscribe. Lifeti neSubscription" nane="Lifetime">
<di scri m nat or - val ue>2</ di scri m nat or - val ue>
<attributes>
<basic nane="eliteC ub" fetch="LAZY">
<col utm nane="ELI TE"/ >
</ basi c>
</attributes>
</entity>
<entity class="org. mag. subscribe. Tri al Subscription" name="Trial ">
<di scri m nat or - val ue>3</ di scri m nat or - val ue>
<attributes>
<basi ¢ nane="endDat e" >
<col utm nanme="END'/ >
</ basi c>
</attributes>
</entity>
<enbeddabl e cl ass="org. mag. pub. Address" >
<attributes>
<basi c nane="street"/>
<basic nane="city"/>
<basi c nane="state">
<col um col um-definition="CHAR(2)"/>
</ basi c>
<basi ¢ nane="zip"/>
</attributes>
</ enbeddabl e>
</ entity-nmappi ngs>

@ol urm( name="END")
public Date getEndDate() { ... }
public void setEndDate(Date end) { ... }




Chapter 14. Conclusion

This concludes our overview of the JPA specification. The OpenJPA Refer ence Guide contains detailed documentation on all
aspects of the OpenJPA implementation and core development tools.

187



Part 3. Reference Guide




IR 1 oo [0 1o T T PRSPPI 196
N 111 g0 (=0 AN o 1= oo RS STPR 196
22 @) o 1o U =i o) o PSP 197
p22% O [ oo 0o 1o o T O 197
b2 {0 101100 4 =T @0 01 To 1= 1 o] o I 197
2.3. Command Ling COnfIgUIBLION .......ccuuiiiieieiiieeeie e e e e e e e e e e e e et e e e e e et e e et e e et e e et e eaaeean e eetneeeanaeeees 197
N 5t B @ To (3 04 0 1] o [ 198

A = 1N o1 T o) 1o = 1 o o P 199
A @] o= g N (] 0= 4 1= 200
TN B oo 1= 1] 0= 1 AN | (0 L1 =" P 200
2.5.2. 0PENJPAAULODEIACK .....iiii i e e e e e e e e a et aaaaa 200
2.5.3. 0PENPABIOKEIFACIONY .. .oviiiii i e e e e e e e e e e e e e e et e et e e e e raaes 201
2.5.4. 0penPa BroKErTMPl ..o 201
2.5.5. 0PENIPACAIIDACKS .. ..uiiiii e e 201
2.5.6. OPEN PACIBSSRESOIVES ... ieuiiiiii it e e e e e et e e et e e et e et e et e e e e et e e et e e e et e ra e atae 201
2.5.7. 0penPa.ComMPaLiDIlITY ......iiii e 202
2.5.8. 0penjpa.ConnECtiONDIIVEINGITIE ........iiii e e e e e e e e e e e e e e et e e e e e e e e et e e et e eanaas 202
2.5.9. 0penjpa.ConnECtiONZ2DIIVEINGIME ......ciii it e e e e e e e et e et e e et e e et e e aaeeanaes 202
2.5.10. 0penjPa.CONNECHIONFBCIONY .....iuuuciiieeeie ettt e e e e e e e e e e e e et e e et e e et e e et e e et e e e e aat e eetneeeanaesees 202
2.5.11. openjpa.CONNECHIONFACIONY2 .. ...uiieiieii et e e et e e e e et e e e e et e e et e e et e e et e e et e e et e eaneeaneeaes 203
2.5.12. openjpa.ConNeCtioNFACIONYNGITIE ... ....iiii e e e e e e e e e e e e et e e et e e e e e s aa e eanneeannaees 203
2.5.13. 0penjpa.ConNeCtioNFaCIONY2NAIME ......ciiiiiiii e e e e e e e e e e e e e et e e et e e eaneeeanes 203
2.5.14. openjpa.ConneCtioNFaCIONYIMOOE .........uiiiii e e e e e e e e e et e e e e eanas 203
2.5.15. openjpa.ConnectiONFaCtOryPIOPEITIES ... ...u. i e e e e e e e e e e aa s 204
2.5.16. openjpa.Connecti ONFaCtONY2PIOPEITIES .. ...u.iiii e ee e et e e e e e e e et e e e e e et e e e e e eenaas 204
2.5.17. openjpa.CoNNECHIONPESSWOIT ........ccuuiiiieeii e e s e e e e e e e e e et e e et e e st e e et e e eaa e ean e eatneeennaesenaes 204
2.5.18. 0penjpa.ConNECtiON2PaSSWOIT ...........oeiuuieiiiee e e e e e e e e e e e et e e e e e et e e et e eeannas 204
2.5.19. 0penjpa.CoNNECHIONPIOPEIMIES ......ciii e e e e e e e e e e e e e e e e e et e e et e e et e e et e eetneeeaneees 205
2.5.20. 0penjpa.CoNNECHIONZ2PTOPEITIES ... iieieii i ee e e e e e e et e e e e r e et e e et e e e et e e et e e et e eaaeeaneeeen 205
2.5.21. 0penjpa.ConnECLIONURL .........iiiiiiiii e e e e e e e e e e e e et e et e e et e e et e e e e e eaaaas 205
2.5.22. openjpa.ConNECLION2URL ........ccouuiiiiii e e e e e e e e e e e e et e e e e et e e et e ranas 205
2.5.23. 0penjpa.ConnECtiONUSEINGIME ... ...uuiii e e e e e e e e e e e e et e e et e e et e e e e an e e et e eaaneeeanns 206
2.5.24. openjpa.ConNECtioN2USEINGITIE ........iiiieiiii e e e e e e e e e e e e e e e e e e e e e et e e et e e et e eeaa e eaaneeeens 206
2.5.25. 0penjpa.ConNECtioNRELAINMOUE .........couuieiieeiii e e e e e e e e e e e e et e e et e et e eeaneaeanees 206
2.5.26. 0pENIPADEIACACINE .. ... it 206
2.5.27. openjpa.DataCaCheManNagEr .........ccouiiiii it e e e e e e e e e r e e et 206
2.5.28. 0penjpa.DataCaCheMOUE .........coouniiiii e 207
2.5.29. 0penjpa.DataCaChETiMEOUL ........c..uiiii i e e e e e e e e e e et e e et e e eaeeenas 207
2.5.30. OPENJPADEIACNSEALE ... .evu i eeeii i e e e e e e e e e e e e e e et e e aaaae 207
2.5.31. 0penjpa.DYNaMIiCDAIASIIUCES ... ...uueiii it e e e e e e e e e e e e e e e e et e e e e e et e e et e eaa e eanaas 207
2.5.32. OpENPAFEICHBEICNSIZE .. ... it e e e e e e e e e e 208
2.5.33. OpeNPA.ENCIYPLIONPIOVIAEY .......ciii i e e e e e e e e e et e e aa e aaaas 208
2.5.34. OPENJPAFEICNGIOUDS ......iiii ettt e e e e e e e e e e e e e e e e et e e et e e et e e et e e et e e et e e e eaaas 208
2.5.35. 0penjpa.FIUShBEfOTEQUENTES ... ..uuiiiiieii e et e et e e e e e e e et e e et e e et e e et e e e aaeeaneees 208
2.5.36. OpENPAIGNOTECNANGES ... ive it e e e e e e e e e e e e et e e e e e e r e aaen 209
I Ao 1 o= X o 209
2.5.38. openjpalNitialiZEEAQEITY ......iein e 209
2.5.39. OpENPAINSIIUMENTALION ... ivtiiiii e e e e e e e e e e e et e e et e e et e e st e e et e ean e eateeennaesanaes 210
2.5.40. OpENPAINVErSEMBNGOET ......ciitueeii e e e et e e e e e e e e e e e e et e e et e e e e e et e e et e e et e e et e e et e eaaeeenans 210
2.5.41. 0pENPA.LOCKIMANAGES .. .ovuiiii e 210
AN o) = g o= W I Yo I T = | 210
AN T o o ] o= T oo PPN 211
2.5.44. openjpa.ManageadRUNTIME ........uiiii e e e e e e e e e e et e e et e e e e e et e e et e e et e aaneeaen 211
2.5.45. OPENPAIMADPING ....iitieiiieeei et et e et e e e e e e e e e et e et r e e e r e aas 211

189



Reference Guide

2.5.46. openjpa.MaxFEIChDEDLN ... ..o 211
2.5.47. OpENPAMELADALAFACIONY ....ivviciite e et e et e e e e e e e e e e e e et e e et e e et e e e e e e e raa s 212
2.5.48. 0penjpa.MetaDataREPOSITONY ....cvuuiiii i ei e e e e e e e e e e et e e e e e e e e e e e e e aanas 212
2.5.49. openjpa.MUItITRrEA0EA ......... i e e e e 212
2.5.50. OPENPAOPLIMISIIC .ivuuiiit i ce e e e e e e e e e e e e e e et e e et e e et e e et e e et e et e e et e eaaaeranaae 212
2.5.51. openjpa.Orphan@diK EYACHON .........ciii i e e e e e e e e e e e e et e e e ean s 213
2.5.52. openjpa.NontransaCtioNalREAM ..........c.uiiiiii i e e e 213
2.5.53. openjpa.NoNtranSaCtioNBIVVIITE ........iiee e e e e e e e e e e 213
2.5.54. OpENPA.PIOXYIMBNAOES .....cevuiiiii e ee e et e e et e e e e e e e et e e e e e et e e et e et e e et e e et e e et e e e aaaaaa 213
2.5.55. 0penjpa.POSILOA0ONMEIGE .. ...uiie i e e e e e e e e e et e e e et e e e e e e e aaaas 213
2.5.56. OPENIPAQUEINYCECNE ... ciii i et e e e e e e 214
2.5.57. openjpa.QUEryCompilatioNCaCche ..........oiuiiii e 214
2.5.58. 0penPa.REALOCKLEVE ... e e e 214
2.5.59. 0penjpa.ReEMOtECOMMIUTPIOVITEN ... ...uiiii e e e e et e e e e aanas 214
2.5.60. OPENPARESIOTESIALE .....uueiiieiiiie e e et e e e e e e e e e et e e e e et e e et e e et e e e e e et er e aaaeaan 215
2.5.61. OPENJPAREIAINSIAIE ... ceveeiii i ee e et e e e e e e e e e e e e et e e et e e et e et e e et e e et e et e e e ran s 215
2.5.62. 0penjpa.REtrYCIassREGISLIAION ........ciiriiiiii e e e e e e e e e e e e e e e e e et e et e e aen 215
2.5.63. openjpa.RUNtIMEUNENNBNCEACIASSES ... ...vuiiii e e e e e e e e e e e e e e an s 215
2.5.64. openjpa.DynamiCENNANCEMENTAGENT ... ..uuiii e e e e e e et e e e e e e e et e e et e eannes 216
2.5.65. 0penjpa.SaVEPOINEMBNAGES ......cvuueiii et e et et et e e e e e e e et e e et e e e et e e et e e et e esaa e eaaeeateeetnaeeanaares 216
2.5.66. OPEN|PA.SEUUENCE . .euuuiiit et ettt e e et e e et e eeat e e et e ee e e et e e e ta e e st e e st e eetn s esan e eaneestneestnaestnseesnnaeenaees 216
2.5.67. OPENPA.SPECITICAIION .....iiiie et e e e e e e e et e e e e et e e et e et e e et e e e eanas 217
2.5.68. openjpa. TranSaClONMOUOE .........uuiiii i e e e e e e e e e e e e et e e e et e e et e e st e eaaeeaneeeen 217
2.5.69. 0peNPA.WTITELOCKLEVEL ... .ooii e e e e e e e e e e e aeaas 217

2.6. OPENIPA JDBC PrOPEITIES .. ivtiiiiii i eii et e e et e e e e e e e e e et e e s e e et e et e e et e e et e e et e ean e e et e eetnaeeannas 217
2.6.1. openjpa.jdbC.CONNECLIONDECOIALONS ....u.ivuu i eiiteeei ettt e et e e st e e et e eeteeet e e et eean e eatneeetneestnseeanaeeennaees 218
AN o 1= aTl o= Lol oo D] 2] B Tox 0] 4 7= Y/ 218
2.6.3. 0peNPajADC.DIIVErDEIASOUICE .......ciiieiiii e e e e e e e e e e e e e e e e et e e et e e et e et e eateeeanaeeanaes 218
2.6.4. openjpajdbC.EaQerFetCNIMOOE .........cvuiiii e e e 218
2.6.5. 0penjpadbC.FECNDITECHION ... .cuui i e e e e e e e e e e e et e e e eaes 219
2.6.6. 0PEN PAJADC.IDBCLISIENELS .. iiteiii e et et e e e e e e e e e e et e et e e e e e et e e e et e e et e e ea e aaans 219
2.6.7. 0PENPAJADC.LRSSIZE ... cciiiiii e e e e a e e aaas 219
2.6.8. openjpajdbC.MappPiNGDEF LTS .........uuiiiiiii e e 220
AR Ie o 1= aTT 0= o | o o\, F=To o ] gl | = (S 220
2.6.10. openjpa.jdbC.QUENYSQLCACNE ......ciii i e e e e e e e e e e e aa e 220
2.6.11. OpEN P ODC. RESUITSEITYPE ... iiti ettt e e e e e e e et e e et e e et e e et e e e e e e aneeeen 220
2.6.12. 0peNPAJODC.SCREMA .. ...e e e e 220
2.6.13. openjpa.jdbC.SChEMEFACIONY .......ovu i e e e e e e e e e e 221
2.6.14. 0peN|PAJODC.SCHEMES .. ...u i et e e e e e e e e e e e e e et 221
2.6.15. 0PN P ODC. SQLIFACIONY ....iiitciii e et e e e e e e e e e e et e e et e e et e e et e e et e e et e e raaans 221
2.6.16. openjpa.jdbc.SUDCIASSFEICHMOUE .........iiii e e e e e e e 221
2.6.17. openjpa.jdbc.SyNChroNiZEMAPPINGS ...cvvveiiii e e e e e e e e e e e e e e et e e st e e et e e eaaeeateeetnaeeanaees 222
2.6.18. openjpa.jdbc. TransSaCtioNISOIALION ..........ciuuiiiiee e e e e e e e e e e e e e et e e e e saeeeens 222
2.6.19. openjpa.jdbC.UPdatEMaNAQES .........cviiniiiie e e e e e 222
2.6.20. Compatibility With SPECITICAION ........iiiieii e e e e e 223

G oo o1 1o = 1o 72N 1 o [ oo P 224
350 I oo o 1 1o [ =TT P 224
G @ o= g N I o 1o P 225
G B TT=" o [T 0o oo o1 1o [ 226
3 S o 7 PP 226
RN o7 o S @] 1T 0100 13 I [0 1 0T RN 227
G BN | 1 Q- Y= 10 1 1 oo 1 oo P 227

13 G TS I o N S 227
I 1= o o PP 228

190



Reference Guide

IS T @] 1= N U T 228
IC T8 < 00 I @ To o 11 = o o P 229
3.8.2. Developing CUSLOM GUTITING ....cuuuiiiieiiee e e e e e e e e e e e e e e e e e et e e et e e et e e etn e e aneeanns 229

T ] TSP 231

4.1, USING the OPENIPA DalaSOUICE .....u.iiiuieeii et e et e e et e e e e e e e e e et e e et e e et eeta e eat e e et e e st eeateeeneaennns 231
%4 W I @ i g = I @ Tq T = ox 1 o 1 oo 11 oo 231
4.1.2. Configuring the OPENJPA DalaSOUICE .......ccuuueiriieiiiie e e et e e e e e e e e e e e e e et e st e e et e eeteeeanaeeanaees 231
4.1.3. Configuring Apache CommONS DBCP .........ciuuiiiiiii e e e e e e eanas 232

4.2. USING @ ThIrd-Party DalaSOUICE .......uuiiuueiiieeiteeeei e e et e e st e e e et e e et e e st e et e et e e st e e et e e st e eaaeeanaeetnaeeanaeeees 232
4.2.1. Managed and XA DalaSOUICES .......ccuueiiiuieiiiieeie et e et e e s e e e e et e e et e e et e et e eateeaanaestnaeeanaeranaees 233
4.2.2. Setting the DataSourCe af FUNLIMIE .. .....iiii e e e e e e e e e e e e et e e et e e e et e e et e e st e eeaneeaneees 233

4.2.2.1. Using different DataSources for each EntityManager ..........oevvviiiiiiieiiiieiieee e 234
N T T 1 ) 234
N A I 11111 = (o SRR 234
Rt e T (o gl 7= o (11 oo 235

4.3. RUNEIME ACCESS 10 DBIASOUITE ... eeetiieeeiii ettt e ettt e e et e e e e et e e e e et e et e et e e e e et e e e eate e e e eatnaeeeaenaeeesnnns 235

R BT = 7= = I o] (U N 236
L I 121 Tox o) = Y . o 0= == 237
4.4.2. FirebirdDiCtionary PrOPEItiES ......ccuuuiiiiiieiiii et e e et e e e e e e e e e e e e et e et e et e e et e e e e eaaas 246
G TV VAS @ I B s 0 g 7= VA . 0 0= = 246
4.4.4. OracleDiCtioNary PrOPEIMiES ......ciiiiiiiii et e e e e e e e e e e e et e e et e e et e e et e et e aanas 246
4.4.5. SyhaseDiCtioNary PrOPEITIES .......ciuuiiiii i e et e e e e e e e e et e e et e et e et e e et eaan s 247
SR 2 Y = o o= = 247
4.4.7. Delimited 1Adentifiers SUPPOIT ... ....iiii e e e e e e e e e e e st e e et e e et e et e e eaneaeanaes 247

4.5, Setting the TransaCtion 1S0IAiON ..........uuiiiii e e e e e e e e e et e e et e et e e st e e aaneeeens 248

4.6. Setting the SQL JOIN SYNEAX ....ievieiiiieiii et et e e e e e e e e e e e st e e et eeaa e eat e eatnaeatnseetneesnneestnseetnaarannares 248

4.7. ACCESSING MUILIPIE DBEADASES ... ivvneiii ettt e e e e e e e e e e e et e e et e e et e e et e e et e e e eeanaas 249

4.8. Configuring the Use of JIDBC CONNECLIONS .......ccuuuiiiiiiiiieiie e et e e e e e e e et e e e e e e e st e e et e s e e et e e ran e eanaes 249

4.9, Statement BalChing ........ccouuiiiiiii e 251

400, Large RESUIT SEES .uuuiiiiiii e i e et e et e e e e e et e e e e r e e e e e et e e e e e et e e e e e e 252

I T U v 0 - P 253

S 1= 00T W = = 1o PRSPPI 254
I S 3 1= 4= S = PSSP 254
S o g T~ 04T = o (0] Y/ 254

TS 1= 1 0= I oo S 255

414, XIML SChEM@A FOIMMEL .. .eeeineeeei et e e ettt e e ettt s e e e eatr e e e eat s e e aeatnaeeeeatn s eeeesbnneaaes 258

I = S T = L O = LSRR 260

I = S 1 < O S I P RSSPN 260

I = 010 g ToTC 1T 0| PP 260
5.2.1. ENhancing @t BUIlA TimME ..uuiiiiiiii et e e e e e e e e e et e et e e et e e et e e aan s 261
5.2.2. Enhancing JPA ENtities 0N DEPIOYMENT ........iiiiiiiiiei e e e e e e e e et e et e e ea e aeas 262
5.2.3. ENhaNCiNg @l RUNIIMIE .....iitiiiii e e e e e e e e e e e e e e et e e et e e et e e et e e e e eannes 262
5.2.4. Enhancing Dynamically af RUNIIME .........uiiiiiiiiiii e e e e e e e e e e et e e e e eaneees 262
5.2.5. Omitting the OPENJPA ENNANCES .......cuuiiii e e e e e e e e e e e e et e et e e e aa e e et e eean s 263

G V= aT=To (= o B L ) = - o< 264

oI @ o 1= Lo 1= ] S 265
X I DT = = (o) {3 1o U= o Y/ 265
5.4.2. Entities as [dentity FIElOS ........iiiiiiiii e e e e 265
5.4.3. Application [dentity TOOI .......couuiiiiieiii e e e e e e e e e e e e e et e et e et e e e aaaas 267
5.4.4. Autoassign / ldentity Strategy CaVEALS ........cvvuniiiiiiiii e e e 268

I = =T 1= o I V= - P 269

N ST = = TS = B T oL USRS 270
N =S (o1 0 S - (=N 270
L2 Y/ o T oo = a o B @ o = 4 T oo 270

191



Reference Guide

5.6.3. Calendar Fields and TIMEZOMES .....uueiiiiiieeeiiie ettt e e e et e e e e e e e e et e e e et e e e eatnaeeeannnes 270

SN 1 O o =P SSPPPPRR 271

N I S 4 o B 0= PR 271

5.6.4.2. Large RESUIT SEE PrOXIES .vuuiiveieiii i ciii e et e et e e e e e e e e e e et e e et e e aaeaaanaees 271

G e T @0 (o) I o) (] =< PP 272

N I S T 2o 273

ST o 1< 1 0 T2 (o SR 273
5.6.5.1. EXIErNGl VAUBS ....oeevviiiii e eeeee et s ettt e e e et et e et e e e e et et e s e e e e e e aas bt e e e eaaeaaaes 276

LI A = (o (o o1 276
5.7.1. CUSLOM FEICH GIOUPS .. .evuiiiiici e et e e e e e e e e e e e e e e et e e et e e et e et e e et e e st e e eaneeannaees 276
5.7.2. Custom Fetch Group ConfigUIaLioN ..........coceuuiiiiieiiii e e e e e e e e e e e e e et e e e e eateeeaneeeanaes 278
5.7.3. Per-field Fetch ConfigUIalion ...........coiuuiiiii i ee e e e e e e e e e e e e e e et e e et e e eaeeeees 279
B.7.4. IMPIEMENTAtiON NOLES .....iiiiiei e e e e e e e e e e et e e et e e et e e e e e e et e e et e e eaneerannes 280

IR =T (= gl == (v o1V 280
5.8.1. Configuring Eager FEIChING ........oiiiii e e 281
5.8.2. Eager Fetching Considerations and LimitationS ..........cc.uveiiiiiiiiiiiiie e e e e e e e e e e e e eens 282

LTIV 1= - o P 283
L V= oo = W= (o Y APt 283
S VL= o o = W L= o101 1 (o 283
6.3. Additional JPA MELAOALA ........evveieiie e e e ee et e e e e e e e e e e e et e e e e e e e eaeate e e e e e e e eeeaeta i a e e e e aeaearrrn 284
LSRG I DT = = (o) {3 1o U= o) Y/ 284
LSRG 4 (o o= (I~ £ o] o 284
6.3.3. PerSiStent FIEld VAUES .....oooviiiiiiii ettt r e e e et ettt e e e e e e e aetnt e aaeeeeaeanne 284
6.3.4. Persistent ColECHON FIEIAS ........uiiiiiiiiee et e e et s e e e et e e e e et aeeeees 285
6.3.5. PerSiStent Map FIEIAS .....uuee i 285

Y = =T = = W T =0 ] P 285
L OSSR e 1 1 o PP 285
L = o 011 oL 286

SR B BT - - o: oL PP 286

R IR R D= - 'ox 0 1< o S - (<SPS 286

L ST o [ (= 1 o RSP 286
ST T I o= 0 [ | S 286

B o= o = (o I (U o 287

ST O I = £ P 287

B 1 V= = = oo o= P 287

B.4.2.5. REA-ONIY ...uiiiiiiiiiiii ettt e e e e e e e e e et e e ettt e e e ee e e e e aata e e e e e e e eeaaaaaaaeeaeeeananes 287

ST T Y/ o RSP 287

Ty B = 14T = (PSP 288

SRS T o (oY 288

6.4.2.9. EXIEINGl VAIUBS ....ooeiiiii i s et s e e ettt s e s e e e e et e e e e e e e e e e a e aeaaaaane 288

LG T T o o) 288
L Y I = 1= 1 o TSP 289

281, K=o o1 o PPN 290
5 O o= o 1Y =T o1 S 290
7.1.1. UsSiNg the Mapping TOOl ......couuiiiiiiiiii e e e e e e e e e e e e e e e e et e e et e e e e et e e et e eannas 291
7.1.2. GENErating DL SQL ..uvuuuiiiiiiiieiitie e et e e et ettt e e s e e e e e e e e e e s e e e e e e e e e e e e e e e e et e e e e e et ar e 292
7.1.3. RUNtIME FOrWard MaPPiNG ... .cuueeiieiieei et e e e e e e e et e e et e et e e et e e e e e et e e et e e aaneeeta e eaneeannns 292

A = Y= 6= Sl Y=o o 1 o P 293
7.2.1. Customizing REVEISE MaADPING ..uueiiineiiieiiii e et e et e e e e e e e e e et e e et e et e e et e e et s e et e etn e eaneesnnaeeens 295

7.3. Meet-iN-the-Middle MaPPIiNG . ...uuiiiiiiiiie e e e e e e e e e e e e e e e et e e et e e st e e et e e st e ean e eenneeeens 297
= o) o T a0 B = 1 S 297
A Y=o o T 0o o (o Y 299
AT Lo S =g =T N o 1] = PP 300
A A o o T 0T = AN IV = o o o 301

192



Reference Guide

7.7.1. Datastore 1Adentity MaPPIiNG .. .c.ueiurieii e e e e e e e e e e e e e e e e et e e et e e et e e e e e e e aan s 302
P S Vg (oTe = (=AY A= (=T TV F=To) o1 oo 302
7.7.3. MUItI-COolUMN MBPPINGS ..evtueiieeiii e et e e e e e e r e e e e et e e et e e et e e et e e et e e etn e e st e eaaneeatneeeanaeennnas 303
7.7.4. JoIN Column AttHDULE TalgELS ...vuuiiii et e e e e e e e e et e et e et e e et e e eaneeeeas 303

A A 0070 (o (=0 1Y/ =0 1 o 304
A ST © o = o PP 305

A ST R O = T = G I PP 305

7.7.6.2. Element JOIN COIUMINS .....uuuiiiiiiiieeeiie e e e e e et e e e et e e e et e e e et e e e e et e e e e ennn s 306

A AT R @ (o L= g @[ 121 o PP 306

7.7.7. One-Sided ONe-Many MapPING .....ccuueeinieiiieeie et e e e e e e e et e e e e e et e e et e e st eeat e e st e estreeanaeeanaees 306
A 8= T - o PP 307
T.7.8.1 KEY COIUMIMS ...uiiiiiiii et e e e e e et e e e e et e e et e et e e et e e et e e et e e aaneeennnns 307

7.7.8.2. KE&Y JOIN COIUMNS ....oiiiiiiii it e e e e e e e e e e e e e et e e et e e et e e et e e e eeaenas 308

7.7.8.3. Key Embedded Mapping ......cccuueiiiiiiii e e e e e e e e e e e e et e e et e e e e e e et e e e 308

A= T 140 =S 308

7.7.9. INAEXES NGO CONSITAINS ... eeeevtieeeieii e e eeei e et et e e et e e e et e e e eat e e e e et neeeeaaaeeeeaeaeeeeaanaeeeasenaeeeannnss 309
A A 5 TR 0o L=t USRS 309

PO A I o = Lo oI =, 309

7.7.9.3. UNIQUE CONSITAINTS ...evvuiieieiiiieeiiie et e e ete e st e et e e et e e et e e et e e sat e e st e e et s eetn e ssnesateesnnaantnaaes 310

7.7.10. XML COlUMN M@DPING ..ttniiitteiiieeiiie et e e e e et e e e et e e e e e et e et e e st e e et e eat e eaan e e st e eetneeaneeannns 310
A N T I B 1= 11 o 315

R TV o) o T 0o BT T3 = 1 o P 315
AT T I o = = O SRR 315

A Y= o) o T o B L= 15 o] N 316
A O - s e 1 1o PP 316
7.9.1.1. SUBCIASS FELCH IMOOE ... . e e e e eaaens 316

A T S - 1 =o|Y 316

7.9.1.3. DISCIHIMINGIOr SLALBOY .vuuevrneetnietiieetieeeet e eete e st eeat e e st e e st eeat e eat e eatnaesan e etnreeateeanneeennns 316

T V= = o IS = = )Y 316

A ST o I (= 1 o TP 316
A A T =T 1= g = (o 1Y oo [P 317

AR I3 N\ o g oo 1Y 4 2T0 o] 1o 317

PR R O F- = X O] 1= - PSP 317

FA I S (- (=o Y P 317

5 O O H 1= (o 1Y/ =0 1 o 317
50 B R O (o g T O 1Y o o g T P 318
7.10.2. Custom Discriminator and VErSiON SHrat@JIES ... ..uucivunieiiiieiiiieeie e e e e e e e e e e e e e e e e e e eanaas 318
7.10.3. CUStOM Field MaDPIiNg ....uceeiiiiiieiieee e e e e e e e e e e e e e e et e e e et e e et e e et e e et e ean e eannaeannaaes 318
7.10.3. 1. VaAUE HBNAIE'S ...t e e et e e e et e e e et e e e e aan s 318

A O T T Lo B 1 o 1= P 318

800 T TC T @0 1o 1= 4 o] o PP 318

8 @ == I =Y £ 319
ST I 1= o 1)/ 1 11 2| PP 320
ST = ox (0 VA 1= o [0/ 1101 o (U 320
8.1.1. StandalonNe DEPIOYMENT .......iiiiiiiii et e e e e e e e e e e e et e e et e et e e et e e et e e e e e e a e aa s 320
8.1.2. ENtityManager INJECHION .. ...uu i e e e e e e e e e e e e e e e st e e e et e e et e e et e e et e e e aanas 320

8.2. Integrating with the TranSaCtion ManNagEr .........ceuuiiiiii e e e e e e e e et e e e e aanaas 320
S A N I = = o 10 LS PP 321
8.3.1. Using OpenJPA With XA TranSACtIONS .......u.iiiueiiii et e e e e e e e e e e e e e e et e et e et e e et e e eaaaeeenans 321

L E 1] 4T = S o PP 322
N Y oo = 11 = PP 322
9.1.1. BroKer FINAIZAHON .....uuuiiiiiiie et e et e e e et e e e e e et a s 322
9.1.2. Broker Customization @and EVICHON ..........uiiiiiiiiii it e e e e et e e e et e eenanns 322

SN N g (= =T S SPPT 323

193



Reference Guide

9.2.1. OpenJPAENLItYMaNAgEIFACIONY .. ...ivii i eiit e et e e e e e e e e e e e e et e e et e e et e e e e e aeen 323
0.2.2. OPENIPAENTTYIMANGAGET . ..vuiiii i eiie e et e et et e e e e e e e e e et e e et e e et e e et e e et e e et e e et e raneranas 323
0.2.3. OPENIPAQUETY ...iiitt et ettt e ettt e e ettt e e ettt e e e ettt e e et et e e et et s e e e e et e e e e et e e ettt e e e eatn e e e attnaaaaae 323
LS [ g | SRS 324
LTS (0] = O 1 TSP 324
9.2.6. QUENYRESUITCACKE .....ui it e e e e e e e e e et e et e e et e e et e e e e e e eeaen 324
S R = (o 1] - T PR 324
0.2.8. OpeNIPAENLLY TIANSACHION .....iitiiiii i cii e et e e e e e e e e e e e e e e et e e e e et e e et e e et e e ean e eaneeenans 324
0.2.9. OPENIPA P SISIENCE ..evtuiiii et ettt et e et e e e e et e e e e e et e et e e e e e et e e e e e a et e e et e e ranas 325

1S G @ o] =Tox o (] o S 325
9.3.1. Configuring DEfallt LOCKING ........ciiuiiiiiiiiii e e e e e e e e e e et e et e e et e e st e e eaneeeens 325
9.3.2. Configuring LOCK LEVEIS 8 RUNIIME ... .cuuuiiii e e e e e e e e e e e et e et e e aa e eanas 325

L GG @ = ox a0 Tox (1 o AN 326
LS B o o Q1Y o = 327
LSRG (0= Fo) gl I o (T o To [ = 1= 27 1Y/ o 328
9.3.6. KNown 1SSUES aNd LIMITAHIONS .....uuuiiiiiiiieeii et e e e e et e e e et e e e e aaa s 328

LSS Y=o | (= 329
9.4.1. USING SAVEPOINES ...uuiiitieeiieiiiiseetie e e e e e e e e e et e e et e e e et e e et e e et e e e ta e e et e e et e e et e e e an e eaneeatnaesanaeeennns 329
9.4.2. CoNfigUIING SAVEPOINES .. .evuueiiieiit et e e e e e e e e e e e et e e et e e et e et eett e eatn e e et e estn e et eeaneeatneesnnnns 330

ST 1V < 1 oo [ S 330
N 1= 0 1< = (0] £ TP PTPTPT 331
O.6.1. RUNEIME ACCESS .. .iiitteeteii e e ettt e et e e et e e et e e e et e e e e et e e e e et e e et et e e e e ete e eeeebe e eeeeta e eeeetnnens 333

O.7. TraNSACHION EVENES ....uuiiiiiiii e e et e et e e ettt e e et et s e e e e ettt e e e eett s e e e eebe e e e e eate s eeeeeta s eeeentnaeaenes 334
9.8, NON-REIBIIONE SLOIES ....ieetiiieiiii ettt ettt et e ettt et ettt e e e e et r e e e et reeeetanneeeettnneeeetanneeeennns 334
0 = 11 oo PN 335
L0 B 7 = W o o= PR 335
10.1.1. Data Cache CoNfigUIaioN ............ieiuiieiiii e e e e e e e e e e e e e et e e et e e e e et e e ean e eanaes 335
10.1.1.1. Distributing instances across cache PartitionS .............oiiiuieeiiiieiiin e e e e 338

10.1.2. Data CaCth@ USAQE ...uuuiiiii it ei et et et e e e e e e e e e e e e et e e et e e et e e et e e et e e s ta e eaneaannaees 338
10.1.2.1. Using the JPA standard Cache INtErfate .........couuiiiiiiiii e 338

10.1.2.2. Using the OpenJPA StoreCache EXIENSIONS .......c.uuiiiinieiiieee e e e e e e e e e e e eenas 339

10.1.3. CBCNE SEAISHCS ..eevvveeeeiti ettt ettt e et e e et e e e e et e e e e et s e e e et e e e eebt e e e ee bt e e e eeta e e e eebeaeeaeteaeaae 340
O @ = Y O o o L= TSP 341
O ST @ o Tl 4 (=20 o o PR 344
TO.1.6. IMPOITANT NOES ...t e e e e e e e e et e et e e e et e e e aanns 345
10.1.7. KNown 1SSUES and LIMITAHONS ......uuuieiiiiiiiee et e e e e e e e e et e e e e ae e e e ennnns 345

10.2. Query Compilation CaAChE .......iiuiiiii i e e e e e e e e e e e e e e e e e e e e e a e aas 346
O = = o7 g o [ - o 346
T Y/ oo L T (oY o 1= PN 349
12. Remaote and OFfliNg OPEraliON .......c.uuiiiiiieiiie e ee et e e e e e e e e e et e e et e e at e e et e e st e eetn e et esaneeannaaennaees 350
12.1. DEtaCh @n0 ATBCH ...ttt eaaan 350
N B = = o g I ST o= Yo | PP 350
B AN 1 = ot g T =T o= (Yo PP 350
12.1.3. Defining the Detached ObJECt Graph .........ccvuiiiiiii e e e s 351
12.1.3.1. DEACNEA SEALE ....vu i eeeiiiiee ettt e et e e e ettt e e e ettt e e e et e e e e et a e e e et e e aare e aeees 351

12.1.3.2. Detached SEae FIEld ......vuuieiiiiiiieeei e e e e 353

12.2. Remote Event NOtifiCation FramMeWOTK ..........ooiiiiiiiiiiii ettt e e e e e et e e e eet e e e eetaneeeees 353
12.2.1. Remote Commit Provider CONfiQUIatioN ..........ccuuiiiiiiiiiii e e e e e e e e e e e e e ean s 353
2 O TR 11 PSSP 354

2 R I = RSP 354

12.2.1.3. COMIMON PrOPEITIES .. ceuuiiieieiie e e e e e e e e e e e e et e e e e et e e et e e et e e et e eaaeeanns 355

B O (o]0 112 1o PP 355

13. SIiCE: DIStrIDULEI PEISISLENCE ... eiiiii et e ettt e e e e e e ettt e e et et e e e e et e e e e et e e e e et e e e estn e eeestnn s 356
G35 @ = 4= P 356

194



Reference Guide

G S 1= g g 0 1SRRI 356
G Tt T I = 0= T < oY PP 356
SIS o oo TSP 356
13.2.3. DiStriDULEA QUETY ...oviiiiiiiiieee et e e e et e e et e e e et e e e e et e e e e et e e e e era s 356
13.2.4, Data DISITIDULION ...vuiiiiii e et e ettt e e et e e e ettt e e e eatnneeeeatn s e e eaatnaeaeee 357
TSI DT = W (= o o o) o P 358
13.2.6. HEterogeneouUs Dat@haSe ........c.uuiiiuiiiiiiei e e e et e e e e e e e e e e e e et e e aen 358
13.2.7. DistribDUted TranSBCtION .......eeiiiiieee it e e et e e et e e e et e e e et e e e eaan s 358
13.2.8. COllOCATON CONSITAINT ....vuuieeieii et e et e et e e et e e e et e e e e et e e e eett e e e eettaeeeeteeeeeettaeeaeneaeaees 359

T O U 1o O SPPPSPPP 359
13.3.1. HOw to activate SIiCe RUNLIME? .......iiiiiii it e et e e e e e e aa e e eaenns 359
13.3.2. How to configure each databhase SliCE? ..........iiiiiiiiii e 359
13.3.3. Implement DistributionPoliCy INtEITACE .......ccevniii e 360
13.3.4. Implement ReplicationPOlICy INLEITACE ... ....uiiii e e e e e e e e eens 361

13.4. Configuration PrOPEITIES .......ciuuiiiiii it e e e e e e e e e e et e e et e e e e et e e et e e e e e at e e et e e st e eetn e eanneeenns 361
T Bt I 1 o o= I 0T o 1= 4 1= 361

13.4.1.1. openjpa.dice.DistribUtiONPOlICY ......ccuuiiiiiiii e e 361

13.4.1.2. 0PN PASHICELENMIENT .uuiiiii e e 361

13.4.1.3. 0PN PASHCEIMASIEN ... iiiiiiii e e a s 362

13.4.1.4. 0PN PASHCEINGIMES ....iii it e e e e e e e e e e e e e e e 362

13.4.1.5. openjpa.dice.ThreadingPOIICY ........ocvuuiiiii e e s 362

13.4.1.6. openjpa.slice.TranSaCtioNPOlICY ...........iiiuiieiiii e e e e e e e e et e e e e an s 362

T A o = S oI (] o= g 1= PP 363

7 g o = A 01 (= = o P 364

T A o o AN | Pt 364
14.1.1. Common Ant Configuration OPLIONS ..........ciuuiiiiii e e e e e e e e e et eeaaas 364
o g 0 o= AN o 1= PR 365
14.1.3. Application Identity TOOI ANt TASK ....uuiiiniiiiiieii i e e e e e e e e e e e e et e e aaeeaenas 366
I V= oT o T o R 0 o Y g A = L 2P 367
14.1.5. Reverse Mapping TOOl ANE TASK ....iuuniiiii et e e e e e e e e e e e e e et e et e e et e e et e et e e aneeaenas 367
TS w1 1< 0 = B oo N o A = PP 368

14.2. Apache ComMONS DBCP ........iiiiiiii e e e e e e e e e e e et e e et e et e e et e e e et e et e e et e ranaeeanans 368
14.2.1. Apache Commons DBCP Configuration OPtiONS .........cccuuieiiiieiiiiieii e e e e e e e e e e e e e eanes 368

SR @11 43Tz 1o g T C 10 o L= 1T 0= P 370
gt 0= 1= 1 o) o S 374

350 I @ o T U= o) o 374
16.1.1. IMX Platform MBean ENablemMENt .........coouuuiiiiiiiiiieiiiir e e e e e e e 374

16.2. Custom Providers and INSITUMENES ... .....uuiiiiiiiee e e e e e e e e et e e e et e e e et e e e et e e e eaan s 374

195



Chapter 1. Introduction

OpenJPA is a JDBC-based implementation of the JPA standard. This document is a reference for the configuration and use of
OpenJPA.

1.1. Intended Audience

This document is intended for OpenJPA developers. It assumes strong knowledge of Java, familiarity with the eXtensible
Markup Language (XML), and an understanding of JPA. If you are not familiar with JPA, please read the JPA Overview before
proceeding.

Certain sections of this guide cover advanced topics such as custom object-relational mapping, enterprise integration, and using
OpenJPA with third-party tools. These sections assume prior experience with the relevant subject.

196



Chapter 2. Configuration

2.1.

Introduction

2.2.

This chapter describes the OpenJPA configuration framework. It concludes with descriptions of al the configuration properties
recognized by OpenJPA. Y ou may want to browse these properties now, but it is not necessary. Most of them will be referenced
later in the documentation as we explain the various features they apply to.

Runtime Configuration

2.3.

The OpenJPA runtime includes a comprehensive system of configuration defaults and overrides:

» OpenJPA first looks for an optional openj pa. xm resource. OpenJPA searches for this resource in each top-level directory
of your CLASSPATH. OpenJPA will aso find the resource if you place it within aMETA- | NF directory in any top-level
directory of the CLASSPATH. The openj pa. xm resource contains property settingsin JPA's XML format.

* You can customize the name or location of the above resource by specifying the correct resource path in the
openj pa. properti es System property.

» You can override any value defined in the above resource by setting the System property of the same name to the desired
value.

* InJPA, thevaluesinthestandard META- | NF/ per si st ence. xm  bootstrapping file used by the Per si st ence
class at runtime override the values in the above resource, as well as any System property settings. The Map passed to
Per si st ence. creat eEnt i t yManager Fact ory at runtime also overrides previous settings, including properties
definedin per si stence. xm .

* InJPA, The Map passed to the methods defined inthe Quer y and Ent i t yManager interfaces at runtime also overrides
previous settings, including properties defined in per si st ence. xnl . The Map isin effect only during the method
invocation.

* When using JCA deployment the conf i g- pr operty valuesinyour r a. xm file override other settings.

 All OpenJPA command-line tools accept flags that allow you to specify the configuration resource to use, and to override any
property. Section 2.3, “ Command Line Configuration ” [197] describes these flags.

Internally, the OpenJPA runtime environment and devel opment tools manipulate property settings through a genera
Conf i gur at i on interface, and in particular its OpenJPAConf i gur ati on and JDBCConf i gur ati on
subclasses. For advanced customization, OpenJPA's extended runtime interfaces and its devel opment tools allow you to
access these interfaces directly. See the Javadoc for details.

Command Line Configuration

OpenJPA development tools share the same set of configuration defaults and overrides as the runtime system. They also allow
you to specify property values on the command line:

e -properties/-p <configuration file or resource>:Usethe-properti es flag, or itsshorter - p form, to
specify aconfiguration file to use. Note that OpenJPA aways searches the default file locations described above, so thisflag is
only needed when you do not have a default resource in place, or when you wish to override the defaults. The given value can

197


../javadoc/org/apache/openjpa/lib/conf/Configuration.html
../javadoc/org/apache/openjpa/lib/conf/Configuration.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html
../javadoc/

Configuration

be the path to afile, or the resource name of afile somewherein the CLASSPATH. OpenJPA will search the given location as
well asthe location prefixed by META- | NF/ . Thus, to point an OpenJPA tool at  META- | NF/ my- per si st ence. xm
you can Use

<tool > -p ny- persi stence. xni

If you want to run atool against just one particular persistence unit in a configuration file, you can do so by specifying an
anchor along with the resource. If you do not specify an anchor, the tools will run against all the persistence units defined
within the specified resource, or the default resource if none is specified. If the persistence unit is defined within the default
resource location, then you can just specify the raw anchor itself:

<tool > -p ny- persi stence. xnl #sal es- persi st ence-uni t
<tool > -p #invoi ce-persistence-unit

e -<property nane> <property val ue>: Any configuration property that you can specify in aconfiguration file can
be overridden with a command line flag. The flag name is always the last token of the corresponding property name, with the
first letter in either upper or lower case. For example, to override the openj pa. Connect i onUser Nane property, you
could passthe- connect i onUser Nane <val ue> flagto any tool. Vaues set this way override both the valuesin the
configuration file and values set via System properties.

2.3.1. Code Formatting

Some OpenJPA devel opment tools generate Java code. These tools share a common set of command-line flags for formatting
their output to match your coding style. All code formatting flags can begin with either thecodeFor mat  or cf prefix.

e -codeFormat./-cf.tabSpaces <spaces>: The number of spacesthat make up atab, or O to use tab characters.
Defaults to using tab characters.

e -codeFornmat./-cf.spaceBeforeParen <true/t | fal se/f>:Whether or not to place a space before opening
parentheses on method calls, if statements, loops, etc. Defaultstof al se.

* -codeFormat./-cf.spacelnParen <true/t | fal se/f>:Whether or not to place a space within parentheses;
i.e.met hod( arg) .Defaultstof al se.

o -codeFormat./-cf.braceOnSaneLine <true/t | fal se/f>:Whether or not to place opening braces on the
same line as the declaration that begins the code block, or on the next line. Defaultstot r ue .

* -codeFormat./-cf.braceAt SameTabLevel <true/t | fal se/f>:WhenthebraceOnSaneLi ne optionis
disabled, you can choose whether to place the brace at the same tab level of the contained code. Defaultstof al se.

» -codeFormat./-cf.scoreBeforeFiel dName <true/t | fal se/f> :Whether to prefix an underscore to
names of private member variables. Defaultstof al se.

o -codeFormat./-cf.linesBetweenSections <lines>:Thenumber of linesto skip between sections of code.
Defaultsto 1.

Example 2.1. Code Formatting with the Application Id Tool

java org. apache. openj pa. enhance. Appl i cati onl dTool -cf.spaceBeforeParen true -cf.tabSpaces 4

198



Configuration

2.4.

Plugin Configuration

Because OpenJPA is a highly customizable environment, many configuration properties relate to the creation and configuration
of system plugins. Plugin properties have a syntax very similar to that of Java annotations. They allow you to specify both what
classto use for the plugin and how to configure the public fields or bean properties of the instantiated plugin instance. The easiest
way to describe the plugin syntax is by example:

OpenJPA has a pluggable L2 caching mechanism that is controlled by the openj pa. Dat aCache configuration

property. Suppose that you have created anew class, com xyz. MyDat aCache, that you want OpenJPA to use for

caching. You've made instances of MyDat aCache configurable viatwo methods, set CacheSi ze(int size) and

set Renpt eHost (Stri ng host) . The sample below shows how you would tell OpenJPA to use an instance of your custom
plugin with amax size of 1000 and aremote host of cacheser ver

<property name="openj pa. Dat aCache"
val ue="com xyz. MyDat aCache( CacheSi ze=1000, RenpteHost =cacheserver)"/>

Asyou can see, plugin properties take a class name, followed by a comma-separated list of values for the plugin's public fields
or bean propertiesin parentheses. OpenJPA will match each named property to afield or setter method in the instantiated plugin
instance, and set the field or invoke the method with the given value (after converting the value to the right type, of course). The
first letter of the property names can be in either upper or lower case. The following would also have been valid:

com xyz. MyDat aCache(cacheSi ze=1000, renoteHost=cacheserver)

If you do not need to pass any property settings to a plugin, you can just name the class to use:

com xyz. MyDat aCache

Similarly, if the plugin has a default class that you do not want to change, you can simply specify alist of property settings,
without a class name. For example, OpenJPA's query cache companion to the data cache has a default implementation suitable to
most users, but you still might want to change the query cache'ssize. It hasaCacheSi ze property for this purpose:

CacheSi ze=1000

Finally, many of OpenJPA's built-in options for plugins have short alias names that you can use in place of the full class name.
The data cache property, for example, has an available dlias of t r ue for the standard cache implementation. The property value
simply becomes:

true

The standard cache implementation class also hasaCacheSi ze property, so to use the standard implementation and configure
the size, specify:

199




Configuration

true(CacheSi ze=1000)

The remainder of this chapter reviews the set of configuration properties OpenJPA recognizes.

2.5. OpenJPA Properties

2.5.1.

OpenJPA defines many configuration properties. Most of these properties are provided for advanced users who wish to customize
OpenJPA's behavior; the majority of developers can omit them. The following properties apply to any OpenJPA back-end,
though the given descriptions are tailored to OpenJPA's default JDBC store.

A few of the properties recognized by OpenJPA have been standardized in JPA 2.0 specification using equivaent names. These
properties can be specified either by the JPA standard key or equivalent OpenJPA key. Specifying the same key once as JPA
standard key and again as equivalent OpenJPA key in the same configuration, however, is not allowed. The following table lists
these standard JPA properties and their OpenJPA equivalent.

Table 2.1. Standard JPA Properties and OpenJPA equivalents

Standard JPA 2.0 OpenJPA Equivalent
javax.persistence.jdbc.driver openjpa.ConnectionDriverName
javax.persistence.jdbc.url openjpa.ConnectionURL
javax.persistence.jdbc.user openjpa.ConnectionUserName
javax.persistence.jdbc.password openjpa.ConnectionPassword

openjpa.AutoClear

2.5.2.

Property name: openj pa. Aut oCl ear

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Aut oCl ear
Resour ce adaptor config-property: Aut oCl ear

Default: dat ast ore

Possiblevalues: dat ast or e, al |

Description: When to automatically clear instance state: on entering a datastore transaction, or on entering any transaction.

openjpa.AutoDetach

Property name: openj pa. Aut oDet ach

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Aut oDet ach
Resour ce adaptor config-property: Aut oDet ach

Default: - null

Possiblevalues: cl ose, commi t , nont x-r ead, r ol | back, none

Description: A comma-separated list of events when managed instances will be automatically detached. When using the
OpenJPA EntityManager thisdefaultsto cl ose, andr ol | back per the JPA spec. If you need to change this setting, you need
to set it directly on an instantiated EntityManager.

200


../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getAutoClear()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getAutoDetach()

Configuration

2.5.3.

none option isexclusive. It can not be specified with any other option. none option implies that managed objects will not be
detached from the persistence context, the second-class object fields such as collections or date will not be proxied unlike normal
circumstances. This option isrelevant for specific use cases where the user application would not refer to the managed objects
after the transaction and/or the context ends e.g. typical batch insertion scenario.

openjpa.BrokerFactory

2.5.4.

Property name: openj pa. Br oker Fact ory

Configuration API: or g. apache. openj pa. conf . QpenJPAConf i gur ati on. get Br oker Fact ory
Resour ce adaptor config-property: Broker Factory

Default: j dbc

Possiblevalues: j dbc, abst ract st ore, renot e

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing the
or g. apache. openj pa. ker nel . Br oker Fact or y typeto use.

openjpa.Brokerimpl

2.5.5.

Property name: openj pa. Br oker | npl

Configuration API: or g. apache. openj pa. conf . OpenJPAConf i gur ati on. get Br oker | npl
Resour ce adaptor config-property: Br oker | npl

Default: def aul t

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing the

or g. apache. openj pa. ker nel . Br oker typeto use at runtime. See Section 9.1.2, “ Broker Customization and
Eviction ” [322] on for details.

openjpa.Callbacks

2.5.6.

Property name: openj pa. Cal | backs

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Cal | backOpt i onsl nst ance
Resour ce adaptor config-property: Cal | backs

Default: def aul t

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) to fine tune some of the configurable
properties related to callbacks. The plug-in supports two boolean properties:

» Post Per si st Cal | backl medi at e: whether the post-persist callback isinvoked as soon as a new instance is managed.
The defaultisf al se, impliesthat the post-persist callback isinvoked after the instance been committed or flushed to the
datastore.

o All owsMul ti pl eMet hodsFor SameCal | back: whether multiple methods of the same class can handle the same
callback event. Defaultsto f al se.

openjpa.ClassResolver

201


../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getBrokerFactory()
../javadoc/org/apache/openjpa/kernel/BrokerFactory.html
../javadoc/org/apache/openjpa/kernel/BrokerFactory.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getBrokerImpl()
../javadoc/org/apache/openjpa/kernel/Broker.html
../javadoc/org/apache/openjpa/kernel/Broker.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getCallbackOptionsInstance()

Configuration

2.5.7.

Property name: openj pa. U assResol ver

Configuration API: or g. apache. openj pa. conf . OpenJPAConfi gur ati on. get Cl assResol ver
Resour ce adaptor config-property: C assResol ver

Default: def aul t

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing the

org. apache. openj pa. util . C assResol ver implementation to use for class name resolution. Y ou may wish to plug in
your own resolver if you have special classloading needs.

openjpa.Compatibility

2.5.8.

Property name: openj pa. Conpatibility

Configuration API: or g. apache. openj pa. conf. QpenJPAConfi gurati on. get Conpatibility
Resour ce adaptor config-property: Conpatibility

Default: -

Description: Encapsulates options to mimic the behavior of previous OpenJPA releases.

openjpa.ConnectionDriverName

2.5.9.

Property name: openj pa. Connecti onDri ver Nane

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Connecti onDri ver Nanme
Resour ce adaptor config-property: Connecti onDri ver Name

Default: -

Description: The full class name of either the JDBCj ava. sql . Dri ver,ora javax. sql . Dat aSour ce implementation
to use to connect to the database. See Chapter 4, JDBC [231] for details.

openjpa.Connection2DriverName

Property name: openj pa. Connecti on2Dri ver Nane

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Connecti on2Dri ver Nane
Resour ce adaptor config-property: Connecti on2Dri ver Name

Default: -

Description: This property isequivaent to the openj pa. Connect i onDri ver Name property described in Section 2.5.8, “
openjpa.ConnectionDriver Name” [202], but applies to the alternate connection factory used for unmanaged connections.
See Section 4.2.1, “ Managed and XA DataSources” [233] for details.

2.5.10. openjpa.ConnectionFactory

Property name: openj pa. Connecti onFactory

202


../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getClassResolver()
../javadoc/org/apache/openjpa/util/ClassResolver.html
../javadoc/org/apache/openjpa/util/ClassResolver.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getCompatibility()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionDriverName()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnection2DriverName()

Configuration

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Connecti onFactory
Resour ce adaptor config-property: Connecti onFact ory
Default: -

Description: A j avax. sql . Dat aSour ce to useto connect to the database. See Chapter 4, JDBC [231] for details.

2.5.11. openjpa.ConnectionFactory?2

Property name: openj pa. Connecti onFact ory?2

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Connecti onFact ory?2
Resour ce adaptor config-property: Connecti onFact ory?2

Default: -

Description: Anunmanaged | avax. sql . Dat aSour ce to useto connect to the database. See Chapter 4, JDBC [231]
for details.

2.5.12. openjpa.ConnectionFactoryName

Property name: openj pa. Connecti onFact or yNane

Configuration API: or g. apache. openj pa. conf. QpenJPAConf i gur ati on. get Connecti onFact or yNane
Resour ce adaptor config-property: Connecti onFact or yNane

Default: -

Description: The JNDI location of a j avax. sql . Dat aSour ce to useto connect to the database. See Chapter 4, JDBC
[231] for details.

2.5.13. openjpa.ConnectionFactory2Name

Property name: openj pa. Connecti onFact or y2Nane

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Connecti onFact or y2Nane
Resour ce adaptor config-property: Connect i onFact or y2Nane

Default: -

Description: The JNDI location of an unmanaged j avax. sqgl . Dat aSour ce to use to connect to the database. See
Section 8.3, “ XA Transactions” [321] for details.

2.5.14. openjpa.ConnectionFactoryMode

Property name: openj pa. Connecti onFact or yMode
Configuration API: or g. apache. openj pa. conf. QpenJPAConf i gur ati on. get Connecti onFact or yMbde
Resour ce adaptor config-property: Connecti onFact or yMbde

Default: | ocal

203


../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionFactory()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionFactory2()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionFactoryName()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionFactory2Name()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionFactoryMode()

Configuration

Possiblevalues: | ocal , managed

Description: The connection factory mode to use when integrating with the application server's managed transactions. See
Section 4.2.1, “ Managed and XA DataSources” [233] for details.

2.5.15. openjpa.ConnectionFactoryProperties

Property name: openj pa. Connecti onFact oryProperties

Configuration API:
or g. apache. openj pa. conf . OpenJPAConfi gur ati on. get Connect i onFact or yProperti es

Resour ce adaptor config-property: Connecti onFact oryProperti es
Default: -

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) listing properties for configuration of the
datasource in use. See the Chapter 4, JDBC [231] for details.

2.5.16. openjpa.ConnectionFactory2Properties

Property name: openj pa. Connect i onFact or y2Properties

Configuration API:
or g. apache. openj pa. conf . OpenJPAConf i gur ati on. get Connecti onFact ory2Properties

Resour ce adaptor config-property: Connecti onFact or y2Properti es
Default: -

Description: This property is equivalent to the openj pa. Connect i onFact or yPr operti es property described in
Section 2.5.15, “ openjpa.ConnectionFactoryProperties” [204], but appliesto the alternate connection factory used for
unmanaged connections. See Section 4.2.1, “ Managed and XA DataSources” [233] for details.

2.5.17. openjpa.ConnectionPassword

Property name: openj pa. Connect i onPasswor d

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Connect i onPassword
Resour ce adaptor config-property: Connect i onPassword

Default: -

Description: The password for the user specified in the Connect i onUser Nane property. See Chapter 4, JDBC [231]
for details.

2.5.18. openjpa.Connection2Password

Property name: openj pa. Connecti on2Passwor d
Configuration API: or g. apache. openj pa. conf . QpenJPAConf i gur ati on. get Connect i on2Passwor d
Resour ce adaptor config-property: Connecti on2Password

Default: -

204


../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionFactoryProperties()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionFactoryProperties()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionFactory2Properties()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionFactory2Properties()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionPassword()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnection2Password()

Configuration

Description: This property isequivalent to the openj pa. Connect i onPasswor d property described in Section 2.5.17, “
openjpa.ConnectionPassword " [204], but applies to the alternate connection factory used for unmanaged connections. See
Section 4.2.1, “ Managed and XA DataSources” [233] for details.

2.5.19. openjpa.ConnectionProperties

Property name: openj pa. Connecti onProperties

Configuration API: or g. apache. openj pa. conf. QpenJPAConfi gurati on. get Connecti onProperties
Resour ce adaptor config-property: Connecti onProperties

Default: -

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) listing properties to configure the driver
listedinthe Connect i onDr i ver Name property described below. See Chapter 4, JDBC [231] for details.

2.5.20. openjpa.Connection2Properties

Property name: openj pa. Connecti on2Properties

Configuration API: or g. apache. openj pa. conf. QpenJPAConfi gur ati on. get Connecti on2Properties
Resour ce adaptor config-property: Connecti on2Properties

Default: -

Description: This property isequivaent to the openj pa. Connect i onProperti es property described in Section 2.5.19, “
openjpa.ConnectionProperties” [205], but appliesto the alternate connection factory used for unmanaged connections. See
Section 4.2.1, “ Managed and XA DataSources” [233] for details.

2.5.21. openjpa.ConnectionURL

Property name: openj pa. Connect i onURL

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Connect i onURL
Resour ce adaptor config-property: Connecti onURL

Default: -

Description: The JDBC URL for the database. See Chapter 4, JDBC [231] for details.

2.5.22. openjpa.Connection2URL

Property name: openj pa. Connect i on2URL

Configuration API: or g. apache. openj pa. conf . OQpenJPAConfi gur ati on. get Connecti on2URL
Resour ce adaptor config-property: Connecti on2URL

Default: -

Description: This property isequivaent to the openj pa. Connect i onURL property described in Section 2.5.21, “
openjpa.ConnectionURL " [205], but applies to the alternate connection factory used for unmanaged connections. See
Section 4.2.1, “ Managed and XA DataSources” [233] for details.

205


../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionProperties()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnection2Properties()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionURL()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnection2URL()

Configuration

2.5.23. openjpa.ConnectionUserName

Property name: openj pa. Connect i onUser Nane

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Connecti onUser Nane
Resour ce adaptor config-property: Connecti onUser Name

Default: -

Description: The user name to use when connecting to the database. See the Chapter 4, JDBC [231] for details.

2.5.24. openjpa.Connection2UserName

Property name: openj pa. Connect i on2User Nane

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Connecti on2User Nane
Resour ce adaptor config-property: Connecti on2User Nane

Default: -

Description: This property isequivalent to the openj pa. Connect i onUser Nane property described in Section 2.5.23, “
openjpa.ConnectionUser Name” [206], but applies to the alternate connection factory used for unmanaged connections. See
Section 4.2.1, “ Managed and XA DataSources” [233] for details.

2.5.25. openjpa.ConnectionRetainMode

Property name: openj pa. Connect i onRet ai nMode

Configuration API: or g. apache. openj pa. conf. QpenJPAConf i gur ati on. get Connect i onRet ai nMode
Resour ce adaptor config-property: Connect i onRet ai nMbde

Default: on- dermand

Description: Controls how OpenJPA uses datastore connections. This property can also be specified for individual sessions. See
Section 4.8, “ Configuring the Use of JDBC Connections” [249] for details.

2.5.26. openjpa.DataCache

Property name: openj pa. Dat aCache

Configuration API: or g. apache. openj pa. conf . OpenJPAConf i gur ati on. get Dat aCache
Resour ce adaptor config-property: Dat aCache

Default: f al se

Description: A plugin list string (see Section 2.4, “ Plugin Configuration " [199]) describing the

or g. apache. openj pa. dat acache. Dat aCachesto usefor data caching. See Section 10.1.1, “ Data Cache
Configuration " [335] for details.

2.5.27. openjpa.DataCacheManager

206


../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionUserName()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnection2UserName()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getConnectionRetainMode()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getDataCache()
../javadoc/org/apache/openjpa/datacache/DataCache.html
../javadoc/org/apache/openjpa/datacache/DataCache.html

Configuration

Property name: openj pa. Dat aCacheManager

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur at i on. get Dat aCacheManager
Resour ce adaptor config-property: Dat aCacheManager

Default: def aul t

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing the

openj pa. dat acache. Dat aCacheManager that manages the system data caches. See Section 10.1, “ Data Cache
" [335] for details on data caching.

2.5.28. openjpa.DataCacheMode

Property name: openj pa. Dat aCacheMbde

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur at i on. get Dat aCacheMdde
Resour ce adaptor config-property: Dat aCacheMode

Default: Dat aCacheMode. UNSPECI FI ED (see javadoc for details)

Description: Determines which entities will be included in the DataCache. May be any of the values defined in ../javadoc/or g/
apache/openjpa/datacache/DataCacheM ode.html.

2.5.29. openjpa.DataCacheTimeout

Property name: openj pa. Dat aCacheTi neout

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Dat aCacheTi nmeout
Resour ce adaptor config-property: Dat aCacheTi neout

Default: - 1

Description: The number of milliseconds that data in the data cache is valid. Set thisto -1 to indicate that data should not expire
from the cache. This property can also be specified for individual classes. See Section 10.1.1, “ Data Cache Configuration
" [335] for details.

2.5.30. openjpa.DetachState

Property name: openj pa. Det achSt at e

Configuration API: or g. apache. openj pa. conf. QpenJPAConfi gur ati onl npl . get Det achSt at e
Resour ce adaptor config-property: Det achSt at e

Default: | oaded

Possiblevalues: | oaded, f et ch- gr oups, al |

Description: Determines which fields are part of the detached graph and related options. For more details, see Section 12.1.3, “
Defining the Detached Object Graph ” [351].

2.5.31. openjpa.DynamicDataStructs

207


../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getDataCacheManager()
../javadoc/org/apache/openjpa/datacache/DataCacheManager.html
../javadoc/org/apache/openjpa/datacache/DataCacheManager.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getDataCacheMode()
../javadoc/org/apache/openjpa/datacache/DataCacheMode.html
../javadoc/org/apache/openjpa/datacache/DataCacheMode.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getDataCacheTimeout()
../javadoc/org/apache/openjpa/conf/OpenJPAConfigurationImpl.html#getDetachState()

Configuration

Property name: openj pa. Dynam cDat aStructs

Configuration API: or g. apache. openj pa. conf. OQpenJPAConf i gur ati on. get Dynami cDat aStructs
Resour ce adaptor config-property: Dynam cDat aStructs

Default: f al se

Description: Whether to dynamically generate customized structs to hold persistent data. Both the OpenJPA data cache and

the remote framework rely on data structs to cache and transfer persistent state. With dynamic structs, OpenJPA can customize
data storage for each class, eliminating the need to generate primitive wrapper objects. This saves memory and speeds up certain
runtime operations. The price is alonger warm-up time for the application - generating and loading custom classes into the

JVM takestime. Therefore, only set this property tot r ue if you have along-running application where theinitia cost of class
generation is offset by memory and speed optimization over time.

2.5.32. openjpa.FetchBatchSize

Property name: openj pa. Fet chBat chSi ze

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Fet chBat chSi ze
Resour ce adaptor config-property: Fet chBat chSi ze

Default: - 1

Description: The number of rows to fetch at once when scrolling through aresult set. The fetch size can also be set at runtime.
See Section 4.10, “ Large Result Sets” [252] for details.

2.5.33. openjpa.EncryptionProvider

Property name: openj pa. Encrypti onProvi der

Configuration API: or g. apache. openj pa. conf . OpenJPAConf i gur ati on. get Encrypti onPr ovi der
Resour ce adaptor config-property: Encrypti onProvi der

Default: f al se

Description: A plugin list string (see Section 2.4, “ Plugin Configuration ” [199]) describing the

or g. apache. openj pa.lib. encryption. Encrypti onProvi der sto usefor connection password encryption. See
Chapter 11, Encryption Provider [349] for details.

2.5.34. openjpa.FetchGroups

Property name: openj pa. Fet chG oups

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Fet chG oups
Resour ce adaptor config-property: Fet chGroups

Default: -

Description: A comma-separated list of fetch group namesthat are to be loaded when retrieving objects from the datastore. Fetch
groups can also be set at runtime. See Section 5.7, “ Fetch Groups” [276] for details.

2.5.35. openjpa.FlushBeforeQueries

208


../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getDynamicDataStructs()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getFetchBatchSize()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getEncryptionProvider()
../javadoc/org/apache/openjpa/lib/encryption/EncryptionProvider.html
../javadoc/org/apache/openjpa/lib/encryption/EncryptionProvider.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getFetchGroups()

Configuration

Property name: openj pa. Fl ushBef or eQueri es

Property name: openj pa. Fl ushBef or eQueri es

Configuration API: or g. apache. openj pa. conf. QpenJPAConfi gur ati on. get Fl ushBef or eQueri es
Resour ce adaptor config-property: Fl ushBef or eQueri es

Default: t r ue

Description: Whether or not to flush any changes made in the current transaction to the datastore before executing a query. See
Section 4.8, “ Configuring the Use of JDBC Connections” [249] for details.

2.5.36. openjpa.lgnoreChanges

Property name: openj pa. | gnor eChanges

Configuration API: or g. apache. openj pa. conf . OQpenJPAConfi gur ati on. get | gnor eChanges
Resour ce adaptor config-property: | gnor eChanges

Default: f al se

Description: Whether to consider maodifications to persistent objects made in the current transaction when evaluating queries.
Setting thisto t r ue allows OpenJPA to ignore changes and execute the query directly against the datastore. A valueof f al se
forces OpenJPA to consider whether the changesin the current transaction affect the query, and if so to either evaluate the query
in-memory or flush before running it against the datastore.

2.5.37. openjpa.ld

Property name: openj pa. | d
Resour ce adaptor config-property: | d
Default: none

Description: An environment-specific identifier for this configuration. This might correspond to a JPA persistence-unit name, or
to some other more-unique value available in the current environment.

2.5.38. openjpa.lnitializeEagerly

Property name: openj pa. I nitializeEagerly

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi guration.islnitializeEagerly
Resour ce adaptor config-property: I nitializeEagerly

Default: f al se

Possiblevalues: f al se, true

Description: Controls whether initialization is eager or lazy. Eager initialization imply all persistent classes, their mapping
information, database connectivity and all other resources specified in the configuration of a persistence unit will be initialized

when a persistent unit is constructed. The default behavior islazy i.e. persistent classes, database and other resources are
initialized only when the application refersto a resource for the first time.

209


../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getFlushBeforeQueries()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getIgnoreChanges()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#isInitializeEagerly()

Configuration

2.5.39. openjpa.lnstrumentation

Property name: openj pa. I nstrunent ati on

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gurati on. getlnstrumentation
Resour ce adaptor config-property: | nstrument ati on

Default: -

Possible values: j mx, cust om pl ugi n string

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing one or more instances of
org. apache. openj pa.lib.instrunmentation.|nstrunmentationProvi der and specific instruments to enable.
See Chapter 16, Instrumentation [374] for details.

2.5.40. openjpa.lnverseManager

Property name: openj pa. | nver seManager

Configuration API: or g. apache. openj pa. conf . QpenJPAConfi gur ati on. get | nver seManager
Resour ce adaptor config-property: | nver seManager

Default: f al se

Possiblevalues: f al se, true

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing a

or g. apache. openj pa. ker nel . | nver seManager to use for managing bidirectional relations upon aflush. See
Section 5.5, “ Managed Inverses” [269] for usage documentation.

2.5.41. openjpa.LockManager

Property name: openj pa. LockManager

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get LockManager
Resour ce adaptor config-property: LockManager

Default: nmi xed

Possible values: none, ver si on, pessi m sti ¢, m xed

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing a

or g. apache. openj pa. ker nel . LockManager to use for acquiring locks on persistent instances during transactions. See
Section 9.3.4,“ Lock Manager " [327] for more information.

2.5.42. openjpa.LockTimeout

Property name: openj pa. LockTi neout
Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get LockTi neout

Resour ce adaptor config-property: LockTi neout

210


../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getInstrumentation()
../javadoc/org/apache/openjpa/lib/instrumentation/InstrumentationProvider.html
../javadoc/org/apache/openjpa/lib/instrumentation/InstrumentationProvider.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getInverseManager()
../javadoc/org/apache/openjpa/kernel/InverseManager.html
../javadoc/org/apache/openjpa/kernel/InverseManager.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getLockManager()
../javadoc/org/apache/openjpa/kernel/LockManager.html
../javadoc/org/apache/openjpa/kernel/LockManager.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getLockTimeout()

Configuration

Default: - 1

Description: The number of milliseconds to wait for an object lock before throwing an exception, or -1 for no limit. See
Section 9.3, “ Object Locking” [325] for details.

2.5.43. openjpa.Log

Property name: openj pa. Log

Configuration API: or g. apache. openj pa. | ib. conf. Confi guration. getLog
Resour ce adaptor config-property: Log

Default: t rue

Possible values: openj pa, commons, | og4j , sl f 4] ,none

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing a

or g. apache. openj pa. lib.| og. LogFact ory to usefor logging. For details on logging, see Chapter 3, Logging and
Auditing [224].

2.5.44. openjpa.ManagedRuntime

Property name: openj pa. ManagedRunt i me

Configuration API: or g. apache. openj pa. conf. OQpenJPAConf i gur ati on. get ManagedRunt i ne
Resour ce adaptor config-property: ManagedRunti ne

Default: aut o

Description: A plugin string (see Section 2.4, * Plugin Configuration ” [199]) describing the

or g. apache. openj pa. ee. ManagedRunt i me implementation to use for obtaining a reference to the
Transact i onManager in an enterprise environment.

2.5.45. openjpa.Mapping

Property name: openj pa. Mappi ng

Configuration API: or g. apache. openj pa. conf . QpenJPAConf i gur ati on. get Mappi ng
Resour ce adaptor config-property: Mappi ng

Default: -

Description: The symbolic nhame of the object-to-datastore mapping to use.

2.5.46. openjpa.MaxFetchDepth

Property name: openj pa. MaxFet chDept h
Configuration API: or g. apache. openj pa. conf . OQpenJPAConf i gur ati on. get MaxFet chDept h
Resour ce adaptor config-property: MaxFet chDept h

Default: - 1

211


../javadoc/org/apache/openjpa/lib/conf/Configuration.html#getLog()
../javadoc/org/apache/openjpa/lib/log/LogFactory.html
../javadoc/org/apache/openjpa/lib/log/LogFactory.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getManagedRuntime()
../javadoc/org/apache/openjpa/ee/ManagedRuntime.html
../javadoc/org/apache/openjpa/ee/ManagedRuntime.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getMapping()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getMaxFetchDepth()

Configuration

Description: The maximum depth of relations to traverse when eager fetching. Use -1 for no limit. Defaults to no limit. See
Section 5.8, “ Eager Fetching” [280] for details on eager fetching.

2.5.47. openjpa.MetaDataFactory

Property name: openj pa. Met aDat aFact ory

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur at i on. get Met aDat aFact ory
Resour ce adaptor config-property: Met aDat aFact ory

Default: j pa

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing the

openj pa. net a. Met aDat aFact or y to use to store and retrieve metadata for your persistent classes. See Section 6.1, “
Metadata Factory " [283] for details.

2.5.48. openjpa.MetaDataRepository

Property name: openj pa. Met aDat aReposi t ory

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Met aDat aRepository
Resour ce adaptor config-property: Met aDat aReposi tory

Default:none

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing the

openj pa. met a. Met aDat aReposi t or y to use to store and retrieve metadata for your persistent classes. See Section 6.2,
“M etadata Repository” [283] for details.

2.5.49. openjpa.Multithreaded

Property name: openj pa. Mul ti t hr eaded

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gurati on. get Ml tithreaded
Resour ce adaptor config-property: Ml tit hr eaded

Default: f al se

Description: Whether persistent instances and OpenJPA components other than the Ent i t yManager Fact or y will be
accessed by multiple threads at once.

2.5.50. openjpa.Optimistic

Property name: openj pa. Optim stic

Configuration API: or g. apache. openj pa. conf . OpenJPAConfi gurati on. get Optim stic
Resour ce adaptor config-property: Optimistic

Default: t r ue

Description: Selects between optimistic and pessimistic (datastore) transactional modes.

212


../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getMetaDataFactory()
../javadoc/org/apache/openjpa/meta/MetaDataFactory.html
../javadoc/org/apache/openjpa/meta/MetaDataFactory.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getMetaDataRepository()
../javadoc/org/apache/openjpa/meta/MetaDataRepository.html
../javadoc/org/apache/openjpa/meta/MetaDataRepository.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getMultithreaded()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getOptimistic()

Configuration

2.5.51. openjpa.OrphanedKeyAction

Property name: openj pa. O phanedKeyAct i on

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Or phanedKeyAct i on
Resour ce adaptor config-property: O phanedKeyActi on

Default: | og

Possiblevalues: | og, excepti on, none

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing a

or g. apache. openj pa. event . Or phanedKeyAct i on to invoke when OpenJPA discovers an orphaned datastore key.
See Section 7.11, “ Orphaned Keys” [319] for details.

2.5.52. openjpa.NontransactionalRead

Property name: openj pa. Nont ransact i onal Read

Configuration API: or g. apache. openj pa. conf. QpenJPAConf i gur ati on. get Nontransacti onal Read
Resour ce adaptor config-property: Nont ransacti onal Read

Default: t r ue

Description: Whether the OpenJPA runtime will allow you to read data outside of atransaction.

2.5.53. openjpa.NontransactionalWrite

Property name: openj pa. Nontransacti onal Wite

Configuration API: or g. apache. openj pa. conf. QpenJPAConf i gurati on. get Nontransacti onal Wite
Resour ce adaptor config-property: Nontransacti onal Wite

Default: t rue

Description: Whether you can modify persistent objects and perform persistence operations outside of a transaction. Changes
will take effect on the next transaction.

2.5.54. openjpa.ProxyManager

Property name: openj pa. Pr oxyManager

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Pr oxyManager
Resour ce adaptor config-property: Pr oxyManager

Default: def aul t

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing a

or g. apache. openj pa. util . ProxyManager to usefor proxying mutable second class objects. See Section 5.6.4.3, “
Custom Proxies” [272] for details.

2.5.55. openjpa.PostLoadOnMerge

213


../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getOrphanedKeyAction()
../javadoc/org/apache/openjpa/event/OrphanedKeyAction.html
../javadoc/org/apache/openjpa/event/OrphanedKeyAction.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getNontransactionalRead()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getNontransactionalWrite()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getProxyManager()
../javadoc/org/apache/openjpa/util/ProxyManager.html
../javadoc/org/apache/openjpa/util/ProxyManager.html

Configuration

Property name: openj pa. Post LoadOnMer ge

Configuration API: or g. apache. openj pa. conf. OQpenJPAConfi gur ati on. get Post LoadOnMer ge
Resour ce adaptor config-property: Post LoadOnMer ge

Default: f al se

Description: Whether the OpenJPA runtime will trigger a PostL oad lifecycle event for EntityManager#merge(). If you enable
this option, OpenJPA will also ensure that the whole entity from the database will get passed to the PostL oad entity listener.

2.5.56. openjpa.QueryCache

Property name: openj pa. Quer yCache

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get Quer yCache
Resour ce adaptor config-property: Quer yCache

Default: f al se

Description: A plugin string (see Section 2.4, * Plugin Configuration ” [199]) describing the

or g. apache. openj pa. dat acache. Quer yCache implementation to use for caching of queries loaded from the data
store. See Section 10.1.4, “ Query Cache” [341] for details.

2.5.57. openjpa.QueryCompilationCache

Property name: openj pa. Quer yConpi | ati onCache
Resour ce adaptor config-property: Quer yConpi | ati onCache
Default: t r ue.

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing thej ava. uti | . Map to usefor
caching of data used during query compilation. See Section 10.2, “ Query Compilation Cache” [346] for details.

2.5.58. openjpa.ReadLockLevel

Property name: openj pa. ReadLockLevel

Configuration API: or g. apache. openj pa. conf. OpenJPAConf i gur ati on. get ReadLockLevel
Resour ce adaptor config-property: ReadLockLevel

Default: r ead

Possible values: none,read,wite,optimstic,optimstic-force-increnent,pessinistic-read,
pessinistic-wite,pessimstic-force-increnent, numeric valuesfor lock-manager specific lock levels

Description: The default level at which to lock objects retrieved during a non-optimistic transaction. Note that for the default
JDBC lock manager, read andwr it e lock levels are equivalent. Lock levelspessi ni sti c-read, pessi m stic-
writeandpessimstic-force-increnent arein effect only when them xed lock manager is used.

2.5.59. openjpa.RemoteCommitProvider

214


../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getPostLoadOnMerge()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getQueryCache()
../javadoc/org/apache/openjpa/datacache/QueryCache.html
../javadoc/org/apache/openjpa/datacache/QueryCache.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getReadLockLevel()

Configuration

Property name: openj pa. Renot eCommi t Provi der

Configuration API: or g. apache. openj pa. conf. QpenJPAConf i gur ati on. get Renot eConmi t Pr ovi der
Resour ce adaptor config-property: Renot eConmmi t Provi der

Default: - If openj pa. Dat aCache isenabled, the default valueissj vm

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing the

or g. apache. openj pa. event . Renot eConmi t Provi der implementation to use for distributed event notification. See
Section 12.2.1, “ Remote Commit Provider Configuration ” [353] for more information.

2.5.60. openjpa.RestoreState

Property name: openj pa. RestoreStat e

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Rest oreSt at e
Resour ce adaptor config-property: Rest oreSt ate

Default: none

Possiblevalues: none, i nmrut abl e, al |

Description: Whether to restore managed fieldsto their pre-transaction values when arollback occurs.

2.5.61. openjpa.RetainState

Property name: openj pa. Ret ai nSt at e

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gur ati on. get Retai nState
Resour ce adaptor config-property: Ret ai nSt at e

Default: t rue

Description: Whether persistent fields retain their values on transaction commit.

2.5.62. openjpa.RetryClassRegistration

Property name: openj pa. RetryC assRegi strati on

Configuration API: or g. apache. openj pa. conf. QpenJPAConfi gurati on. get RetryC assRegi strati on
Resour ce adaptor config-property: RetryC assRegi strati on

Default: f al se

Description: Controls whether to log awarning and defer registration instead of throwing an exception when a persistent class
cannot be fully processed. This property should only be used in complex classloader situations where security is preventing
OpenJPA from reading registered classes. Setting this to true unnecessarily may obscure more serious problems.

2.5.63. openjpa.RuntimeUnenhancedClasses

Property name: openj pa. Runti neUnenhancedC asses

215


../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getRemoteCommitProvider()
../javadoc/org/apache/openjpa/event/RemoteCommitProvider.html
../javadoc/org/apache/openjpa/event/RemoteCommitProvider.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getRestoreState()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getRetainState()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getRetryClassRegistration()

Configuration

Configuration API: org.apache.openjpa.conf.OpenJPAConfiguration.getRuntimeUnenhancedClasses
Resour ce adaptor config property: RuntimeUnenhancedClasses

Default: unsupport ed

Possible values: support ed, unsupport ed, war n

Description: The RuntimeUnenhancedClasses property controls how OpenJPA handles classes that have not been enhanced

by the PCEnhancer tool or automatically by ajavaagent. If RuntimeUnenhancedClassesis set to suppor t ed OpenJPA will
automatically create subclasses for unenhanced entity classes. If set to unsuppor t ed OpenJPA will not create subclasses for
unenhanced entity classes and will throw an exception when they are detected. If set to war n OpenJPA will not create subclasses
for unenhanced entity classes but will log awarning message.

Thisfunction is often useful for rapid prototyping but is not generally recommended for use in production. Please consult the
reference guide before changing the default value.

See the reference guide section on unenhanced types for more information Section 5.2.5, “ Omitting the OpenJPA enhancer
" [263]

2.5.64. openjpa.DynamicEnhancementAgent

Property name: openj pa. Dynam cEnhancenent Agent

Configuration API: org.apache.openjpa.conf.OpenJPAConfigur ation.getDynamicEnhancementAgent
Resour ce adaptor config property: DynamicEnhancementAgent

Default: true

Description: The DynamicEnhancementAgent property controls whether or not OpenJPA will attempt to dynamically load the
PCEnhancer javaagent.

See the reference guide for more information Section 5.2.4, “ Enhancing Dynamically at Runtime” [262]

2.5.65. openjpa.SavepointManager

Property name: openj pa. Savepoi nt Manager

Configuration API: org.apache.openjpa.conf.OpenJPAConfigur ation.get SavepointM anager
Resour ce adaptor config-property: SavepointManager

Default: i n- nem

Possiblevalues: i n- mrem j dbc

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing a

or g. apache. openj pa. ker nel . Savepoi nt Manager to use for managing transaction savepoints. See Section 9.4, “
Savepoints” [329] for details.

2.5.66. openjpa.Sequence

Property name: openj pa. Sequence

Configuration API: or g. apache. openj pa. conf. OQpenJPAConf i gur ati on. get Sequence

216


../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getRuntimeUnenhancedClasses()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getDynamicEnhancementAgent()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getSavepointManager()
../javadoc/org/apache/openjpa/kernel/SavepointManager.html
../javadoc/org/apache/openjpa/kernel/SavepointManager.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getSequence()

Configuration

Resour ce adaptor config-property: Sequence
Default: t abl e

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing the
or g. apache. openj pa. ker nel . Seq implementation to use for the system sequence. See Section 9.6, “ Generators
" [331] for more information.

2.5.67. openjpa.Specification

Property name: openj pa. Speci fication

Configuration API: or g. apache. openj pa. conf. OQpenJPAConf i gur ati on. get Speci fi cati onl nst ance
Resour ce adaptor config-property: Speci ficati on

Default: t abl e

Description: A formatted string describing the Specification to use for the default configuration options. The format of the
Specifcation stringisname [ maj or. [ m nor]] where name denotes the name of the Specification such as JPA or JDO,
maj or denotesthe major integral version number of the Specification and m nor denotes a minor version which can be an
arbitrary string. See Section 2.6.20, “ Compatibility with Specification” [223] for more information.

2.5.68. openjpa.TransactionMode

Property name: openj pa. Transact i onMbde

Configuration API: or g. apache. openj pa. conf. QpenJPAConfi gur ati on. get Tr ansact i onMbde
Resour ce adaptor config-property: Transacti onMbde

Default: | ocal

Possiblevalues: | ocal , managed

Description: The default transaction mode to use. Y ou can override this setting per-session.

2.5.69. openjpa.WriteLockLevel

2.6.

Property name: openj pa. Wit eLockLevel

Configuration API: or g. apache. openj pa. conf. OpenJPAConfi gurati on. get Wit eLockLevel
Resour ce adaptor config-property: Wit eLockLevel

Default: write

Possible values: none,read,wite,optimstic,optimstic-force-increnment,pessimnstic-read,
pessinmistic-wite,pessimstic-force-increment, numeric valuesfor lock-manager specific lock levels.

Description: The default level at which to lock objects changed during a non-optimistic transaction. Note that for the default
JDBC lock manager, read andw it e lock levelsare equivalent. Lock levelspessi ni stic-read, pessi m stic-
writeandpessinstic-force-increnment arein effect only when them xed lock manager is used.

OpenJPA JDBC Properties

217


../javadoc/org/apache/openjpa/kernel/Seq.html
../javadoc/org/apache/openjpa/kernel/Seq.html
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getSpecificationInstance()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getTransactionMode()
../javadoc/org/apache/openjpa/conf/OpenJPAConfiguration.html#getWriteLockLevel()

Configuration

2.6.1.

The following properties apply exclusively to the OpenJPA JDBC back-end.

openjpa.jdbc.ConnectionDecorators

2.6.2.

Property name: openj pa. j dbc. Connecti onDecorat ors

Configuration API: or g. apache. openj pa. j dbc. conf. JDBCConf i gur ati on. get Connecti onDecorat ors
Resour ce adaptor config-property: Connecti onDecor at ors

Default: -

Description: A comma-separated list of plugin strings (see Section 2.4, “ Plugin Configuration ” [199]) describing

or g. apache. openj pa.lib.jdbc. Connecti onDecor at or instancesto install on the connection factory. These
decorators can wrap connections passed from the underlying Dat aSour ce to add functionality. OpenJPA will pass all
connections through the list of decorators before using them. Note that by default OpenJPA employs all of the built-in decorators
intheor g. apache. openj pa. | i b. j dbc package aready; you do not need to list them here.

openjpa.jdbc.DBDictionary

2.6.3.

Property name: openj pa. j dbc. DBDi cti onary

Configuration API: or g. apache. openj pa. j dbc. conf. JDBCConfi gurati on. get DBDi cti onary

Resour ce adaptor config-property: DBDi cti onary

Default: Based onthe openj pa. Connect i onURL openj pa. Connecti onDri ver Nane

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing the

or g. apache. openj pa. j dbc. sql . DBDi cti onary to use for database interaction. OpenJPA typically auto-configures
the dictionary based on the JIDBC URL, but you may have to set this property explicitly if you are using an unrecognized driver,

or to plug in your own dictionary for a database OpenJPA does not support out-of-the-box. See Section 4.4, “ Database Support
" [236] for details.

openjpa.jdbc.DriverDataSource

2.6.4.

Property name: openj pa. j dbc. Dri ver Dat aSour ce

Configuration API: or g. apache. openj pa. j dbc. conf . JDBCConfi gur ati on. get Dri ver Dat aSour ce
Resour ce adaptor config-property: Dri ver Dat aSour ce

Default: aut o

Possiblevalues: aut o, dbcp, si npl e

Description: The alias or full class name of the or g. apache. openj pa. j dbc. schera. Dri ver Dat aSour ce
implementation to use to wrap JDBC Driver classes with javax.sgl.DataSource instances. The

or g. apache. openj pa. j dbc. schenma. Aut oDr i ver Dat aSour ce implementation is the default and will select either
the DBCPDriverDataSource or SimpleDriverDataSource based on if Apache Commons DBCP is available on the classpath.
Theor g. apache. openj pa. j dbc. scherma. DBCPDx i ver Dat aSour ce implementation requires Apache Commons
DBCP to be available on the classpath and uses or g. apache. conmons. dbcp. Basi cDat aSour ce to provide connection
pooling.

openjpa.jdbc.EagerFetchMode

218


../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getConnectionDecorators()
../javadoc/org/apache/openjpa/lib/jdbc/ConnectionDecorator.html
../javadoc/org/apache/openjpa/lib/jdbc/ConnectionDecorator.html
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getDBDictionary()
../javadoc/org/apache/openjpa/jdbc/sql/DBDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/DBDictionary.html
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getDriverDataSource()
../javadoc/org/apache/openjpa/jdbc/schema/DriverDataSource.html

Configuration

2.6.5.

Property name: openj pa. j dbc. Eager Fet chiMbde

Configuration API: or g. apache. openj pa. j dbc. conf. JDBCConfi gur ati on. get Eager Fet chMbde
Resour ce adaptor config-property: Eager Fet chMode

Default: par al | el

Possiblevalues: paral | el ,j oi n,none

Description: Optimizes how OpenJPA loads persistent relations. This setting can also be varied at runtime. See Section 5.8, “
Eager Fetching” [280] for details.

openjpa.jdbc.FetchDirection

2.6.6.

Property name: openj pa. j dbc. Fet chDi recti on

Configuration API: or g. apache. openj pa. j dbc. conf . JDBCConfi gur ati on. get Fet chDi recti on
Resour ce adaptor config-property: Fet chbDi recti on

Default: f or war d

Possiblevalues: f or war d, r ever se, unknown

Description: The expected order in which query result lists will be accessed. This property can also be varied at runtime. See
Section 4.10, “ Large Result Sets” [252] for detalls.

openjpa.jdbc.JDBCListeners

2.6.7.

Property name: openj pa. j dbc. JDBCLi st eners

Configuration API: or g. apache. openj pa. j dbc. conf . JDBCConfi gur ati on. get JDBCLi st eners
Resour ce adaptor config-property: JDBCLi st eners

Default: -

Description: A comma-separated list of plugin strings (see Section 2.4, “ Plugin Configuration ” [199]) describing
or g. apache. openj pa. l i b. j dbc. JDBCLi st ener event listenersto install. These listeners will be notified on various
JDBC-related events.

openjpa.jdbc.LRSSize

Property name: openj pa. j dbc. LRSSi ze

Configuration API: or g. apache. openj pa. j dbc. conf . JDBCConfi gur ati on. get LRSSi ze
Resour ce adaptor config-property: LRSSi ze

Default: query

Possiblevalues: query, | ast, unknown

Description: The strategy to use to calculate the size of aresult list. This property can also be varied at runtime. See
Section 4.10, “ Large Result Sets” [252] for detalls.

219


../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getEagerFetchMode()
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getFetchDirection()
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getJDBCListeners()
../javadoc/org/apache/openjpa/lib/jdbc/JDBCListener.html
../javadoc/org/apache/openjpa/lib/jdbc/JDBCListener.html
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getLRSSize()

Configuration

2.6.8.

openjpa.jdbc.MappingDefaults

2.6.9.

Property name: openj pa. j dbc. Mappi ngDef aul t s

Configuration API: or g. apache. openj pa. j dbc. conf . JDBCConfi gur ati on. get Mappi ngDef aul ts
Resour ce adaptor config-property: Mappi ngDef aul t's

Default: jpa

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing the

or g. apache. openj pa. j dbc. et a. Mappi ngDef aul t s to use to define default column names, table names, and
constraints for your persistent classes. See Section 7.5, “ Mapping Factory " [299] for details.

openjpa.jdbc.MappingFactory

Property name: openj pa. j dbc. Mappi ngFact ory

Configuration API: or g. apache. openj pa. j dbc. conf . JDBCConfi gur ati on. get Mappi ngFact ory
Resour ce adaptor config-property: Mappi ngFact ory

Default: -

Description: A plugin string (see Section 2.4, * Plugin Configuration ” [199]) describing the

or g. apache. openj pa. et a. Met aDat aFact or y to useto store and retrieve object-relational mapping information for
your persistent classes. See Section 7.5, “ Mapping Factory ” [299] for details.

2.6.10. openjpa.jdbc.QuerySQLCache

Property name: openj pa. j dbc. Quer ySQLCache
Resour ce adaptor config-property: Quer ySQ.Cache
Default: t rue.

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing the options to cache and reuse
SQL statements generated for JPQL queries. See Section 10.3, “ Prepared SQL Cache” [346] for details.

2.6.11. openjpa.jdbc.ResultSetType

Property name: openj pa. j dbc. Resul t Set Type

Configuration API: or g. apache. openj pa. j dbc. conf . JDBCConfi gur ati on. get Resul t Set Type
Resour ce adaptor config-property: Resul t Set Type

Default: f or war d- onl y

Possiblevalues: f orward-onl y ,scrol | -sensitive,scroll-insensitive

Description: The JDBC result set type to use when fetching result lists. This property can also be varied at runtime. See
Section 4.10, “ Large Result Sets” [252] for detalils.

2.6.12. openjpa.jdbc.Schema

220


../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getMappingDefaults()
../javadoc/org/apache/openjpa/jdbc/meta/MappingDefaults.html
../javadoc/org/apache/openjpa/jdbc/meta/MappingDefaults.html
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getMappingFactory()
../javadoc/org/apache/openjpa/meta/MetaDataFactory.html
../javadoc/org/apache/openjpa/meta/MetaDataFactory.html
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getResultSetType()

Configuration

Property name: openj pa. j dbc. Schema

Configuration API: or g. apache. openj pa. j dbc. conf . JDBCConfi gur ati on. get Schena
Resour ce adaptor config-property: Schena

Default: -

Description: The default schema name to prepend to unqualified table names. Also, the schemain which OpenJPA will create
new tables. See Section 4.11, “ Default Schema” [253] for details.

2.6.13. openjpa.jdbc.SchemaFactory

Property name: openj pa. j dbc. SchermaFact ory

Configuration API: or g. apache. openj pa. j dbc. conf. JDBCConf i gur ati on. get SchemaFact ory
Resour ce adaptor config-property: SchenmaFact ory

Default: dynani ¢

Possiblevalues: dynanmi c, nati ve,fil e,t abl e, others

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing the

or g. apache. openj pa. j dbc. schena. SchemaFact or y to useto store and retrieve information about the database
schema. See Section 4.12.2, “ Schema Factory " [254] for details.

2.6.14. openjpa.jdbc.Schemas

Property name: openj pa. j dbc. Schenas

Configuration API: or g. apache. openj pa. j dbc. conf . JDBCConfi gur ati on. get Schenas
Resour ce adaptor config-property: Schenas

Default: -

Description: A comma-separated list of the schemas and/or tables used for your persistent data. See Section 4.12.1, “ Schemas
List " [254] for detalls.

2.6.15. openjpa.jdbc.SQLFactory

Property name: openj pa. j dbc. SQLFact ory

Configuration API: or g. apache. openj pa. j dbc. conf. JDBCConfi gur ati on. get SQLFact ory
Resour ce adaptor config-property: SQLFact ory

Default: def aul t

Description: A plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing the
or g. apache. openj pa. j dbc. sql . SQLFact or y to use to abstract common SQL constructs.

2.6.16. openjpa.jdbc.SubclassFetchMode

Property name: openj pa. j dbc. Subcl assFet chibde

221


../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getSchema()
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getSchemaFactory()
../javadoc/org/apache/openjpa/jdbc/schema/SchemaFactory.html
../javadoc/org/apache/openjpa/jdbc/schema/SchemaFactory.html
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getSchemas()
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getSQLFactory()
../javadoc/org/apache/openjpa/jdbc/sql/SQLFactory.html
../javadoc/org/apache/openjpa/jdbc/sql/SQLFactory.html

Configuration

Configuration API: or g. apache. openj pa. j dbc. conf . JDBCConfi gur ati on. get Subcl assFet chiMbde
Resour ce adaptor config-property: Subcl assFet chMbde

Default: par al | el

Possiblevalues: par al | el ,j oi n, none

Description: How to select subclass datawhen it isin other tables. This setting can also be varied at runtime. See Section 5.8, “
Eager Fetching” [280].

2.6.17. openjpa.jdbc.SynchronizeMappings

Property name: openj pa. j dbc. Synchr oni zeMappi ngs

Configuration API: or g. apache. openj pa. j dbc. conf. JDBCConf i gur ati on. get Synchr oni zeMappi ngs
Resour ce adaptor config-property: Synchr oni zeMappi ngs

Default: -

Description: Controls whether OpenJPA will attempt to run the mapping tool on all persistent classes to synchronize their
mappings and schema at runtime. Useful for rapid test/debug cycles. See Section 7.1.3, “ Runtime Forward Mapping
" [292] for more information.

2.6.18. openjpa.jdbc.Transactionlsolation

Property name: openj pa. j dbc. Transacti onl sol ati on

Configuration API: or g. apache. openj pa. j dbc. conf. JDBCConf i gur ati on. get Transacti onl sol ati on
Resour ce adaptor config-property: Transacti onl sol ati on

Default: def aul t

Possiblevalues: def aul t, none, read-committed, read-unconmitted,repeatabl e-read, serializable

Description: The JDBC transaction isolation level to use. See Section 4.5, “ Setting the Transaction I solation ” [248] for
details.

2.6.19. openjpa.jdbc.UpdateManager

Property name: openj pa. j dbc. Updat eManager

Configuration API: or g. apache. openj pa. j dbc. conf . JDBCConfi gur ati on. get Updat eManager
Resour ce adaptor config-property: Updat eManager

Default: bat chi ng- const r ai nt

Possible values: def aul t, oper ati on-order,constrai nt, batchi ng-constraint,batchi ng-operati on-
or der

Description: Thefull class name of the or g. apache. openj pa. j dbc. ker nel . Updat eManager
to use to flush persistent object changes to the datastore. The provided default implementation is
or g. apache. openj pa. j dbc. ker nel . Bat chi ngConst r ai nt Updat eManager .

222


../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getSubclassFetchMode()
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getSynchronizeMappings()
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getTransactionIsolation()
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html#getUpdateManager()
../javadoc/org/apache/openjpa/jdbc/kernel/UpdateManager.html
../javadoc/org/apache/openjpa/jdbc/kernel/BatchingConstraintUpdateManager
../javadoc/org/apache/openjpa/jdbc/kernel/BatchingConstraintUpdateManager

Configuration

2.6.20. Compatibility with Specification

The default behavior of certain OpenJPA APl methods can evolve to align with the behaviors defined in JPA specification. To
maintain backward compatibility, OpenJPA allows configuration options such that while the default behavior changesto align
with current JPA specification, the previous behaviors can always be emulated.

For example, JPA 2.0 specification introducesanew APl voi d Entit yManager. det ach(Obj ect entity)

that detaches the given entity from the current persistence context. OpenJPA has provided similar featurevia<T> T
OpenJPAENt i t yManager . detach(T entity) priortoJPA 2.0. OpenJPA det ach() , however, has different default
behavior than what JPA 2.0 specification mandates. Firstly, OpenJPA creates a copy of the given entity as a detached instance
and returns it, whereas JPA 2.0 behavior requires the same given entity instance be detached. Secondly, the given instanceis
removed from the persistence context for JPA 2.0, whereas OpenJPA det ach() method, prior to JPA 2.0, does not remove the
instance from the persistence context as a copy is returned. Thirdly, OpenJPA will flush before detaching a dirty instance so that
the detached instance can later be merged, whereas JPA 2.0 det ach() semantics does not require adirty instance be flushed
before detach.

A user application running with OpenJPA that is compliant to a specific version of JPA specification

can emulate the older behavior by configuring OpenJPA compatibility options. For example,

openj pa. Conpati bi | i t y=FI ushBef or eDet ach=f al se, CopyOnDet ach=t r ue will emulate the older behavior
of detach even when running with OpenJPA that is compliant to JPA 2.0 specification. The configuration can also be set to a
different version of the specification. For example, openj pa. Speci fi cati on="JPA 1. 0" configuration setting will
emulate default OpenJPA behavior asit were for JPA specification version 1.0. Setting openj pa. Speci fi cati onisa
shorthand for more fine-grained control available viaopenj pa. Conpati bility.

223



Chapter 3. Logging and Auditing

3.1.

Logging is an important means of gaining insight into your application's runtime behavior. OpenJPA provides aflexible logging
system that integrates with many existing runtime systems, such as application servers and servlet runners.

There are five built-in logging plugins: adefault logging framework that covers most needs, a L og4J delegate, a SLF4J
delegate, an Apache CommonsLogging delegate, and a no-op implementation for disabling logging.

L ogging can have a negative impact on performance. Disable verbose logging (such as logging of SQL statements)
before running any performance tests. It is advisable to limit or disable logging for a production system. Y ou can disable
logging altogether by setting the openj pa. Log property to none.

Logging Channels

Logging is done over a number of logging channels, each of which has alogging level which controls the verbosity of log
messages recorded for the channel. OpenJPA uses the following logging channels:

e openj pa. Tool : Messages issued by the OpenJPA command line and Ant tools. Most messages are basic statements
detailing which classes or files the tools are running on. Detailed output is only available via the logging category
the tool belongs to, such as openj pa. Enhance for the enhancer (see Section 5.2, “ Enhancement ” [260]) or
openj pa. Met aDat a for the mapping tool (see Section 7.1, “ Forward Mapping " [290]). Thislogging category is
provided so that you can get a general idea of what atool is doing without having to manipulate logging settings that might
also affect runtime behavior.

e openj pa. Enhance: Messages pertaining to enhancement and runtime class generation.
e openj pa. Met aDat a: Details about the generation of metadata and object-relational mappings.
» openj pa. Runt i ne: General OpenJPA runtime messages.

» openj pa. Quer y: Messages about queries. Query strings and any parameter values, if applicable, will be logged to the
TRACE level at execution time. Information about possible performance concerns will be logged to the | NFOlevel.

* openj pa. Dat aCache: Messages from the L2 data cache plugins.

» openj pa.j dbc. JDBC: JDBC connection information. General JDBC information will be logged to the TRACE level.
Information about possible performance concerns will be logged to the | NFO level.

* openj pa.j dbc. SQ.: Thisisthe most common logging channel to use. Detailed information about the execution of SQL
statements will be sent to the TRACE level. It is useful to enable this channel if you are curious about the exact SQL that
OpenJPA issues to the datastore.

The SQL issued to the database may contain sensitive information. By default the parameter values used

in the prepared statements generated by OpenJPA will not be printed in the SQL log - instead you will

see a ? for each value. The actual values may be printed by adding Pr i nt Par anet er s=Tr ue to the

openj pa. Connect i onFact or yProperti es property. Also see Usi ng t he OpenJPA Dat aSour ce

When using the built-in OpenJPA logging facilities, you can enable SQL logging by adding SQL=TRACE to your
openj pa. Log property.

224



Logging and Auditing

3.2.

OpenJPA can optionally reformat the logged SQL to make it easier to read. To enable pretty-printing, add
PrettyPrint=truetothe openjpa. Connecti onFactoryProperti es property.You can control how many
columns wide the pretty-printed SQL will bewiththe PrettyPri ntLi neLengt h property. The default line length is 60
columns.

While pretty printing makes things easier to read, it can make output harder to process with tools like grep.

Pretty-printing properties configuration might look like so:

<property nanme="openj pa.Log" val ue="SQL=TRACE"/ >
<property nanme="openj pa. Connecti onFact oryProperties"
val ue="PrettyPrint=true, PrettyPrintLineLength=72"/>

» openj pa.j dbc. SQLDi ag: Thislogging channel provides additional information about entity actitvies such as create,
find, update or delete, and eager loading of relation or field properties. If you enable this channel, it is recommended that
openj pa. j dbc. SQL channel is also enabled. The additional trace can help you relate the entity activities to the execution of
SQL statements that OpenJPA issued to the datastore.

When using the built-in OpenJPA logging facilities, you can enable SQL Diag logging by adding SQLDi ag=TRACE to your
openj pa. Log property.

* openj pa.j dbc. Schema: Details about operations on the database schema.

OpenJPA Logging

By default, OpenJPA uses a basic logging framework with the following output format:
mllis diagnostic context |evel [thread name] channel -nmessage

For example, when loading an application that uses OpenJdPA, a message like the following will be sent to the
openj pa. Runt i me channel:

2107 INFO [main] openjpa.Runtime - Starting OpenJPA 2.2.0

The default logging system accepts the following parameters:

» Fi | e: Thename of thefiletolog to, or st dout or st der r to send messages to standard out and standard error,
respectively. By default, OpenJPA sends log messages to standard error.

» Def aul t Level : The default logging level of unconfigured channels. Recognized valuesare TRACE, | NFO, WARN,
ERROR and FATAL. Defaultsto | NFO.

» Di agnosti cCont ext : A string that will be prepended to all log messages. If thisis not supplied and an openj pa. | d
property value is available, that value will be used.

» <channel >: Using the last token of the logging channel name, you can configure the log level to use for that channel. See
the exampl es below.

225




Logging and Auditing

Example 3.1. Standard OpenJPA Log Configuration

<property name="openj pa. Log" val ue="Def aul t Level =WARN, Runti me=I NFO, Tool =I NFO'/ >

Example 3.2. Standard OpenJPA Log Configuration + All SQL Statements

<property name="openj pa.Log" val ue="Def aul t Level =WARN, Runti me=I NFO, Tool =I NFO, SQL=TRACE"/ >

Example 3.3. LoggingtoaFile

<property name="openj pa. Log" val ue="Fil e=/tnp/org. apache. openj pa.| og, Defaul tLevel =WARN, Runti me=I NFO, Tool =I NFO'/ >

3.3.

Disabling Logging

3.4.

Disabling logging can be useful to analyze performance without any 1/O overhead or to reduce verbosity at the console. To do
this, set theopenj pa. Log property tonone.

Disabling logging permanently, however, will cause all warnings to be consumed. We recommend using one of the more
sophisticated mechanisms described in this chapter.

Log4J

When openj pa. Log issettol og4j , OpenJPA will delegate to Log4J for logging. In a standalone application, Log4J
logging levels are controlled by aresource named | og4j . pr operti es , which should be available as atop-level resource
(either at the top level of ajar file, or in the root of one of the CLASSPATH directories). When deploying to aweb or EJB

application server, Log4J configuration is often performed in al og4j . xm fileinstead of a propertiesfile. For further details on

configuring Log4J, please see the L og4J Manual. We present an example| og4j . properti es file below.

Example 3.4. Standard Log4J Logging

| 0g4j . root Cat egor y=WARN, consol e

| 0g4j . cat egory. openj pa. Tool =I NFO

| 0g4j . cat egory. openj pa. Runt i me=I NFO

| 0g4j . cat egory. openj pa. Renpt e=WARN

| 0g4j . cat egory. openj pa. Dat aCache=WARN

| 0g4j . cat egory. openj pa. Met aDat a=\WARN

| 0g4j . cat egory. openj pa. Enhance=WARN

| 0g4j . cat egory. openj pa. Quer y=WWARN

| 0g4j . cat egory. openj pa. j dbc. SQL=WARN

| 0g4j . cat egory. openj pa. j dbc. SQLDi ag=WARN
| 0g4j . cat egory. openj pa. j dbc. JDBC=WARN

| 0g4j . cat egory. openj pa. j dbc. Schema=WARN

| 0g4j . appender . consol e=or g. apache. | og4j . Consol eAppender

226



http://logging.apache.org/log4j/1.2/manual.html

Logging and Auditing

3.5.

Apache Commons Logging

3.5.1.

Set the openj pa. Log property to cormons to use the Apache Commons L ogging thin library for issuing log messages. The
Commons Logging library act as awrapper around a number of popular logging APIs, including the Jakarta Log4J project, and
the native java.util.logging package in JDK.

When using the Commons Logging framework in conjunction with Log4J, configuration will be the same as was discussed in the
L og4J section above.

JDK java.util.logging

When using JDK logging in conjunction with OpenJPA's Commons L ogging support, logging will proceed through Java's built-
in logging provided by the java.util.logging package. For details on configuring the built-in logging system, please see the Java
L ogging Overview.

By default, JDK's logging package looksinthe JAVA HOME/ | i b/ | oggi ng. properti es filefor logging configuration.
This can be overridden withthej ava. uti | . | oggi ng. confi g. fi | e system property. For example:

java -Djava. util .l ogging.config.file=nyl oggi ng. properti es com conpany. Myd ass

Example 3.5. JDK Log Properties

# specify the handlers to create in the root |ogger

# (all loggers are children of the root |ogger)
# the following creates two handl ers
handl ers=j ava. util .| oggi ng. Consol eHandl er, java.util.logging.Fil eHandl er

# set the default logging level for the root |ogger
.l evel =ALL

# set the default logging |evel for new Consol eHandl er instances
java. util.l oggi ng. Consol eHandl er. | evel =I NFO

# set the default logging |evel for new FileHandl er instances
java.util .l ogging. Fil eHandl er. | evel =ALL

# set the default formatter for new Consol eHandl er instances
java.util .l ogging. Consol eHandl er. fornmatter=java. util.logging. Si npl eFormatter

# set the default logging level for all OpenJPA | ogs
openj pa. Tool . | evel =I NFO

openj pa. Runti ne. | evel =I NFO
openj pa. Renot e. | evel =I NFO

openj pa. Dat aCache. | evel =I NFO
openj pa. Met aDat a. | evel =I NFO
openj pa. Enhance. | evel =I NFO
openj pa. Query. | evel =I NFO

openj pa. j dbc. SQL. | evel =I NFO
openj pa. j dbc. SQLDi ag. | evel =I NFO
openj pa. j dbc. JDBC. | evel =I NFO
openj pa. j dbc. Schera. | evel =I NFO

3.6.

SLF4J

When openj pa. Logissettosl f 4j , OpendPA will delegate to SLF4J API for logging, which provides several adaptersor a
simple logging mechanism. For further details on logging adapters and configuring SLF4J, please see the SL F4J website.

227



http://commons.apache.org/logging/
http://logging.apache.org/log4j/1.2/index.html
http://download.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html
http://download.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html
http://download.oracle.com/javase/6/docs/technotes/guides/logging/overview.html
http://download.oracle.com/javase/6/docs/technotes/guides/logging/overview.html
http://www.slf4j.org/manual.html

Logging and Auditing

Note, as SLF4J does not provide a FATAL log level the SLF4JLogFact or y will map it to the ERROR log level.

3.7. Custom Log

If none of available logging systems meet your needs, you can configure the logging system with a custom logger. Y ou might use
custom logging to integrate with a proprietary logging framework used by some applications servers, or for logging to a graphical
component for GUI applications.

A custom logging framework must include an implementation of the or g. apache. openj pa. li b. | og. LogFactory
interface. We present a custom LogFact or y below.

Example 3.6. Custom Logging Class

package com xyz;
i mport org.apache. openjpa.lib.log.*;

public class CustomnmlLogFactory
i mpl ements LogFactory {

private String _prefix = "CUSTOM LOG';

public void setPrefix(String prefix) {
_prefix = prefix;

public Log getLog(String channel) {
/1 Return a sinple extension of AbstractLog that will |og
/'l everything to the Systemerr stream Note that this is
/'l roughly equivalent to OpenJPA's default |ogging behavior.
return new AbstractLog() {

prot ected bool ean i sEnabl ed(short |ogLevel) {
/1 log all levels
return true;

}

protected void | og(short type, String nmessage, Throwable t) {
/'l just send everything to Systemerr
Systemerr.println(_prefix + ": " + type + ": "
+ message + ": " +t);

To make OpenJPA use your custom log factory, set the openj pa. Log configuration property to your factory's full class name.
Because this property is aplugin property (see Section 2.4, “ Plugin Configuration ” [199] ), you can also pass parameters to
your factory. For example, to use the example factory above and set its prefix to "LOG MSG", you would set the openj pa. Log
property to the following string:

com xyz. Cust onLogFact ory(Prefi x="LOG MSG')

3.8. OpenJPA Audit

Transactional applications often require to audit changes in persistent objects. OpenJPA can enable audit facility for all persistent
entitiesin few simple steps.

228


../javadoc/org/apache/openjpa/lib/log/LogFactory.html

Logging and Auditing

3.8.1. Configuration

Annotate Persistent Entity Any persistence entity can be enabled for audit by annotating with
or g. apache. openj pa. audi t . Audi t abl e.

@ avax. persi stence. Entity
@r g. apache. openj pa. audi t. Audi t abl e
public class MyDomai nCbject { ...}

ThisAudi t abl e annotation enables auditing of creation, update or delete of MyDomai nQbj ect instances. The Audi t abl e
annotation accepts list of enumerated valuesor g. apache. openj pa. audi t . Audi t abl eOper at i on namely CREATE,
UPDATE and DELETE to customize only appropriate operations be audited. By deafult, all of the above operations are audited.

Configure Persistence Configuration The audit facility isinvoked at runtime via configuration of META- | NF/
per si st ence. xnl . The following property configures auditing via a default auditor

<property name="openj pa. Auditor" val ue="default"/>

3.8.2.

The default auditor does not do much. It simply prints each auditable instance with its latest and original states on a standard
console (or to adesignated file).

The latest state of an instance designates the state which is commited to the database. The original state designates the state when
the instance entered the managed persistent context. For example, when a new instance is persisted or aexisting instance is
loaded from the database.

Developing custom auditing

For real use case, an application will prefer more than printing the changed instances. The application, in such case, needsto
implement or g. apache. openj pa. audi t . Audi t or interface. This simple interface has the following method:

[ **

OpenJPA runtime will invoke this method with the given paraneters
within a transaction.

@ar am broker the active persistence context.

@ar am newObj ects the set of auditable objects being created. Can be enpty, but never null.
@ar am updates the set of auditable objects being updated. Can be enpty, but never null.
@aram del etes the set of auditable objects being deleted. Can be enpty, but never null.

L N

*/
public void audit(Broker broker, Collection<Audited> newObjects, Collection<Audited> updates,
Col | ecti on<Audi t ed> del etes);

OpenJPA runtime will invoke this method before database commit. Viathis callback method, the application receives the
auditable instances in three separate collections of or g. apache. openj pa. audi t . Audi t abl e. An Audi t abl e instance
provides the latest and original state of a persistent object. The latest object is the same persistent instance to be committed. The
original instance is a transient instance holding the original state of the instance when it entered the managed context. The active
persistence context is also supplied in this callback method, so that an application may decide to persist the audit log in the same
database.

It isimportant to note that the original object can not be persisted in the same transaction, because it has the same persistent
identity of the latest object.

229




Logging and Auditing

A single instance of implemented or g. apache. openj pa. audi t. Audi t or interfaceisavailable for a persistence unit.

However, an application's own implementation of this interface need not be thread-safe, because OpenJPA runtime guards against
concurrent invocation of the callback method.

Theor g. apache. openj pa. audi t . Audi t or interfaceis configurable. Hence any bean style getter and setter method on
itsimplementation will be populated as usua for any other OpenJPA plugin. In the following example,

<property name="openj pa. Audi tor" val ue="com acne. Audi t or (par an2=10, par an2="hell 0" )"/ >

Aninstance of com acne. Audi t or will beinstantiated and if it has been style getter and setter methods for par anil and
par ang, then the respective setters will be called with 10 and " hel | 0" before the instance being used.

230




Chapter 4. JDBC

4.1.

OpenJPA uses arelational database for object persistence. It communicates with the database using the Java DataBase
Connectivity (JDBC) APIs. This chapter describes how to configure OpenJPA to work with the JDBC driver for your database,
and how to access JDBC functionality at runtime.

Using the OpenJPA DataSource

4.1.1.

OpenJPA definesaor g. apache. openj pa. j dbc. schema. Dri ver Dat aSour ce interface, which provides asimple
j avax. sql . Dat aSour ce wrapper implementation for the normal cases where openj pa. Connect i onDri ver Name
referstoaj ava. sql . Dri ver.See openj pa. j dbc. Dri ver Dat aSour ce for thelist of provided implementations.

Optional Connection Pooling

4.1.2.

Starting with OpenJPA 2.1, anew or g. apache. openj pa. j dbc. schena. Aut oDr i ver Dat aSour ce is

provided as the default, which will automatically select between the old Si npl eDr i ver Dat aSour ce and anew

DBCPDr i ver Dat aSour ce implementation based on if Apache Commons DBCP has been provided on the classpath and
OpenJPA is not running in a container managed mode or with managed transactions. Note, that only theopenj pa-al | . j ar
includes Commons DBCP, so you will need to include the comons- dbcp. j ar from the OpenJPA binary distribution if you
are using the normal openj pa. j ar.

To disable the automatic usage of Apache Commons DBCP when it is discovered on the classpath, set
openj pa. j dbc. Dri ver Dat aSour ce=si npl e, which will revert OpenJPA to the prior behavior of using
or g. apache. openj pa. j dbc. schena. Si npl eDri ver Dat aSour ce

To force usage of Apache Commons DBCP, which will cause afatal exception to be thrown if it cannot be loaded

from the classpath, set openj pa. j dbc. Dri ver Dat aSour ce=dbcp, which will cause OpenJPA to use
or g. apache. openj pa. j dbc. schema. DBCPDx i ver Dat aSour ce

Configuring the OpenJPA DataSource

If you choose to use OpenJPA's Dat aSour ce, then you must specify the following properties:
* openj pa. Connect i onUser Nane: The JDBC user name for connecting to the database.
* openj pa. Connect i onPasswor d: The JDBC password for the above user.

* openj pa. Connect i onURL: The JDBC URL for the database.

e openj pa. Connecti onDri ver Nanme: The JDBC driver class.

To configure advanced features, use the following optional properties. The syntax of these property strings follows the syntax of
OpenJPA plugin parameters described in Section 2.4, “ Plugin Configuration ” [199].

e openj pa. Connecti onProperti es: If thelisted driverisaninstance of j ava. sql . Dri ver, thisstring
will be parsed into aPr oper t i es instance, which will then be used to obtain database connections through the
Driver.connect (String url, Properties props) method. If, onthe other hand, the listed driver isa
j avax. sql . Dat aSour ce, the string will be treated as a plugin properties string, and matched to the bean setter methods of
the Dat aSour ce instance.

e openj pa. Connecti onFact or yProperti es: OpenJPA's built-in Dat aSour ce allows you to set the following
options viathis plugin string:

231


http://commons.apache.org/dbcp/

JDBC

e QueryTi meout : The maximum number of seconds the JDBC driver will wait for a statement to execute.
e PrettyPrint:Booleanindicating whether to pretty-print logged SQL statements.
e PrettyPrintLi neLengt h: The maximum number of charactersin each pretty-printed SQL line.

e PrintParanet ers: A boolean indicating whether SQL parameter values will be included in exception text and when
logging is enabled. Since the parameter values may contain sensitive information the default valueis false.

Example4.1. Propertiesfor the OpenJPA DataSource

<property name="openj pa. Connecti onUser Nane" val ue="user"/>
<property name="openj pa. Connecti onPassword" val ue="pass"/>
<property nanme="openj pa. Connecti onURL" val ue="j dbc: hsql db: db- hypersoni c"/ >
<property nanme="openj pa. ConnectionDriverNanme" val ue="org. hsql db. j dbcDriver"/>
<property nanme="openj pa. Connecti onFactoryProperties"

val ue="PrettyPrint=true, PrettyPrintLineLength=80, PrintParaneters=true"/>

4.1.3. Configuring Apache Commons DBCP

Additional Commons DBCP arguments can be provided in openj pa. connect i onProperti es, suchas:

MaxAct i ve=10, Max! dl e=5, M nl dl e=2, MaxWai t =60000

Please visit the Commons DBCP website for the entire list of configuration options and explanations.

4.2. Using a Third-Party DataSource

Y ou can use OpenJPA with any third-party j avax. sql . Dat aSour ce . There are multiple ways of telling OpenJPA about a
Dat aSour ce:

» Setthe Dat aSour ce into the map passedto Per si st ence. cr eat eEnt i t yManager Fact or y under the
openj pa. Connecti onFactory key.

» Bindthe Dat aSour ce into JNDI, and then specify itslocationinthej t a- dat a- sour ce ornon-j t a- dat a-
sour ce element of the JPA XML format (depending on whether the Dat aSour ce is managed by JTA), or in the
openj pa. Connect i onFact or yNane property.

» Specify the full class name of the Dat aSour ce implementation inthe openj pa. Connect i onDr i ver Nane property in
place of aJDBC driver. In this configuration OpenJPA will instantiate an instance of the named class viareflection. It will then
configure the Dat aSour ce with the propertiesin the openj pa. Connecti onProperti es setting.

The features of OpenJPA's own Dat aSour ce can aso be used with third-party implementations. OpenJPA layers
on top of the third-party Dat aSour ce to provide the extrafunctionality. To configure these features use the
openj pa. Connect i onFact or yPr operti es property described in the previous section.

232


http://commons.apache.org/dbcp/configuration.html

JDBC

Example 4.2. PropertiesFilefor a Third-Party DataSource

<property name="openj pa. Connecti onDri ver Name" val ue="oracl e. ] dbc. pool . Or acl eDat aSour ce"/ >
<property name="openj pa. Connecti onProperties"

val ue="Port Nunber =1521, Server Nane=sat urn, DatabaseNane=sol arsid, DriverType=thin"/>
<property name="openj pa. Connecti onFact oryProperti es" val ue="QueryTi meout =5000"/ >

Y ou can a'so force the Apache Commons DBCP BasicDataSource to be used for connection pooling when provided on the
classpath by substituting it asthe Connect i onDr i ver Name and setting Connect i onPr operti es=Dri ver Cl assNane
to the actual JDBC driver value -

<property name="openj pa. ConnectionDriverName" val ue="org. apache. commons. dbcp. Basi cDat aSour ce"/ >
<property nanme="openj pa. Connecti onProperties"

val ue="Dri ver d assNane=or acl e. j dbc. pool . Or acl eDat aSour ce, Port Nunber=1521, Server Nane=sat urn, DatabaseNane=sol arsid, DriverT

<property name="openj pa. Connecti onFactoryProperties" val ue="QueryTi meout =5000"/ >

4.2.1.

Managed and XA DataSources

Certain application servers automatically enlist their Dat aSour ce sin global transactions. When thisis the case, OpenJPA
should not attempt to commit the underlying connection, leaving JDBC transaction completion to the application server. To
notify OpenJPA that your third-party Dat aSour ce ismanaged by the application server, usethej t a- dat a- sour ce
element of your per si st ence. xm fileor set the openj pa. Connect i onFact or yMode property to managed.

Note that OpenJPA can only use managed Dat aSour ceswhen it is also integrating with the application server's managed
transactions. Also note that all XA Dat aSour cesare enlisted, and you must set this property when using any XA
Dat aSour ce.

When using amanaged Dat aSour ce, you should also configure a second unmanaged Dat aSour ce that OpenJPA can use

to perform tasks that are independent of the global transaction. The most common of these tasks is updating the sequence table
OpenJPA uses to generate unique primary key values for your datastore identity objects. Configure the second Dat aSour ce
usingthenon-j t a- dat a- source persi stence. xm element, or OpenJPA's various "2" connection properties, such
asopenj pa. Connecti onFact ory2Nanme oropenj pa. Connecti on2Dri ver Nanme. These properties are outlined in
Chapter 2, Configuration [197].

Example 4.3. Managed DataSource Configuration

<!-- managed DataSource -->
<j t a- dat a- sour ce>j ava: / O acl eXASour ce</ j t a- dat a- sour ce>
<properties>
<!-- use OpenJPA's built-in DataSource for unnmanaged connections -->
<property name="openj pa. Connecti on2User Name" val ue="scott"/>
<property name="openj pa. Connecti on2Password" val ue="tiger"/>
<property name="openj pa. Connecti on2URL" val ue="j dbc: oracl e: t hi n;: @ROM 1521: OpenJPADB"/ >
<property name="openj pa. Connecti on2Driver Name" val ue="oracl e.jdbc.driver. O acl eDriver"/>
</ properties>

4.2.2.

Setting the DataSource at runtime

As mentioned above, the JTA and Non-JTA DataSources may be passed in as configuration properties at
EntityManagerFactory creation. Either the JPA standard properties (j avax. per si st ence. j t aDat aSour ce,

233



JDBC

j ava. per si st ence. nonJt aDat aSour ce) or their OpenJPA specific equivalents
(openj pa. Connect i onFact or yNane, openj pa. Connect i onFact or y2Nane) may be used. One use case for this
function is to store production connection information in configuration files but override the value when testing.

Example 4.4. Setting DataSource at Runtime

Map<Obj ect, Obj ect > props = new HashMap<Obj ect, Obj ect >();

props. put ("j avax. persi stence. j t aDat aSour ce", "jdbc/ nyDataSource");

props. put ("j avax. persi st ence. nonJt aDat aSour ce", "jdbc/ nyNonJTADat aSour ce");
enf = Persistence. createEntityManager Factory("exanple", props);

4.2.2.1. Using different DataSources for each EntityManager

The JPA specification allows the DataSource (ConnectionFactory) to be specified on the EntityM anagerFactory. OpenJPA
extends this support and allows each EntityManager to override the DataSource from the EntityManagerFactory. It's expected
that the EntityManagerFactory will also be configured with avalid JTA / Non-JTA DataSource. The DataSource configured on
the EntityManagerFactory will be used to obtain a DBDictionary and (rarely) to gather some information about the database in
use (e.g. version, JDBC driver version).

If the EntityManagerFactory is not configured with a valid DataSource there are a few additional caveats.

e Theopenj pa. DBDi cti onary property must be used to ensure the correct DBDictionary is used.

* OpenJPA will always attempt to obtain a DataSource from JNDI based on the configuration for the EntityManagerFactory.
When a JNDI nameis specified on the EntityManager this lookup happens dlightly earlier than normal. If the lookup fails

the INDI name provided at EntityManager creation will be set into the EntityManagerFactory's configuration and used in
subsequent attempts.

4.2.2.1.1. Benefits

In effect this option allows a single set of entity definitions to be shared between multiple database instances or schemas within
an instance. This can be highly beneficial when there are alarge number of entity definitions (e.g. > 200), or alarge number of
databases / schemasin use.

4.2.2.1.2. Limitations

» The same database type and version must be used by each EntityManager. OpenJPA will use the same DBDictionary for each
EntityManager and will make no attempt to alter SQL syntax between EntityManager instances.

* Itisthe application's responsibility to ensure that the schemaisidentical on each database.
 The application may not specify schemanames for individual entities.

» The DataSource (ConnectionFactory) name may only be specified when the EntityManager is created. The DataSource may
not be switched while an EntityManager isin use.

» The L2 cache (DataCache) should not be used if different DataSources are specified for each EntityManager
 SynchronizeM appings should not be used with this feature.
» Table and Sequence generators should not be used with this feature.

* Itisnot required, but is recommended that the openj pa. DBDi ct i onary property be specified when using this feature

234



JDBC

4.2.2.1.3. Error handling

4.3.

If aJTA DataSource is not available when the EntityManager iscreated, an | | | egal Ar gunent Except i on will be thrown.
The EntityManager will not fall back to the JTA DataSource defined in the configuration.

The same logic appliesif aNon-JTA DataSource is not available when the EntityManager is created. OpenJPA will not fall back
to the configured Non-JTA DataSource.

Runtime Access to DataSource

The JPA standard defines how to access JDBC connections from enterprise beans. OpenJPA also provides APIsto retrieve a
connection directly fromthe EntityManager Fact ory'sDat aSour ce.

TheEnti t yManager . unw ap(j ava. sql . Connecti on. cl ass) method returnsan Ent i t yManager 's connection.
If the EntityManager does not already have a connection, it will obtain one. The returned connection is only guaranteed

to be transactionally consistent with other Ent i t yManager operationsif the Enti t yManager isinamanaged

or non-optimistic transaction, if the Ent i t yManager hasflushed in the current transaction, or if you have used the
OpenJPAENt i t yManager . begi nSt or e method to ensure that a datastore transaction is in progress. Always close the
returned connection before attempting any other Ent i t yManager operations. OpenJPA will ensure that the underlying native
connection is not released if a datastore transaction isin progress.

Example 4.5. Using the EntityManager's Connection

i mport java.sql.Connection;
i mport javax. persistence. EntityManager;
i mport javax. persistence. EntityManager Factory;

EntityManager em = enf.createEntityManager();
Connection conn = (Connection) em unw ap(j ava. sql . Connecti on. cl ass);

/1 do JDBC stuff

conn. cl ose();

The example below shows how to use a connection directly fromthe Dat aSour ce, rather thanusingan Enti t yManager
's connection.

Example 4.6. Using the EntityManagerFactory's DataSource

import java.sql.*;

import javax.sql.*;

i mport org. apache. openj pa. conf. *;

i mport org. apache. openj pa. persi stence. *;

OpenJPAENt i t yManager Fact ory kenf = OpenJPAPersi st ence. cast (enf);
OpenJPAConfi guration conf = kenf.getConfiguration();

Dat aSour ce dat aSource = (Dat aSource) conf.get ConnectionFactory();
Connection conn = dat aSour ce. get Connection();

/1 do JDBC stuff

conn. cl ose();

235




JDBC

4.4.

Database Support

OpenJPA can take advantage of any JDBC 2.x compliant driver, making amost any major database a candidate for use.
See our officially supported database list in Appendix 2, Supported Databases [380] for more information. Typically,
OpenJPA auto-configures its JIDBC behavior and SQL dialect for your database, based on the values of your connection-related
configuration properties.

If OpenJPA cannot detect what type of database you are using, or if you are using an unsupported database, you will haveto
tell OpenJPA what or g. apache. openj pa. j dbc. sql . DBDi cti onary touse. The DBDi ct i onary abstracts away
the differences between databases. Y ou can plug a dictionary into OpenJPA using the openj pa. j dbc. DBDi cti onary
configuration property. The built-in dictionaries are listed below. If you are using an unsupported database, you may have to
write your own DBDi ct i onary subclass, asimple process.

access: Dictionary for Microsoft Access. Thisisan diasfor the
or g. apache. openj pa. j dbc. sql . AccessDi cti onary class.

db2: Dictionary for IBM's DB2 database. Thisisan aliasfor the
or g. apache. openj pa. j dbc. sql . DB2Di cti onary class.

der by: Dictionary for the Apache Derby database. Thisisan aliasfor the
or g. apache. openj pa. j dbc. sql . Der byDi cti onary class.

enpr ess: Dictionary for Empress database Thisis an alias for the
or g. apache. openj pa. j dbc. sql . EnpressDi cti onary class.

f oxpr o: Dictionary for Microsoft Visual FoxPro. Thisis an alias for the
or g. apache. openj pa. j dbc. sql . FoxPr oDi cti onary class.

hsql : Dictionary for the Hypersonic SQL database. Thisisan diasfor the
or g. apache. openj pa. j dbc. sql . HSQLDi cti onary class.

i nf or m x: Dictionary for the Informix database. Thisis an alias for the
or g. apache. openj pa. j dbc. sql . I nform xDi cti onary class.

i ngr es: Dictionary for Ingres. Thisisan aliasfor the or g. apache. openj pa. j dbc. sql
class.

j dat ast or e: Dictionary for Borland JDataStore. Thisisan alias for the
or g. apache. openj pa. j dbc. sql . JDat aSt or eDi cti onary class.

nmysql : Dictionary for the MySQL database. Thisisan aiasfor the
or g. apache. openj pa. j dbc. sql . MySQLDi cti onary class.

or acl e: Dictionary for Oracle. Thisisan aliasfor the or g. apache. openj pa. j dbc. sql
class.

poi nt base: Dictionary for Pointbase Embedded database. Thisis an dias for the
or g. apache. openj pa. j dbc. sql . Poi nt baseDi cti onary class.

post gr es: Dictionary for PostgreSQL . Thisis an alias for the
or g. apache. openj pa. j dbc. sql . Post gresDi cti onary class.

sql server : Dictionary for Microsoft's SQL Server database. Thisis an alias for the
or g. apache. openj pa. j dbc. sql . SQLSer ver Di cti onary class.

.IngresDictionary

.Oracl eDi ctionary

236


../javadoc/org/apache/openjpa/jdbc/sql/DBDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/AccessDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/AccessDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/DB2Dictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/DB2Dictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/DerbyDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/DerbyDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/EmpressDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/EmpressDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/FoxProDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/FoxProDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/HSQLDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/HSQLDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/InformixDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/InformixDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/IngresDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/JDataStoreDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/JDataStoreDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/MySQLDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/MySQLDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/OracleDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/PointbaseDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/PointbaseDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/PostgresDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/PostgresDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/SQLServerDictionary.html
../javadoc/org/apache/openjpa/jdbc/sql/SQLServerDictionary.html

JDBC

e sybase: Dictionary for Sybase. Thisisan aliasfor the or g. apache. openj pa. j dbc. sqgl . SybaseDi cti onary
class.

The example below demonstrates how to set a dictionary and configure its propertiesin your configuration file. The
DBDi ct i onary property uses OpenJPA's plugin syntax .

Example 4.7. Specifying a DBDictionary

<property nanme="openj pa.j dbc. DBDi cti onary" val ue="hsql (Si nul at eLocki ng=true)"/>

4.4.1.

DBDictionary Properties

The standard dictionaries all recognize the following properties. These properties will usually not need to be overridden, since the
dictionary implementation should use the appropriate default values for your database. Y ou typically won't use these properties
unless you are designing your own DBDi ct i onary for an unsupported database.

Al owsAl i asl nBul kCl ause: When true, SQL delete and update statements may use table aliases.

* ArrayTypeNane: The overridden default column typefor j ava. sqgl . Types. ARRAY. Thisis used only when the schema
is generated by the mappi ngt ool .

e Aut 0Assi gnd ause: The column definition clause to append to a creation statement. For example,
" AUTO | NCREMENT" for MySQL. This property is set automatically in the dictionary, and should not need to be overridden,
and is only used when the schema is generated using the mappi ngt ool .

» Aut 0Assi gnTypeNane: The column type name for auto-increment columns. For example, " Bl GSERI AL" for
PostgreSQL . This property is set automatically in the dictionary and should not need to be overridden. It is used only when the
schema is generated using the mappi ngt ool .

e Bat chLi mi t : The default batch limit for sending multiple SQL statements at once to the database. A value of -1 indicates
unlimited batching, and any positive integer indicates the maximum number of SQL statements to batch together. Defaultsto 0
which disables batching.

» Bi gi nt TypeNane: The overridden default column typefor j ava. sql . Types. Bl G NT. Thisisused only when the
schema s generated by the mappi ngt ool .

* Bi nar yTypeNane: The overridden default column typefor j ava. sql . Types. Bl NARY. Thisisused only when the
schema s generated by the mappi ngt ool .

» Bit TypeNane: The overridden default column typefor j ava. sql . Types. Bl T. Thisisused only when the schemais
generated by the mappi ngt ool .

» Bl obBuf f er Si ze: This property establishes the buffer size in the | NSERT/ UPDATE operations with an
java.io. |l nput Stream Thisisonly used with OpenJPA's Section 7.7.11, “ LOB Streaming ” [315]. Defaultsto
50000.

« Bl obTypeNane: The overridden default column typefor j ava. sql . Types. BLOB. Thisisused only when the schemais
generated by the mappi ngt ool .

» Bool eanTypeNarme: The overridden default column typefor j ava. sql . Types. BOOLEAN. Thisis used only when the
schemais generated by the mappi ngt ool .

e Cast Functi on: The SQL function call to cast avalue to another SQL type. Use thetokens{ 0} and { 1} to represent the
two arguments. The result of the functionis convert the{ 0} valuetoa{ 1} type. Thedefaultis" CAST({0} AS {1})".

237



../javadoc/org/apache/openjpa/jdbc/sql/SybaseDictionary.html

JDBC

Cat al ogSepar at or : The string the database uses to delimit between the schema name and the table name. Thisis
typically " . " , which isthe default.

Char TypeNane: The overridden default column typefor j ava. sql . Types. CHAR. Thisisused only when the schemais
generated by the mappi ngt ool .

Char act er Col umSi ze: The default size of var char and char columns. Typically 255.

Cl obBuf f er Si ze: This property establish the buffer sizein the | NSERT/ UPDATE operationswith aj ava. i 0. Reader .
Thisisonly used with OpenJPA's Section 7.7.11, “ LOB Streaming” [315]. Defaults to 50000.

Cl obTypeNane: The overridden default column typefor j ava. sqgl . Types. CLOB. Thisisused only when the schemais
generated by the mappi ngt ool .

Ol osePool SQ.: A special command to issue to the database when shutting down the pool. Usually the pool of connections
to the database is closed when the application is ending. For embedded databases, whose lifecycle is coterminous with the
application, there may be a special command, usually " SHUTDOMN' , that will cause the embedded database to close cleanly.
Defaultstonul | .

Concat enat eFunct i on: The SQL function call or operation to concatenate two strings. Use the tokens{ 0} and { 1}
to represent the two arguments. The result of the function or operation isto concatenatethe{ 1} string to the end of the { 0}
string. Defaultsto™ ({0} | | {1})".

Const r ai nt NameMbde: When creating constraints, whether to put the constraint name before the definition (" bef or e ),
just after the constraint type name (" i d" ), or after the constraint definition (" af t er ). Defaultsto " bef or e” .

Cr eat ePri mar yKeys: When false, do not create database primary keysfor identifiers. Defaultstot r ue .
CrossJoi nd ause: The clause to use for acrossjoin (cartesian product). Defaultsto " CROSS JO N'.

Cur rent Dat eFunct i on: The SQL function call to obtain the current date from the database. Defaultsto
" CURRENT_DATE".

Current Ti meFunct i on: The SQL function call to obtain the current time from the database. Defaults to
" CURRENT_TI ME".

Cur rent Ti nest anpFunct i on: The SQL function call to obtain the current timestamp from the database. Defaults to
" CURRENT_TI MESTAMP" .

Dat ePr eci si on: The database is able to store time values to this degree of precision, which is expressed in nanoseconds.
Thisvalueis usually one million, meaning that the database is able to store time values with a precision of one millisecond.
Particular databases may have more or less precision. OpenJPA will round all time valuesto this degree of precision before
storing them in the database. Defaults to 1000000.

Dat eTypeNane: The overridden default column typefor j ava. sqgl . Types. DATE. Thisisused only when the schemais
generated by the mappi ngt ool .

Deci mal TypeNane: The overridden default column typefor j ava. sql . Types. DECI MAL. Thisis used only when the
schemais generated by the mappi ngt ool .

Del i mi t edCase: The case to use when querying the database about identifiers that have been delimited. It defaultsto
preserving the case of the originally specified name. Available values are: upper, | ower, preserve.

Di sti nct Count Col umSepar at or : The string the database uses to delimit between column expressionsin a SELECT
COUNT( DI STI NCT col um-1i st) clause. Defaultsto nul | for most databases, meaning that multiple columnsin a
distinct COUNT clause are not supported.

238



JDBC

Di sti nct TypeNane: The overridden default column typefor j ava. sql . Types. DI STI NCT. Thisisused only when
the schemaiis generated by the mappi ngt ool .

Doubl eTypeNane: The overridden default column typefor j ava. sql . Types. DOUBLE. Thisis used only when the
schemais generated by the mappi ngt ool .

Dr i ver Vendor : The vendor of the particular JDBC driver you are using. Some dictionaries must alter their behavior
depending on the driver vendor. Dictionaries usually detect the driver vendor and set this property themselves. See the
VENDOR_XXX constants defined inthe DBDI ct i onar y Javadoc for available options.

Dr opTabl eSQL: The SQL statement used to drop atable. Use the token { 0} asthe argument for the table name. Defaults to
"DROP TABLE {0}".

Fi xedSi zeTypeNanes: A comma separated list of additional database types that have a size defined by the database. In
other words, when a column of afixed size typeis declared, its size cannot be defined by the user. Common examples would
be DATE, FLQAT, and | NTECER. Each database dictionary hasits own internal set of fixed size type names that include the
names mentioned here and many others. Names added to this property are added to the dictionary's internal set. Defaults to
nul I .

Fl oat TypeNane: The overridden default column typefor j ava. sql . Types. FLOAT. Thisis used only when the schema
is generated by the mappi ngt ool .

For Updat ed ause: The clauseto append to SELECT statements to issue queries that obtain pessimistic locks. Defaults
to" FOR UPDATE".

Get Stri ngVal : A specia function to return the value of an XML column in a select statement. For example, Oracle uses
".getd obVal ()",asin" SELECT t 0. xm col . get C obVal () FROM xm t ab t 0" . Defaultsto the empty
string.

I nCl auseLi m t : The maximum number of elementsin an | N clause. OpenJPA works around cases where the limit is
exceeded. Defaults to -1 meaning no limit.

Initializati onSQL: A pieceof SQL to issue against the database whenever a connection is retrieved from the
Dat aSour ce .

I nner Joi nCl ause: The clause to use for aninner join. Defaultsto " 1 NNER JO N'.

I nt eger TypeNane: The overridden default column typefor j ava. sql . Types. | NTEGER Thisisused only when the
schema s generated by the mappi ngt ool .

JavaObj ect TypeNane: The overridden default column typefor j ava. sql . Types. JAVAOBJECT. Thisisused only
when the schema is generated by the mappi ngt ool .

Joi nSynt ax: The SQL join syntax to use in select statements. See Section 4.6, “ Setting the SQL Join Syntax " [248].

Last Gener at edKeyQuer y: The query to issue to obtain the last automatically generated key for an auto-increment
column. For example, " SELECT LAST_| NSERT I D() " for MySQL. This property is set automatically in the dictionary,
and should not need to be overridden. If Suppor t sGet Gener at edKeys istrue, the query will not be issued but a more
efficient JDBC 3.0 mechanism for obtaining generated keys will be used instead.

Leadi ngDel i mi t er: The characters to use as the leading delimiter for adelimited identifier. The default value is a double
quote, (") . See Section 4.4.7, “ Delimited | dentifiers Support ” [247] for the default value for some specific databases.

LongVar bi nar yTypeNane: The overridden default column typefor j ava. sql . Types. LONGVARBI NARY. Thisis
used only when the schema is generated by the mappi ngt ool .

239



JDBC

LongVar char TypeNane: The overridden default column typefor j ava. sql . Types. LONGVARCHAR. Thisis used
only when the schemaiis generated by the mappi ngt ool .

MaxAut oAssi gnNaneLengt h: Set this property to the maximum length of the sequence name used for auto-increment
columns. Names longer than this value are truncated. Defaults to 31.

Max Col utmmNameLengt h: The maximum number of charactersin a column name. Defaults to 128.

MaxConst r ai nt NaneLengt h: The maximum number of charactersin a constraint name. Defaultsto 128.

Max EmbeddedBl obSi ze: When greater than -1, the maximum size of a BLOB value that can be sent directly to the
database within an insert or update statement. Values whose size is greater than MaxEnbeddedBl obSi ze force OpenJPA to
work around this limitation. A value of -1 means that there is no limitation. Defaults to -1.

Max EmbeddedC obSi ze: When greater than -1, the maximum size of a CLOB value that can be sent directly to the
database within an insert or update statement. Values whose size is greater than MaxEnbeddedC obSi ze force OpenJPA to
work around this limitation. A value of -1 means that there is no limitation. Defaults to -1.

Max| ndexNaneLengt h: The maximum number of charactersin an index name. Defaultsto 128.
Max| ndexesPer Tabl e: The maximum number of indexes that can be placed on a single table. Defaults to no limit.

MaxTabl eNaneLengt h: The maximum number of charactersin atable name. Defaultsto 128.

NaneConcat enat or : The value used when names are concatenated to create a generated name. The default value isthe

underscore” _".

Next SequenceQuer y: A SQL string for obtaining a native sequence value. May use a placeholder of { 0} for the
variable sequence nameand { 1} for sequence increment. Defaults to a database-appropriate value. For example, " SELECT
{0} . NEXTVAL FROM DUAL" for Oracle database.

Nul I TypeNane: The overridden default column typefor j ava. sqgl . Types. NULL. Thisisused only when the schemais
generated by the mappi ngt ool .

Nuner i cTypeNane: The overridden default column typefor j ava. sql . Types. NUMERI C. Thisis used only when the
schema s generated by the mappi ngt ool .

O her TypeNane: The overridden default column typefor j ava. sql . Types. OTHER. Thisis used only when the schema
is generated by the mappi ngt ool .

Qut er Joi nd ause: The clause to use for an left outer join. Defaultsto " LEFT OUTER JO N'.

Pl at f or m The name of the database that this dictionary targets. Defaultsto " Gener i ¢", but al dictionaries override this
value.

RangePosi t i on: Indicates where to specify in the SQL select statement the range, if any, of the result rows to be returned.
When limiting the number of returned result rows to a subset of all those that satisfy the query's conditions, the position of the
range clause varies by database. Defaults to 0, meaning that the range is expressed at the end of the select statement but before
any locking clause. Seethe RANGE_XXX constants defined in DBDi ct i onary.

Real TypeNane: The overridden default column typefor j ava. sql . Types. REAL. Thisisused only when the schemais
generated by the mappi ngt ool .

Ref TypeNane: The overridden default column typefor j ava. sql . Types. REF. Thisisused only when the schemais
generated by the mappi ngt ool .

240



JDBC

Requi r esAl i asFor Subsel ect : When true, the database requires that subselectsin a FROM clause be assigned an
dias.

Requi r esAut oConmi t For Met adat a: When true, the JIDBC driver requires that autocommit be enabled before any
schema interrogation operations can take place.

Requi r esCast For Conpar i sons: When true, comparisons of two values of different types or of two literalsrequiresa
cast in the generated SQL. Defaultstof al se.

Requi r esCast For Mat hFunct i ons: When true, math operations on two values of different types or on two literals
requires a cast in the generated SQL. Defaultstof al se.

Requi r esCondi t i onFor Cr ossJoi n: Some databases require that there always be a conditional statement for a cross
join. If set, this parameter ensures that there will always be some condition to the join clause.

Requi r esTar get For Del et e: When true, the database requires a target for delete statements. Defaultstof al se.
Reser vedWor ds: A comma-separated list of reserved words for this database, beyond the standard SQL 92 keywords.

SchenaCase: The case to use when querying the database metadata about schema components. Defaults to making al
names upper case. Availablevaluesare: upper, | ower, preserve.

Sear chSt ri ngEscape: The default escape character used when generating SQL LI KE clauses. The escape character

is used to escape the wildcard meaning of the _ and %characters. Note: since JPQL provides the ability to define the escape
character in the query, this setting is primarily used when translating other query languages, such as JDOQL. Defaultsto "\ \ "
(asingle backslash in Java speak).

Requi resSear chSt ri ngEscapeFor Li ke: When true, the database requires an escape string for queries that use
LI KE. The escape string can be specified using sear chSt ri ngEscape. Defaultstot r ue.

Sel ect Wr ds: A comma-separated list of keywords which may be used to start a SELECT statement for this database. If an
application executes a native SQL statement which begins with SelectWords OpenJPA will treat the statement as a SELECT
statement rather than an UPDATE statement.

SequenceNanmeSQL: Additional phrasing to use with SequenceSQL. Defaultstonul | .

SequenceSQL: General structure of the SQL query to use when interrogating the database for sequence names. Asthereis
no standard way to obtain sequence names, it defaultsto nul | .

SequenceSchenaSQL: Additional phrasing to use with SequenceSQL. Defaultstonul | .

Si mul at eLocki ng: Some databases do not support pessimistic locking, which will result in an exception when you
attempt a transaction while using the pessimistic lock manager. Setting this property to t r ue suppresses the locking of rowsin
the database, thereby allowing pessimistic transactions even on databases that do not support locking. At the same time, setting
this property to t r ue means that you do not obtain the semantics of a pessimistic transaction with the database. Defaults to
fal se.

Smal | i nt TypeNane: The overridden default column typefor j ava. sqgl . Types. SMALLI NT. Thisis used only when
the schemaiis generated by the mappi ngt ool .

St or ageLi m t ati onsFat al : When true, any data truncation/rounding that is performed by the dictionary in order to
store avalue in the database will be treated as afatal error, rather than just issuing awarning.

St or eChar sAsNunber s: Set thisproperty tof al se to store Javachar fieldsas CHAR values rather than numbers.
Defaultstot r ue.

241



JDBC

St or eLar geNunber sAs St ri ngs: When true, the dictionary prefers to store Javafields of type Bi gl nt eger and

Bi gDeci mal asstring valuesin the database. Likewise, the dictionary will instruct the mapping tool to map these Java types
to character columns. Because some databases have limitations on the number of digits that can be stored in a numeric column
(for example, Oracle can only store 38 digits), this option may be necessary for some applications. Note that this option may
prevent OpenJPA from executing meaningful numeric queries against the columns. Defaultsto f al se.

Stri ngLengt hFunct i on: Name of the SQL function for getting the length of a string. Use the token { 0} to represent the
argument.

St ruct TypeNane: The overridden default column typefor j ava. sqgl . Types. STRUCT. Thisis used only when the
schemais generated by the mappi ngt ool .

Subst ri ngFunct i onNane: Name of the SQL function for getting the substring of a string.

Support sAl t er Tabl eW t hAddCol umrm: When true, the database supports adding anew columnin an ALTER TABLE
statement. Defaultstot r ue.

Support sAl t er Tabl eW t hDr opCol umm: When true, the database supports dropping acolumninan ALTER TABLE
statement. Defaultstot r ue.

Suppor t sAut oAssi gn: When true, the database supports auto-assign columns, where the value of column is assigned
upon insertion of the row into the database. Defaultsto f al se.

Support sCascadeDel et eAct i on: When true, the database supports the CASCADE delete action on foreign keys.
Defaultstot r ue.

Support sCascadeUpdat eAct i on: When true, the database supports the CASCADE update action on foreign keys.
Defaultstot r ue.

Suppor t sComrent s: When true, comments can be associated with the table in the table creation statement. Defaults to
fal se.

Support sCorrel at edSubsel ect : When true, the database supports correlated subsel ects. Correlated subselects are
select statements nested within select statements that refers to a column in the outer select statement. For performance reasons,
correlated subselects are generally alast resort. Defaultstot r ue.

Support sDef aul t Del et eAct i on: When true, the database supports the SET DEFAULT delete action on foreign keys.
Defaultstot r ue.

Support sDef aul t Updat eAct i on: When true, the database supports the SET DEFAULT update action on foreign keys.
Defaultstot r ue.

Support sDef er r edConst r ai nt s: When true, the database supports deferred constraints. The database supports
deferred constraints by checking for constraint violations when the transaction commits, rather than checking for violations
immediately after receiving each SQL statement within the transaction. Defaultsto t r ue.

SupportsDel i mtedl dentifiers:When true, the database supports delimited identifiers. It defaultsto t r ue.

Support sFor ei gnKeys: When true, the database supports foreign keys. Defaultstot r ue.

Support sFor ei gnKeysConposi t e: When true, the database supports composite foreign keys. Defaultstot r ue.

Support sGet Gener at edKeys: When true, OpenJPA will usej ava. sql . St at enent . get Gener at edKeys

method to obtain values of auto-increment columns. When false, a query specified by Last Gener at edKeyQuery
will be used for that purpose. If not set, the value will be auto-detected by querying the JDBC driver. Setting the

242



JDBC

value to true requires that the JDBC driver supports version 3.0 or higher of the JDBC specification and supports the
j ava. sgl . St at enent . get Gener at edKeys method.

Suppor t sHavi ng: When true, the database supports HAVING clausesin selects.

Support sLocki ngW t hDi sti nct C ause: When true, the database supports FOR UPDATE select clauses with
Dl STI NCT clauses.

Suppor t sLocki ngW t hl nner Joi n: When true, the database supports FOR UPDATE select clauses with inner join
queries.

SupportsLocki ngW t hMul ti pl eTabl es: When true, the database supports FOR UPDATE select clauses that select
from multiple tables.

SupportsLocki ngWt hOr der Cl ause: When true, the database supports FOR UPDATE select clauses with ORDER BY
clauses.

Support sLocki ngW t hQut er Joi n: When true, the database supports FOR UPDATE select clauses with outer join
queries.

Support sLocki ngW t hSel ect Range: When true, the database supports FOR UPDATE select clauses with queries that
select arange of datausing LI M T, TOP or the database equivalent. Defaultstot r ue.

Suppor t sModQper at or : When true, the database supports the modulus operator (%9 instead of the MOD function. Defaults
tof al se.

SupportsMul ti pl eNontransacti onal Resul t Set s: When true, a nontransactional connection is capable of having
multiple open Resul t Set instances.

Support sNul | Del et eAct i on: When true, the database supportsthe SET NULL delete action on foreign keys. Defaults
totrue.

Suppor t sNul | Tabl eFor Get Col umms: When true, the database supports passing anul | parameter to
Dat abaseMet aDat a. get Col unms as an optimization to get information about al the tables. Defaultsto t r ue.

Support sNul | Tabl eFor Get | mpor t edKeys: When true, the database supports passing anul | parameter to
Dat abaseMet abDat a. get | npor t edKeys as an optimization to get information about all the tables. Defaultsto f al se.

Support sNul | Tabl eFor Get | ndex| nf o: When true, the database supports passing anul | parameter to
Dat abaseMet aDat a. get | ndex| nf 0 as an optimization to get information about all the tables. Defaultsto f al se.

Support sNul | Tabl eFor Get Pri mar yKeys: When true, the database supports passing anul | parameter to
Dat abaseMet aDat a. get Pri mar yKeys as an optimization to get information about all the tables. Defaultstof al se.

Suppor t sNul | Updat eAct i on: When true, the database supports the SET NULL update action on foreign keys. Defaults
totrue.

Suppor t sQuer yTi meout : When true, the JDBC driver supports callsto
java. sqgl . Statement . set QueryTi neout .

SupportsRestri ct Del et eAct i on: When true, the database supports the RESTRI CT delete action on foreign keys.
Defaultstot r ue.

SupportsRestri ct Updat eAct i on: When true, the database supports the RESTRI CT update action on foreign keys.
Defaultstot r ue.

Support sSchenaFor Get Col urms: When false, the database driver does not support using the schema name for schema
reflection on column names.

243



JDBC

Support sSchenaFor Get Tabl es: If false, then the database driver does not support using the schema name for schema
reflection on table names.

Support sSel ect Endl ndex: When true, the database can create a select that is limited to the first N results.

Support sSel ect For Updat e: When true, the database supports SELECT statements with a pessimistic locking (FOR
UPDATE) clause. Defaultstot r ue.

SupportsSel ect St art | ndex: When true, the database can create a select that skipsthefirst N results.

Support sSi npl eCaseExpr essi on: When true, the database supports the simple form of CASE expression: CASE <a>
WHEN <b> THEN <c> WHEN <d> THEN <e> ELSE <f> END. When false, the general form of CASE expression will
beused: CASE WHEN <a> = <b> THEN <c> WHEN <a> = <d> THEN <e> ELSE <f> END. Defaultstot r ue.

Support sSubsel ect : When true, the database supports subselectsin queries.

Support sTi mest anpNanos: When true, the database supports nanoseconds with TIMESTAMP columns. Defaults to
true.

Suppor t sUni queConst r ai nt s: When true, the database supports unique constraints. Defaultsto t r ue.

Suppor t sXM.Col unm: When true, the database supports an XML column type. See Section 7.7.10, “ XML Column
Mapping” [310] for information on using this capability. Defaultstof al se.

Syst enSchemas: A comma-separated list of schema names that should be ignored.
Syst enilabl es: A comma-separated list of table names that should be ignored.

Tabl eFor Updat eCl ause: The clause to append to the end of each table alias in queries that obtain pessimistic locks.
Defaultstonul | .

t abl eLengt hl ncl udesSchena: Whether the max length for a table name includes the table's schema. Defaults to
fal se.

Tabl eTypes: Comma-separated list of table types to use when looking for tables during schema reflection, as defined in the
j ava. sql . Dat abaseMet aDat a. get Tabl el nf o JIDBC method. An exampleis: " TABLE, VI EW ALI AS" . Defaults
to" TABLE".

Ti meTypeNane: The overridden default column type for j ava. sql . Types. Tl ME. Thisis used only when the schemais
generated by the mappi ngt ool .

Ti mest anpTypeNane: The overridden default column typefor j ava. sql . Types. TI MESTAMP. Thisisused only
when the schema is generated by the mappi ngt ool .

Ti nyi nt TypeNane: The overridden default column typefor j ava. sqgl . Types. Tl NYI NT. Thisis used only when the
schema s generated by the mappi ngt ool .

ToLower CaseFunct i on: Name of the SQL function for converting a string to lower case. Use the token { 0} to represent
the argument.

ToUpper CaseFunct i on: SQL function call for converting a string to upper case. Use the token { 0} to represent the
argument.

Trail i ngDel i m t er: The charactersto use asthe trailing delimiter for a delimited identifier. The default valueisa
double quote, (") . See Section 4.4.7, “ Delimited I dentifiers Support ” [247] for the default value for some specific
databases.

244



JDBC

Tri nBot hFunct i on: The SQL function call to trim any number of a particular character from both the start and end

of astring. Note: some databases do not support specifying the character in which case only spaces or whitespace can be
trimmed. Use the token { 1} when possible to represent the character, and the token { 0} to represent the string. Defaultsto
"TRI M BOTH {1} FROM {0})".

Tri mLeadi ngFuncti on: The SQL function call to trim any number of a particular character from the start of a string.
Note: some databases do not support specifying the character in which case only spaces or whitespace can be trimmed. Use the
token { 1} when possible to represent the character, and the token { 0} to represent the string. Defaultsto " TRI M LEADI NG
{1} FROM {0})".

TrimlrailingFunction: The SQL function cal to trim any number of a particular character from the end of a string.
Note: some databases do not support specifying the character in which case only spaces or whitespace can be trimmed. Use the
token { 1} when possible to represent the character, and the token { 0} to represent the string. Defaultsto " TRI M TRAI LI NG
{1} FROM {0})".

UseCet Best Rowl denti fi er For Pri mar yKeys: When true, metadata queries will use
Dat abaseMet aDat a. get Best Row denti fi er to obtain information about primary keys, rather than
Dat abaseMet aDat a. get Pri mar yKeys.

UseGet Byt esFor Bl obs: Whentrue, Resul t Set . get Byt es will be used to obtain blob data rather than
Resul t Set . get Bi narySt r eam

UseGet Ohj ect For Bl obs: Whentrue, Resul t Set. get Obj ect will be used to obtain blob data rather than
Resul t Set . get Bi narySt r eam

UseGet Stri ngFor G obs: Whentrue, Resul t Set. get St ri ng will be used to obtain clob data rather than
Resul t Set . get Char act er St r eam

UseNat i veSequenceCache: This property was introduced in the 2.1.2 release to indicate (when set to f al se) that
OpenJPA should not use the CACHE clause when creating a native sequence; instead the | NCREVENT BY clause getsits
value equal to the allocationSize property. In the 2.2.0 release, code was added to allow said functionality by default (see
OPENJPA-1376). For forward compatibility, this property still remains, however it has been deprecated and will eventually be
removed. Setting this property has no effect and any occurrence of it should be removed.

UseSchemaNane: If f al se, then avoid including the schema name in table name references. Defaultstot r ue .

UseSet Byt esFor Bl obs: Whentrue, Prepar edSt at enent . set Byt es will be used to set blob data, rather than
Pr epar edSt at enent . set Bi narySt r eam

UseSet Stri ngFor Cl obs: Whentrue, PreparedStatenent. set Stri ng will beused to set clob data, rather than
Pr epar edSt at ement . set Char act er Stream

UseW | dCar dFor Count : When true, the JPQL COUNT aggregate function will be translated into SQL COUNT( *)
expression if the SQL query does not involve joins. Defaultsto f al se.

Val i dat i onSQL: The SQL used to validate that a connection is till in avalid state. For example, " SELECT SYSDATE
FROM DUAL" for Oracle.

Var bi nar yTypeNane: The overridden default column typefor j ava. sql . Types. VARBI NARY. Thisis used only
when the schema is generated by the mappi ngt ool .

Var char TypeNarme: The overridden default column typefor j ava. sql . Types. VARCHAR. Thisis used only when the
schema s generated by the mappi ngt ool .

Xm TypeNane: The column type name for XML columns. This property is set automatically in the dictionary and should not
need to be overridden. It is used only when the schema is generated using the mappi ngt ool . Defaultsto " XM." .

245



JDBC

4.4.2. FirebirdDictionary Properties

Thef i r ebi r d dictionary understands the following additional properties:

» Fi rebirdVer si on: The database version OpenJPA connects to. This property affects the SQL statements executed by
OpenJPA. Available values are: 15, 20 and 21 - they indicate Firebird versions 1.5, 2.0 and 2.1 respectively. If not set, the
value will be auto-detected.

* | ndexedVar char MaxSi zeFB15: Firebird 1.5 imposes tight limits on index size. In particular, an indexed VARCHAR
column size cannot exceed 252. When schemai is created, OpenJPA will use this property to reduce the size of indexed
VARCHAR columns. Defaults to 252 but you might want to decrease this value if multi-column indexes are used. If the Firebird
versionis 2.0 or later or schema creation is not used, this property does not matter.

» RangeSynt ax: Firebird 2.0 and later support two ways of handling queries that select arange of data: " FI RST <p>
SKI P <g>" and" ROA5 <n»> TO <n>". Earlier versions support only " FI RST <p> SKI P <q>" syntax. This property
determines the syntax to be used. Available valuesare: " fi r st ski p" and"r ows" . Defaultsto using" ROAS <n»> TO
<n>" if the Firebird versionis2.0 or later, and " FI RST <p> SKI P <qg>" otherwise.

4.4.3. MySQLDictionary Properties

Thenysql dictionary also understands the following properties:
e DriverDeserializesBl obs: Many older MySQL drivers automatically deserialize BLOBs on callsto
Resul t Set . get Obj ect . The MySQLDi ct i onary overridesthe standard DBDi cti onary. get Bl obOhj ect

method to take this into account. Defaultstot r ue if driver versionislessthan 5.0, f al se otherwise. If your driver
deserializes automatically, you may want to set this property to t r ue.

e Tabl eType: The MySQL table type to use when creating tables. Defaultsto " i nnodb" .

e Used obs: Some older versions of MySQL do not handle CLOBSs correctly. To disable CLOB functionality, set thisto
f al se. Defaultstot r ue.

e OptimzeMilti Tabl eDel et es: MySQL as of version 4.0.0 supports multiple tables in DELETE statements. When
this option is set, OpenJPA will use that syntax when doing bulk deletes from multiple tables. This can happen when the
del et eTabl eCont ent s SchenaTool actionisused. (See Section 4.13, “ Schema Tool ” [255] for more info about
del et eTabl eCont ent s.) Defaultsto f al se, since the statement may fail if using InnoDB tables and del ete constraints.
Starting with Connector/J 3.1.7, MySQL supports avariant of the driver com nmysql . j dbc. Repl i cati onDri ver that
automatically sends queries to aread/write master, or afailover or round-robin load balanced set of slaves based on the state of
read-only status of the connection. See MySQL Reference for more details.
This replication feature can be used transparently with OpenJPA application by following configuration:
* openj pa. Connecti onDri ver Name: com mnysql . j dbc. ReplicationDriver

» openj pa. Connecti onFact oryProperties: autoReconnect=true, roundRobi nLoadBal ance=true

OpenJPA will use aread-only connection with replicated database configuration and will automatically switch the connection
to anon-readonly mode if the transaction is writing to the database.

4.4.4. OracleDictionary Properties

Theor acl e dictionary understands the following additional properties:

246


http://dev.mysql.com/doc/refman/5.1/en/connector-j-reference-replication-connection.html

JDBC

4.4.5.

e UseTri gger sFor Aut oAssi gn: When true, OpenJPA will allow simulation of auto-increment columns by
the use of Oracle triggers. OpenJPA will assume that the current sequence value from the sequence specified in the
Aut 0Assi gnSequenceNane parameter will hold the value of the new primary key for rows that have been inserted. For
more details on auto-increment support, see Section 5.4.4, “ Autoassign / | dentity Strategy Caveats” [268] .

* Aut 0Assi gnSequenceNane: The global name of the sequence that OpenJPA will assume to hold the value of primary
key value for rows that use auto-increment. If left unset, OpenJPA will use asequence named " <t abl e name>_<col umm
nane>_ SEQ'.

* MaxEnbeddedBl obSi ze: Oracleis unable to persist BLOBs using the embedded update method when BLOBS get over
acertain size. The size depends on database configuration, e.g. encoding. This property defines the maximum size BLOB to
persist with the embedded method. Defaults to 4000 bytes.

 MaxEnbeddedd obSi ze: Oracleis unableto persist CLOBSs using the embedded update method when CLOBs get over
acertain size. The size depends on database configuration, e.g. encoding. This property defines the maximum size CLOB to
persist with the embedded method. Defaults to 4000 characters.

e Support sSet Cl oh: This property was used in releases previous to OpenJPA 2.2.0 to indicate that OpenJPA should
attempt to use a Reader-based JDBC 4.0 method to set CLOB or XML data. It allowed XML Type and CLOB values larger
than 4000 bytes to be used. For OpenJPA 2.2.0 and later releases, code was added to allow said functionality by default (see
OPENJPA-1691). For forward compatibility, this property still remains, however it has been deprecated and will eventually be
removed. Setting this property has no effect and any occurrence of it should be removed.

* UseSet For mOF UseFor Uni code: Prior to Oracle 10i, statements executed against unicode capable columns (the NCHAR,
NVARCHAR, NCL OB Oracle types) required special handling to be able to store unicode values. Setting this property to
t r ue (the default) will cause OpenJPA to attempt to detect when the column is one of these types, and if so, will attempt
to correctly configure the statement using the Or acl ePr epar edSt at enent . set For nf Use. For more details, see
the Oracle JDBC Programming with Unicode. Note that this can only work if OpenJPA is able to access the underlying
O acl ePr epar edSt at enrent instance, which may not be possible when using some third-party datasources. If OpenJPA
detects that thisisthe case, awarning will be logged.

SybaseDictionary Properties

4.4.6.

The sybase dictionary understands the following additional properties:

* |l gnoreNunericTruncati on: If true, Sybase will ignore numeric truncation on SQL operations. Otherwise, if numeric
truncation is detected, the operation will fail.

DB2 Properties

4.4.7.

The db2 dictionary understands the following additional properties:

» AppendExt endedExcept i onText : If fase, OpenJPA will not call back to the database to get extended exception text.

Delimited Identifiers Support

OpenJPA provides support for delimited identifiers as defined in the JPA 2.0 specification. Identifiers can either be automatically
delimited or individually manually delimited. To have OpenJPA automatically delimit identifiers, add the<del i m t ed-
i denti fi er s/ > tagtothe mapping file as documented in the JPA specification.

Y ou can manually delimit individual identifiers either in the annotations or in the definitions in the mapping file. To delimit an
identifier element in an annotation, surround it with double quotes. In amapping file, add &quot e; to both the beginning and
end of the element.

247


http://download.oracle.com/docs/cd/B19306_01/server.102/b14225/ch7progrunicode.htm#i1006858

JDBC

4.5.

When delimited identifiers has been specified, OpenJPA will delimit SQL identifiersin the generated SQL statements. It will use
database-specific delimiters as defined in the appropriate database dictionary. By default, the leading and trailing delimiters are
both double quotes, (") . Different defaults for other dictionaries provided by OpenJPA arein the following table.

Table4.1. Default delimitersfor delimited identifiers

Dictionary Leading Delimiter Trailing Delimiter
MySQLDictionary )
AccessDictionary [ ]

Some databases support more than one set of delimiters, often based on configuration. If you need values different than the
default values, you can set the Leadi ngDel i mi t er andtheTr ai | i ngDel i ni t er dictionary properties.

Y ou can specify whether or not the particular database that you are using supports delimited identifiers by setting the
SupportsDelinmtedldentifiers dictionary property. If thisvalueissettof al se, identifierswill not be automatically
delimited, evenif the<del i mi t ed-i denti fi er s/ > tagis specified in the mapping file.

Limtation: Thecol umbDefi niti on elementsin identifiers are not automatically delimited by OpenJPA when using the

<del i m ted-identifiers/>taginthemappingfile If youwant theseto be delimited, you must manualy delimit them in
the annotation or mapping file definitions.

Setting the Transaction Isolation

4.6.

OpenJPA typicaly retains the default transaction isolation level of the JDBC driver. However, you can specify a transaction
isolation level to use throughthe openj pa. j dbc. Transact i onl sol at i on configuration property. The followingisa
list of standard isolation levels. Note that not all databases support all isolation levels.

» def aul t: Usethe JDBC driver's default isolation level. OpenJPA uses this option if you do not explicitly specify any other.
» none: No transaction isolation.

» read- comi tt ed: Dirty reads are prevented; non-repeatable reads and phantom reads can occur.

» read- unconmmi tt ed: Dirty reads, non-repeatable reads and phantom reads can occur.

» repeat abl e-r ead: Dirty reads and non-repeatable reads are prevented; phantom reads can occur.

» serial i zabl e: Dirty reads, non-repeatable reads, and phantom reads are prevented.

Example 4.8. Specifying a Transaction | solation

<property name="openj pa.jdbc. Transactionl sol ati on" val ue="repeat abl e-read"/ >

Setting the SQL Join Syntax

Object queries often involve using SQL joins behind the scenes. Y ou can configure OpenJPA to use either SQL 92-stylejoin
syntax, in which joins are placed in the SQL FROM clause, the traditional join syntax, in which join criteria are part of the
WHERE clause, or a database-specific join syntax mandated by the DBDi ct i onar y. OpenJPA only supports outer joins when
using SQL 92 syntax or a database-specific syntax with outer join support.

248




JDBC

The openj pa.j dbc. DBDi cti onary plugin acceptsthe Joi nSynt ax property to set the system's default syntax. The
available values are:

e traditional : Traditional SQL join syntax; outer joins are not supported.

» dat abase: The database's native join syntax. Databases that do not have a native syntax will default to one of the other
options.

* sgl 92: ANSI SQL92 join syntax. Outer joins are supported. Not all databases support this syntax.

Y ou can change the join syntax at runtime through the OpenJPA fetch configuration API, which is described in Chapter 9,
Runtime Extensions [322].

Example 4.9. Specifying the Join Syntax Default

<property name="openj pa.j dbc. DBDi cti onary" val ue="Joi nSynt ax=sql 92"/ >

Example 4.10. Specifying the Join Syntax at Runtime

i mport org. apache. openj pa. persi stence. j dbc. *;

Query q = emcreateQuery("sel ect mfrom Magazine mwhere mtitle = 'JDJ'");
OpenJPAQuery kg = OpenJPAPer si st ence. cast(q);

JDBCFet chPl an fetch = (JDBCFetchPl an) kq. get Fet chPl an();

f et ch. set Joi nSynt ax(Joi nSynt ax. SQL92) ;

List results = qg.getResultList();

4.7.

Accessing Multiple Databases

4.8.

Through the properties we've covered thus far, you can configure each Ent i t yManager Fact or y to access a different
database. If your application accesses multiple databases, we recommend that you maintain a separate persistence unit for each
one. Thiswill allow you to easily load the appropriate resource for each database at runtime, and to give the correct configuration
file to OpenJPA's command-line tools during devel opment.

Configuring the Use of JDBC Connections

In its default configuration, OpenJPA obtains JDBC connections on an as-needed basis. OpenJPA Ent i t yManager sdo not
retain a connection to the database unless they are in a datastore transaction or there are open Quer y resultsthat are using alive
JDBC result set. At al other times, including during optimistic transactions, Ent i t yManager srequest a connection for each
query, then immediately release the connection back to the pool.

In some cases, it may be more efficient to retain connections for longer periods of time. Y ou can configure OpenJPA's use of
JDBC connectionsthrough the openj pa. Connect i onRet ai nMbde configuration property. The property accepts the
following values:

e al ways: EachEnti t yManager obtainsasingle connection and usesit until the Ent i t yManager closes. Great
care should be taken when using this property if the application cannot close the EntityManager (i.e. container-managed
EntityManagersin a JEE Application Server). In this case the connection will remain open for an undefined time and the
application may not be able to recover from aterminated connection (for example, if a TCP/IP timeout severs the connection to
the database). For this reason the al ways option should not be used with container-managed EntityManagers.

249




JDBC

e transacti on: A connection is obtained when each transaction begins (optimistic or datastore), and is released when the
transaction completes. Non-transactional connections are obtained on-demand.

» on- demand: Connections are obtained only when needed. This option is equivalent tothet r ansact i on option when
datastore transactions are used. For optimistic transactions, though, it means that a connection will be retained only for the
duration of the datastore flush and commit process.

Y ou can aso specify the connection retain mode of individual Ent i t yManager swhen you retrieve them from the
Enti t yManager Fact ory. See Section 9.2.1, “ OpenJPAEnNtityM anager Factory ” [323] for details.

The openj pa. Fl ushBef or eQuer i es configuration property controls another aspect of connection usage: whether to
flush transactional changes before executing object queries. This setting only appliesto queries that would otherwise have to be
executed in-memory because the | gnor eChanges property is set to false and the query may involve objects that have been

changed in the current transaction. Legal values are:

 t rue: Always flush rather than executing the query in-memory. If the current transaction is optimistic, OpenJPA will begin a
non-locking datastore transaction. Thisisthe default.

» f al se: Never flush before aquery.

 wi t h-connecti on: Flush only if theEnt i t yManager

has already established a dedicated connection to the datastore,

otherwise execute the query in-memory. This option is useful if you use long-running optimistic transactions and want to
ensure that these transactions do not consume database resources until commit. OpenJPA's behavior with this option is
dependent on the transaction status and mode, as well as the configured connection retain mode described earlier in this

section.

The flush mode can also be varied at runtime using the OpenJPA fetch configuration API, discussed in Chapter 9, Runtime

Extensions [322].

The table below describes the behavior of automatic flushing in various situations. In all cases, flushing will only occur if
OpenJPA detects that you have made modifications in the current transaction that may affect the query's results.

Table 4.2. OpenJPA Automatic Flush Behavior

FlushBeforeQueries =
false

FlushBeforeQueries =
true

FlushBeforeQueries

= with-connection;
ConnectionRetainM ode
= on-demand

FlushBeforeQueries

= with-connection;
ConnectionRetainM ode
=transaction or

always
IgnoreChanges=true |no flush no flush no flush no flush
I gnoreChanges = false; |no flush no flush no flush no flush
no tx active
I gnoreChanges = false; |no flush flush flush flush
datastoretx active
IgnoreChanges = false; |no flush flush no flush unlessf |l ush |flush
optimistic tx active has already been

invoked

Example 4.11. Specifying Connection Usage Defaults

<property name="openj pa. Connecti onRet ai nMbde" val ue="on-denmand"/>
<property name="openj pa. Fl ushBef oreQueri es" val ue="true"/>

250




JDBC

Example 4.12. Specifying Connection Usage at Runtime

i nport org.apache. openj pa. per si st ence. *;

/] obtaining an emwi th a certain connection retain node
Map props = new HashMap();

props. put (" openj pa. Connect i onRet ai nMbde", "al ways");
EntityManager em = enf.createEntityManager (props);

Statement Batching

In addition to connection pooling and prepared statement caching, OpenJPA employs statement batching to speed up JDBC
updates. Statement batching is enabled by default for any JDBC driver that supports it. When batching is on, OpenJPA
automatically ordersits SQL statements to maximize the size of each batch. This can result in large performance gains for
transactions that modify alot of data.

Y ou configure statement batching through the system DBDictionary, which is controlled by the openjpa.jdbc.DBDictionary
configuration property. Y ou can enable the statement batching by setting the batchLimit in the value. The batch limit is the
maximum number of statements OpenJPA will ever batch together. A value has the following meaning:

e - 1: Unlimited number of statementsfor a batch.
 0: Disable batch support. Thisisthe default for most dictionaries.

e any positive nunber: Maximum number of statementsfor abatch.

By default, the batch support is based on each Dictionary to define the default batch limit. Currently only DB2 and
Oracle dictionaries are set the default batch limit to 100. The default batch limit for the rest of the dictionariesis set to
zero (disabled).

The example below shows how to enable and disable statement batching via your configuration properties.

Example 4.13. Enable SQL statement batching

<property name="openj pa.j dbc. DBDi cti onary" val ue="db2(bat chLi m t=25)"/>
<property name="openj pa.j dbc. DBDi cti onary" val ue="oracl e(batchLimt=-1)"/>
o

<property name="openj pa.j dbc. DBDi cti onary" val ue="bat chLi m t =25"/>
<property nanme="openj pa.j dbc. DBDi cti onary" val ue="batchLimt=-1"/>

Example 4.14. Disable SQL statement batching

<property name="openj pa.j dbc. DBDi cti onary" val ue="db2(batchLi mt=0)"/>
o
<property name="openj pa.j dbc. DBDi cti onary" val ue="bat chLi m t=0"/>

By default, org.apache.openjpa.jdbc.kernel.BatchingConstraintUpdateM anager is the default statement batching implementation.
OPENJPA also provides another update manager org.apache.openjpa.jdbc.kernel.BatchingOperationOrderUpdateM anager
for the statements that required ordering. Y ou can plug-in this update manager through the " openjpa.jdbc.UpdateM anager"

251




JDBC

property. Or you can plug-in your own statement batching implementation by providing the implementation that extends from
AbstractUpdateM anager, ConstraitUpdateM anager or OperationOrderUpdateManager. Add thisimplementation classasa
property in the persistence.xml file. For example, a custom statement batching implementation mycomp.MyUpdateM anager
extends ConstraitUpdateM anager. Y ou specify thisimplementation in the persistence.xml file as the following example:

Example 4.15. Plug-in custom statement batching implementation

<property name="openj pa.]j dbc. Updat eManager" val ue="nyconp. MyUpdat eManager "/ >

4.10

Large Result Sets

By default, OpenJPA uses standard forward-only JDBC result sets, and completely instantiates the results of database queries on
execution. When using a JDBC driver that supports version 2.0 or higher of the JDBC specification, however, you can configure
OpenJPA to use scrolling result sets that may not bring all results into memory at once. Y ou can also configure the number of
result objects OpenJPA keeps references to, allowing you to traverse potentially enormous amounts of data without exhausting
JVM memory.

Y ou can a'so configure on-demand loading for individual collection and map fields vialarge result set proxies. See
Section 5.6.4.2, “ Large Result Set Proxies” [271].

Use the following properties to configure OpenJPA's handling of result sets:

e openj pa. Fet chBat chSi ze : The number of objectsto instantiate at once when traversing aresult set. This number will
be set asthe fetch size on JDBC St at erent  objects used to obtain result sets. It also factors in to the number of objects
OpenJPA will maintain a hard reference to when traversing a query result.

The fetch size defaults to -1, meaning all results will be instantiated immediately on query execution. A value of 0 meansto
use the JDBC driver's default batch size. Thus to enable large result set handling, you must set this property to O or to a positive
number.

 openjpa.jdbc. Resul t Set Type : Thetype of result set to use when executing database queries. This property
accepts the following values, each of which corresponds exactly to the same-named j ava. sql . Resul t Set constant:

e forward-only: Thisisthe default.

e scroll-sensitive

e scroll-insensitive

Different JDBC drivers treat the different result set types differently. Not all drivers support all types.

e openjpa.jdbc. FetchDi recti on: The expected order in which you will access the query results. This property affects
the type of data structure OpenJPA will use to hold the results, and is also given to the JDBC driver in case it can optimize
for certain access patterns. This property accepts the following values, each of which corresponds exactly to the same-named
j ava. sql . Resul t Set FETCH constant:

« forwar d: Thisisthe default.
e reverse

¢ unknown

252




JDBC

Not all drivers support all fetch directions.

e openjpa.jdbc. LRSSi ze : The strategy OpenJPA will use to determine the size of result sets. This property isonly used
if you change the fetch batch size from its default of -1, so that OpenJPA begins to use on-demand result loading. Available
values are:

e query: Thisisthe default. The first time you ask for the size of a query result, OpenJPA will perform a SELECT
COUNT(*) query to determine the number of expected results. Note that depending on transaction status and settings, this
can mean that the reported size is dightly different than the actual number of results available.

e | ast : If you have chosen a scrollable result set type, this setting will usethe Resul t Set . | ast method to move to the
last element in the result set and get itsindex. Unfortunately, some JDBC drivers will bring all results into memory in order
to access the last one. Note that if you do not choose a scrollable result set type, then this will behave exactly like unknown.
The default result set typeisf or war d- onl y, so you must change the result set typein order for this property to have an
effect.

e unknown: Under this setting OpenJPA will return | nt eger . MAX_VALUE asthe size for any query result that uses on-
demand loading.

Example 4.16. Specifying Result Set Defaults

<property nanme="openj pa. Fet chBat chSi ze" val ue="20"/>

<property nanme="openj pa.j dbc. Resul t Set Type" val ue="scrol |l -insensitive"/>
<property nanme="openj pa.jdbc. FetchDirection" val ue="forward"/>

<property nanme="openj pa.jdbc. LRSSi ze" val ue="last"/>

Many OpenJPA runtime components also have methods to configure these properties on a case-by-case basis through their
fetch configuration. See Chapter 9, Runtime Extensions [322].

Example 4.17. Specifying Result Set Behavior at Runtime

inport java.sql.*;
i nport org.apache. openj pa. per si st ence. j dbc. *;

Query g = emcreateQuery("select mfrom Magazine mwhere mtitle = 'JDJ'");
OpenJPAQuery kg = OpenJPAPersi stence. cast(q);

JDBCFet chPl an fetch = (JDBCFetchPl an) kq.get FetchPl an();

fetch. set Fet chBat chSi ze(20);

fetch. set Resul t Set Type( Resul t Set Type. SCROLL_I NSENSI Tl VE) ;

fetch. set FetchDirecti on(FetchDirection. FORWARD) ;

fetch. set LRSSi zeAl gorit hn( LRSSi zeAl gori t hm LAST) ;

List results = g.getResultList();

4.11

Default Schema

It is common to duplicate a database model in multiple schemas. Y ou may have one schema for development and another

for production, or different database users may access different schemas. OpenJPA facilitates these patterns with the

openj pa. j dbc. Schena configuration property. This property establishes a default schemafor any unqualified table names,
allowing you to leave schema names out of your mapping definitions.

The Schenma property also establishes the default schemafor new tables created through OpenJPA tools, such as the mapping
tool covered in Section 7.1, “ Forward Mapping” [290].

253




JDBC

If the entities are mapped to the same table name but with different schema name within one Per si st enceUni t intentionally,
and the strategy of Gener at edType. AUTOis used to generate the ID for each entity, a schemaname for each entity must be
explicitly declared either through the annotation or the mapping.xml file. Otherwise, the mapping tool only creates the tables for
those entities with the schema names under each schema. In addition, there will be only one OPENJPA SEQUENCE TABLE
created for al the entitieswithin the Per si st enceUni t if the entities are not identified with the schema name. Read

Section 9.6, “ Generators” [331] in the Reference Guide.

4.12. Schema Reflection

OpenJPA needs information about your database schema for two reasons. First, it can use schemainformation at runtime to
validate that your schemais compatible with your persistent class definitions. Second, OpenJPA requires schema information
during development so that it can manipulate the schema to match your object model. OpenJPA usesthe SchenaFact ory
interface to provide runtime mapping information, and the SchermaTool  for development-time data. Each is presented below.

4.12.1. Schemas List

By default, schema reflection acts on al the schemas your JDBC driver can "see". Y ou can limit the schemas and tables OpenJPA
actsonwiththe openj pa. j dbc. Schenas configuration property. This property accepts a comma-separated list of schemas
and tables. To list aschema, listits name. To list atable, listitsfull nameintheform <schena- nane>. <t abl e- name>. If

atable does not have a schema or you do not know its schema, listitsnameas . <t abl e- name> (notice the preceding '."). For

example, to list the BUSOBJ S schema, the ADDRESS table in the GENERAL schema, and the SYSTEM | NFOtable, regardless of
what schemait isin, use the string:

BUSOBJS, GENERAL. ADDRESS, . SYSTEM | NFO

Some databases are case-sensitive with respect to schema and table names. Oracle, for example, requires namesin all
upper case.

4.12.2. Schema Factory

OpenJPA reliesonthe openj pa. j dbc. SchermaFact or y interface for runtime schemainformation. Y ou can control the
schema factory OpenJPA uses through the openj pa. j dbc. SchemaFact or y property. There are several built-in options to
choose from:

e dynami c: Thisisthe default setting. It isan aias for the
or g. apache. openj pa. j dbc. schema. Dynam cSchemaFact ory. The Dynanm cSchenmaFact ory isthe most
performant schema factory, because it does not validate mapping information against the database. Instead, it assumes all
object-relational mapping information is correct, and dynamically builds an in-memory representation of the schema from your
mapping metadata. When using this factory, it isimportant that your mapping metadata correctly represent your database's
foreign key constraints so that OpenJPA can order its SQL statements to meet them.

* native: Thisisanaliasfor the or g. apache. openj pa. j dbc. schema. LazySchenmaFact ory . As persistent
classes are loaded by the application, OpenJPA reads their metadata and object-relational mapping information. This factory
usesthej ava. sql . Dat abaseMet aDat a interface to reflect on the schema and ensure that it is consistent with the
mapping data being read. Use this factory if you want up-front validation that your mapping metadata is consistent with the
database during development. This factory accepts the following important properties:

e Forei gnKeys: Settot r ue to automatically read foreign key information during schema validation.

254


../javadoc/org/apache/openjpa/jdbc/schema/SchemaFactory.html
../javadoc/org/apache/openjpa/jdbc/schema/DynamicSchemaFactory.html
../javadoc/org/apache/openjpa/jdbc/schema/DynamicSchemaFactory.html
../javadoc/org/apache/openjpa/jdbc/schema/LazySchemaFactory.html

JDBC

4.13.

e tabl e: Thisisandiasfor the or g. apache. openj pa. j dbc. schema. Tabl eSchenaFact ory . This schema
factory stores schemainformation as an XML document in a database table it creates for this purpose. If your JDBC driver
doesn't support thej ava. sqgl . Dat abaseMet aDat a standard interface, but you still want some schema validation to occur
at runtime, you might use this factory. It is not recommended for most users, though, because it is easy for the stored XML
schema definition to get out-of-synch with the actual database. This factory accepts the following properties:

e Tabl e: The name of the table to create to store schema information. Defaults to OPENJ PA _SCHEMA.
e Primar yKeyCol umrm: The name of the table's numeric primary key column. Defaultsto | D.

¢ SchemaCol unn: The name of the table's string column for holding the schema definition as an XML string. Defaults to
SCHEMA DEF .

« file:Thisisanaliasforthe or g. apache. openj pa. j dbc. schena. Fi | eSchemaFact ory . Thisfactory isa
lot likethe Tabl eSchenaFact or y, and has the same advantages and disadvantages. Instead of storing its XML schema
definition in a database table, though, it storesit in afile. This factory accepts the following properties:

» Fi | e: Theresource name of the XML schemafile. By default, the factory looks for aresource called
package. schemm, located in any top-level directory of the CLASSPATH or in the top level of any jar in your
CLASSPATH.

Y ou can switch freely between schema factories at any time. The XML file format used by some factoriesis detailed in
Section 4.14,* XML Schema Format " [258] . Aswith any OpenJPA plugin, you can also implement your own schema
factory if you have needs not met by the existing options.

Schema Tool

Most users will only access the schematool indirectly, through the interfaces provided by other tools. Y ou may find, however,
that the schematool is a powerful utility in its own right. The schematool has two functions:

1. To reflect on the current database schema, optionally trandating it to an XML representation for further manipulation.

2. Totakeinan XML schema definition, calculate the differences between the XML and the existing database schema, and apply
the necessary changes to make the database match the XML.

The XML format used by the schematool abstracts away the differences between SQL dialects used by different database
vendors. Thetool also automatically adapts its SQL to meet foreign key dependencies. Thus the schematool is useful as a general
way to manipulate schemas.

Y ou can invoke the schematool through its Javaclass, or g. apache. openj pa. j dbc. schema. SchemaTool . In addition
to the universal flags of the configuration framework, the schematool accepts the following command line arguments:

e -ignoreErrors/-i <true/t | false/f>:Iffal se ,anexceptionwill bethrown if the tool encounters any
database errors. Defaultsto f al se.

e -file/-f <stdout | output file>:UsethisoptiontowriteaSQL script for the planned schema modifications,
rather them committing them to the database. When used in conjunction withtheexport orref| ect actions, the named
file will be used to write the exported schema XML. If the file names aresourceinthe CLASSPATH, datawill be written to
that resource. Use st dout  to write to standard output. Defaultsto st dout .

» -openj paTabl es/-ot <true/t | falsel/f>:Whenreflecting onthe schema, whether to reflect on tables
and sequences whose names start with OPENJPA . Certain OpenJPA components may use such tables - for example,
thet abl e schemafactory option covered in Section 4.12.2, “ Schema Factory " [254]. When using other actions,
openj paTabl es controls whether these tables can be dropped. Defaultsto f al se.

e -dropTabl es/-dt <true/t | fal se/f>:Setthisoptiontotr ue todrop tablesthat appear to be unused during
retai nandrefresh actions. Defaultsto true.

255


../javadoc/org/apache/openjpa/jdbc/schema/TableSchemaFactory.html
../javadoc/org/apache/openjpa/jdbc/schema/FileSchemaFactory.html
../javadoc/org/apache/openjpa/jdbc/schema/SchemaTool.html

JDBC

-dropSequences/-dsq <true/t | false/f>:Setthisoptiontot r ue to drop sequences that appear to be unused
duringr et ai nandr ef r esh actions. Defaultstot r ue.

-sequences/-sq <true/t | fal se/f>:Whether to manipulate sequences. Defaultstot r ue.
-indexes/-ix <true/t | false/f>:Whether to manipulate indexes on existing tables. Defaultstot r ue.

-primaryKeys/-pk <true/t | fal se/f>:Whether to manipulate primary keys on existing tables. Defaults to
true.

-foreignKeys/-fk <true/t | false/f>:Whether to manipulate foreign keys on existing tables. Defaultstot r ue.

-record/-r <true/t | false/f>:Usefal se topreventwritingthe schema changes made by thetool to the
current schenma f act ory. Defaultstot r ue.

-schemas/-s <schema |i st >: A list of schemaand table names that OpenJPA should access during this run of the
schematool. Thisis equivalent to setting the openjpa.jdbc.Schemas property for asingle run.

The schematool also acceptsan- acti onor-a flag. Multiple actions can be composed in a comma-separated list. The
available actions are;

add: Thisisthe default action if you do not specify one. It brings the schema up-to-date with the given XML document by
adding tables, columns, indexes, etc. This action never drops any schema components.

r et ai n: Keep all schema componentsin the given XML definition, but drop the rest from the database. This action never
adds any schema components.

dr op: Drop al schema componentsin the schema XML. Tables will only be dropped if they would have O columns after
dropping al columnslisted in the XML.

ref resh: Equivalenttor et ai n, then add.

bui | d: Generate SQL to build a schema matching the one in the given XML file. Unlike add, this option does not take into
account the fact that part of the schema defined in the XML file might already exist in the database. Therefore, this actionis
typically used in conjunction with the - f i | e flag to writea SQL script. This script can later be used to recreate the schemain
the XML.

ref | ect : Generate an XML representation of the current database schema.

cr eat eDB: Generate SQL to re-create the current database. This action istypically used in conjunction with the-fi | e flag
to write a SQL script that can be used to recreate the current schema on a fresh database.

dr opDB: Generate SQL to drop the current database. Like cr eat eDB, this action can be used withthe-fi | e flagto script
a database drop rather than performit.

i mpor t : Import the given XML schema definition into the current schema factory. Does nothing if the factory does not store
arecord of the schema.

expor t : Export the current schema factory's stored schema definition to XML. May produce an empty fileif the factory does
not store arecord of the schema.

del et eTabl eCont ent s: Execute SQL to delete al rows from all tables that OpenJPA knows about.

The schematool manipulates tables, columns, indexes, constraints, and sequences. It cannot create or drop the database
schema objects in which the tables reside, however. If your XML documents refer to named database schemas, those
schemas must exist.

256



JDBC

We present some examples of schematool usage below.

Example 4.18. Schema Creation

Add the necessary schema components to the database to match the given XML document, but don't drop any data:

java org. apache. openj pa. j dbc. schema. SchemaTool target Schema. xn

Example 4.19. SQL Scripting

Repeat the same action as the first example, but this time don't change the database. Instead, write any planned changesto a SQL
script:

java org. apache. openj pa. j dbc. schema. SchemaTool -f script.sql targetSchema. xn

Write a SQL script that will re-create the current database:

java org. apache. openj pa. j dbc. schema. SchemaTool -a createDB -f script.sq

Example 4.20. Table Cleanup

Refresh the schema and delete all contents of all tables that OpenJPA knows about:

java org. apache. openj pa. j dbc. schema. SchemaTool -a refresh, del et eTabl eCont ent s

Example 4.21. Schema Drop

Drop the current database:

java org. apache. openj pa. j dbc. schema. SchemaTool -a dropDB

Example 4.22. Schema Reflection

Write an XML representation of the current schemato fileschema. xmi

java org. apache. openj pa. j dbc. schema. SchemaTool -a reflect -f schema. xn

257




JDBC

4.14. XML Schema Format

The schematool and schema factoriesall use the same XML format to represent database schema. The Document Type
Definition (DTD) for schemainformation is presented below, followed by examples of schema definitionsin XML.

<! ELEMENT schemas (schemm) +>
<! ELEMENT schena (tabl e| sequence) +>
<I ATTLI ST schema name CDATA #| MPLI ED>

<! ELEMENT sequence EMPTY>

<! ATTLI ST sequence name CDATA #REQUI RED>

<! ATTLI ST sequence initial-val ue CDATA #| MPLI ED>
<! ATTLI ST sequence increnment CDATA #| MPLI ED>

<! ATTLI ST sequence al |l ocate CDATA #| MPLI| ED>

<! ELEMENT tabl e (col umm|i ndex| pk]| f k| uni que) +>
<I ATTLI ST tabl e name CDATA #REQUI RED>

<! ELEMENT col umm EMPTY>
<! ATTLI ST col umm nanme CDATA #REQUI RED>
<! ATTLI ST columm type (array | bigint | binary | bit | blob | char | clob

| date | decimal | distinct | double | float | integer | java_object

| longvarbinary | longvarchar | null | nuneric | other | real | ref

| smallint | struct | tine | timestanp | tinyint | varbinary | varchar)
#REQUI RED>

<! ATTLI ST colum not-null (true|false) "fal se">

<! ATTLI ST col um auto-assign (true|false) "fal se">
<! ATTLI ST col um defaul t CDATA #l MPLI ED>

<! ATTLI ST col um si ze CDATA #| MPLI ED>

<! ATTLI ST col um deci mal - di gi ts CDATA #| MPLI ED>

<l-- the type-nanme attribute can be used when you want OpenJPA to -->
<l-- use a particular SQL type decl arati on when creating the -->
<l-- colum. It is up to you to ensure that this type is -->
<l-- conpatible with the JDBC type used in the type attribute. -->

<I ATTLI ST col um type-name CDATA #| MPLI ED>

<l-- the 'colum' attribute of indexes, pks, and fks can be used -->
<I-- when the el ement has only one colum (or for foreign keys, -->
<l-- only one local colum); in these cases the on/join child -->
<!-- elenents can be onitted -->

<! ELEMENT i ndex (on)*>

<! ATTLI ST i ndex name CDATA #REQUI RED>

<! ATTLI ST i ndex col umm CDATA #l| MPLI ED>

<! ATTLI ST i ndex uni que (true|false) "false">

<l-- the 'logical' attribute of pks should be set to '"true' if -->
<I-- the primary key does not actually exist in the database, -->
<!-- but the given colum should be used as a primary key for -->
<l-- O R purposes -->

<! ELEMENT pk (on)*>

<! ATTLI ST pk nane CDATA #l MPLI ED>

<! ATTLI ST pk col urm CDATA #| MPLI| ED>

<I ATTLI ST pk logical (true|false) "false">

<! ELEMENT on EMPTY>
<! ATTLI ST on col unn CDATA #REQUI RED>

<l-- fks with a delete-action of 'none' are similar to |ogical -->
<l-- pks; they do not actually exist in the database, but -->
<l-- represent a logical relation between tables (or their -->
<l-- correspondi ng Java cl asses) -->

<! ELEMENT fk (join)*>

<I ATTLI ST fk name CDATA #| MPLI ED>

<I ATTLI ST fk deferred (true|false) "false">

<I ATTLI ST fk to-tabl e CDATA #REQUI RED>

<! ATTLI ST fk col urm CDATA #| MPLI| ED>

<I ATTLI ST fk del ete-action (cascade| defaul t| exception|none|null) "none">

<! ELEMENT j oi n EMPTY>
<I ATTLI ST join col utm CDATA #REQUI RED>
<! ATTLI ST join to-col um CDATA #REQUI RED>

258



JDBC

<! ATTLI ST joi n val ue CDATA #l MPLI ED>

<l-- unique constraint -->

<! ELEMENT uni que (on)*>

<! ATTLI ST uni que name CDATA #| MPLI ED>

<! ATTLI ST uni que col unm CDATA #l MPLI ED>

<! ATTLI ST uni que deferred (true|false) "fal se">

Example 4.23. Basic Schema

A very basic schema definition.

<schemas>
<schema>

<sequence nanme="S_ARTS"'/>

<t abl e name="ARTI CLE">
<col utm nanme="TI TLE" type="varchar" size="255" not-null="true"/>
<col utm nanme="AUTHOR _FNAME" type="varchar" size="28">
<col utm nanme="AUTHOR _LNAME" type="varchar" size="28">
<col utm nane="CONTENT" type="cl ob">

</tabl e>
<t abl e name=" AUTHOR' >
<col utm nane="FI RST_NAME" type="varchar" size="28" not-null="true">
<col utmm nanme="LAST_NAME" type="varchar" size="28" not-null="true">
</tabl e>
</ schema>

</ schemas>

Example 4.24. Full Schema

Expansion of the above schema with primary keys, constraints, and indexes, some of which span multiple columns.

<schemas>
<schema>
<sequence nanme="S_ARTS"/>
<t abl e nane="ARTI CLE" >
<col utm nane="TI TLE" type="varchar" size="255" not-null="true"/>
<col utm nane="AUTHOR_FNAME" type="varchar" size="28">
<col utm nanme="AUTHOR_LNAME" type="varchar" size="28">
<col utm nanme=" CONTENT" type="cl ob">
<pk col um="TI TLE"/ >
<fk to-tabl e=" AUTHOR' del et e-acti on="excepti on">
<j oi n col um="AUTHOR_FNAME" t 0- col utm="FI RST_NAME"/ >
<j oi n col um="AUTHOR_LNAME" t 0-col urm="LAST_NAME"/ >
</ f k>
<i ndex name="ARTI CLE_AUTHOR" >
<on col um="AUTHOR_FNAME"/ >
<on col um="AUTHOR_LNAME"/ >

</index>

</ tabl e>

<t abl e nane=" AUTHOR' >
<col utm nane="FI RST_NAME" type="varchar" size="28" not-null="true">
<col utm nane="LAST_NAME" type="varchar" size="28" not-null="true">
<pk>

<on col um="FI RST_NAME"/ >
<on col um="LAST_NAME"/ >
</ pk>
</ tabl e>
</ schema>
</ schemas>

259




Chapter 5. Persistent Classes

5.1.

Persistent class basics are covered in Chapter 4, Entity [17] of the JPA Overview. This chapter details the persistent class
features OpenJPA offers beyond the core JPA specification.

Persistent Class List

5.2.

Unlike many ORM products, OpenJPA does not need to know about all of your persistent classes at startup. OpenJPA discovers
new persistent classes automatically as they are loaded into the JVM; in fact you can introduce new persistent classes into
running applications under OpenJPA. However, there are certain situationsin which providing OpenJPA with a persistent class
listis helpful:

» OpenJPA must be able to match entity namesin JPQL queries to persistent classes. OpenJPA automatically knows the entity
names of any persistent classes already loaded into the VM. To match entity namesto classes that have not been loaded,
however, you must supply a persistent classlist.

» When OpenJPA manipulates classesin a persistent inheritance hierarchy, OpenJPA must be aware of al the classesin the
hierarchy. If some of the classes have not been loaded into the VM yet, OpenJPA may not know about them, and queries may
return incorrect results.

« If you configure OpenJPA to create the needed database schema on startup (see Section 7.1.3, “ Runtime Forward Mapping
” [292]), OpenJPA must know all of your persistent classes up-front.

When any of these conditions are afactor in your JPA application, usethecl ass, mappi ng-file,and jar-fil e elements
of JPA's standard XML format to list your persistent classes. See Section 6.1, “ persistencexml ” [68] for details.

Alternately, you can tell OpenJPA to search through your classpath for persistent types. Thisis described in more detail in
Section 6.1, “ Metadata Factory " [283].

Note

Listing persistent classes (or their metadata or jar files) is an all-or-nothing endeavor. If your persistent classlist is non-
empty, OpenJPA will assume that any unlisted classis not persistent.

Enhancement

In order to provide optimal runtime performance, flexible lazy loading, and efficient, immediate dirty tracking, OpenJPA can

use an enhancer . An enhancer isatool that automatically adds code to your persistent classes after you have written them. The
enhancer post-processes the bytecode generated by your Java compiler, adding the necessary fields and methods to implement the
required persistence features. This bytecode modification perfectly preserves the line numbersin stack traces and is compatible
with Java debuggers. In fact, the only change to debugging is that the persistent setter and getter methods of entity classes using
property access will be prefixed with pc in stack traces and step-throughs. For example, if your entity hasaget | d method for
persistent property i d, and that method throws an exception, the stack trace will report the exception from method pcget | d.
The line numbers, however, will correctly correspond to the get | d method in your source file.

Magazine.java | m fﬁ:::" Magazine.class |
MI

260



Persistent Classes

5.2.1.

The diagram above illustrates the compilation of a persistent class.

Y ou can add the OpenJPA enhancer to your build process, or use Java 1.5's instrumentation features to transparently enhance
persistent classes when they are loaded into the JV M. The following sections describe each option.

Enhancing at Build Time

The enhancer can be invoked at build time viaits Javaclass, or g. apache. openj pa. enhance. PCEnhancer .

Y ou can also enhance via Ant; see Section 14.1.2, “ Enhancer Ant Task ” [365].

Example 5.1. Using the OpenJPA Enhancer

java org. apache. openj pa. enhance. PCEnhancer Magazi ne. j ava

The enhancer accepts the standard set of command-line arguments defined by the configuration framework (see Section 2.3, “
Command Line Configuration ” [197] ), along with the following flags:

e -directory/-d <output directory>:Pathtotheoutput directory. If the directory does not match the enhanced
class package, the package structure will be created beneath the directory. By default, the enhancer overwrites the original
. cl ass file.

« -enforcePropertyRestrictions/-epr <true/t | false/f>:Whethertothrow an exception when it appears
that a property access entity is not obeying the restrictions placed on property access. Defaults to false.

» -addDef aul t Constructor/-adc <true/t | false/f>:Thespecrequiresthat all persistent classes define ano-
arg constructor. Thisflag tells the enhancer whether to add a protected no-arg constructor to any persistent classes that don't
dready have one. Defaultsto true.

 -tnpC assLoader/-tcl <true/t | false/f>:Whethertoload persistent classes with atemporary class loader.
This allows other code to then load the enhanced version of the class within the same JVM. Defaultstot r ue. Try setting this
flagtof al se asadebugging step if you run into class loading problems when running the enhancer.

Each additional argument to the enhancer must be one of the following:
* Thefull name of aclass.

e The .javafilefor aclass.

» The. cl ass fileof aclass.

If you do not supply any arguments to the enhancer, it will run on the classesin your persistent classlist (see Section 5.1, “
Persistent ClassList " [260]). Y ou must, however, supply the classpath you wish the enhancer to run with. This classpath
must include, at minimum, the openjpajar(s), persistence.xml and the target classes.

Y ou can run the enhancer over classes that have already been enhanced, in which case it will not further modify the class. You
can also run it over classesthat are not persistence-capable, in which case it will treat the class as persistence-aware. Persistence-
aware classes can directly manipulate the persistent fields of persistence-capable classes.

Note that the enhancement process for subclasses introduces dependencies on the persistent parent class being enhanced. This
isnormally not problematic; however, when running the enhancer multiple times over a subclass whose parent classis not yet
enhanced, class loading errors can occur. In the event of aclassload error, simply re-compile and re-enhance the offending
classes.

261




Persistent Classes

5.2.2.

Enhancing JPA Entities on Deployment

5.2.3.

The Java EE specification includes hooks to automatically enhance JPA entities when they are deployed into a container. Thus, if
you are using a Java EE-compliant application server, OpenJPA will enhance your entities automatically at runtime. Note that if
you prefer build-time enhancement, OpenJPA's runtime enhancer will correctly recognize and skip pre-enhanced classes.

If your application server does not support the Java EE enhancement hooks, consider using the build-time enhancement described
above, or the more general runtime enhancement described in the next section.

Enhancing at Runtime

OpenJPA includes a Java agent for automatically enhancing persistent classes as they are loaded into the VM. Java agents are
classes that are invoked prior to your application's mai n method. OpenJPA's agent uses VM hooks to intercept all class loading
to enhance classes that have persistence metadata before the VM loads them.

Searching for metadata for every class loaded by the VM can slow application initialization. One way to speed things up isto
take advantage of the optional persistent classlist described in Section 5.1, “ Persistent ClassList ” [260]. If you declare a
persistent class list, OpenJPA will only search for metadata for classesin that list.

To employ the OpenJPA agent, invokej ava withthe -j avaagent set to the path to your OpenJPA jar file.

Example 5.2. Using the OpenJPA Agent for Runtime Enhancement

java -javaagent:/hone/ dev/ openj pa/li b/ openjpa.jar comxyz. Main

Y ou can pass settings to the agent using OpenJPA's plugin syntax (see Section 2.4, “ Plugin Configuration ” [199]). The agent
accepts the long form of any of the standard configuration options (Section 2.3, “ Command Line Configuration ” [197] ). It
also accepts the following options, the first three of which correspond exactly to the same-named options of the enhancer tool
described in Section 5.2.1, “ Enhancing at Build Time” [261]:

» addDef aul t Const ruct or
» enforcePropertyRestrictions

» scanDevPat h: Boolean indicating whether to scan the classpath for persistent typesif none have been configured. If you
do not specify a persistent types list and do not set this option to true, OpenJPA will check whether each class |oaded into the
JVM is persistent, and enhance it accordingly. This may slow down class load times significantly.

» cl assLoadEnhancenent : Boolean controlling whether OpenJPA load-time class enhancement should be available in this
JVM execution. Default: t r ue

* runti neRedefi ni ti on: Boolean controlling whether OpenJPA class redefinition should be available in this VM
execution. Default: t r ue

Example 5.3. Passing Optionsto the OpenJPA Agent

java -javaagent:/hone/ dev/ openj pa/li b/ openj pa.j ar=addDef aul t Const ruct or =f al se com xyz. Mai n

5.2.4.

Enhancing Dynamically at Runtime

If ajavaagent is not provided via the command line and OpenJPA is running on the Oracle 1.6 SDK or IBM 1.6 JDK (SR8+),
OpenJPA will attempt to dynamically load the Enhancer that was mentioned in the previous section. This support is provided

262




Persistent Classes

as an ease of use feature and it is not recommended for use in a production system. Using this method of enhancement has the

following caveats:

» The dynamic runtime enhancer is plugged into the VM during creation of the EntityManagerFactory. Any Entity classes that
are loaded before the EntityManagerFactory is created will not be enhanced.

» The command line javaagent settings are not configurable when using this method of enhancement.

 Just as with the Javaagent approach, if you declare a persistent classlist, then OpenJPA will only search for metadata and try to
enhance the listed classes.

When then dynamic enhancer is loaded, the following informational message is logged:

[java] jpa.enhancenent

I NFO

[ mai n] openj pa. Runtine -

OpenJPA dynami cal |y | oaded the cl ass enhancer.

Any cl asses that were not

5.2.5.

Setting the property openjpa.DynamicEnhancementAgent to false will disable this function.

Omitting the OpenJPA enhancer

OpenJPA does not require that the enhancer be run. If you do not run the enhancer, OpenJPA will fall back to one of several
possible alternatives for state tracking, depending on the execution environment.

 Deploy-time enhancement: if you are running your application inside a Java EE container, or another environment that supports
the JPA container contract, then OpenJPA will automatically perform class transformation at deploy time.

» Java 6 classretransformation: if you are running your application in a Java 6 environment, OpenJPA will attempt to
dynamically register aCl assTr ansf or mer that will redefine your persistent classes on the fly to track access to persistent
data. Additionally, OpenJPA will create a subclass for each of your persistent classes. When you execute aquery or traverse a
relation, OpenJPA will return an instance of the subclass. This meansthat thei nst anceof operator will work as expected,
but 0. get A ass() will return the subclassinstead of the class that you wrote.

Y ou do not need to do anything at all to get this behavior. OpenJPA will automatically detect whether or not the execution
environment is capable of Java 6 class retransformation.

» Java 5 classredefinition: if you are running your application in a Java 5 environment, and you specify the OpenJPA javaagent,
OpenJPA will use Java 5 class redefinition to redefine any persistent classes that are not enhanced by the OpenJPA javaagent.
Aside from the requirement that you specify ajavaagent on the command line, this behavior is exactly the same as the Java
6 class retransformation behavior. Of course, since the OpenJPA javaagent performs enhancement by default, thiswill only
be availableif you set the cl assLoadEnhancenent javaagent flagtof al se, or on any classes that are skipped by the
OpenJPA runtime enhancement process for some reason.

* Runtime Unenhanced Classes: AKA state comparison and subclassing. If you are running in a Java 5 environment without
ajavaagent, or in aJava 6 environment that does not support class retransformation, OpenJPA will still create subclasses as
outlined above. However, in some cases, OpenJPA may not be able to receive notifications when you read or write persistent

data.

Runtime Unenhanced Classes has some known limitations which are discussed below and documented in JIRA issue
tracker on the OpenJPA website. As aresult this option is disabled by default. Support for this method of automatic
enhancement may be enabled via the Section 2.5.63, “ openj pa.RuntimeUnenhancedClasses’ [215] option.

To enable Runtime Unenhanced Classes for a specific persistence unit, add the following property to persistence.xml:

263



Persistent Classes

<properties>
<property nanme="openj pa. Runti meUnenhancedC asses" val ue="supported"/>

<properties>

If you are using property access for your persistent data, then OpenJPA will be able to track all accesses for instances that
you load from the database, but not for instances that you create. This is because OpenJPA will create new instances of its
dynamically-generated subclass when it |oads data from the database. The dynamically-generated subclass has code in the
setters and getters that notify OpenJPA about persistent data access. This means that new instances that you create will be
subject to state-comparison checks (see discussion below) to compute which fields to write to the database, and that OpenJPA
will ignore requests to evict persistent data from such instances. In practice, thisis not a particularly bad limitation, since
OpenJPA aready knows that it must insert all field values for new instances. So, thisisonly really anissueif you flush
changes to the database while inserting new records; after such aflush, OpenJPA will need to hold potentially-unneeded hard
references to the new-flushed instances.

If you are using field access for your persistent data, then OpenJPA will not be able to track accesses for any instances,
including ones that you load from the database. So, OpenJPA will perform state-comparison checks to determine which
fields are dirty. These state comparison checks are costly in two ways. First, there is a performance penalty at flush / commit
time, since OpenJPA must walk through every field of every instance to determine which fields of which records are dirty.
Second, there is amemory penalty, since OpenJPA must hold hard references to al instances that were loaded at any time
in agiven transaction, and since OpenJPA must keep a copy of all theinitial values of the loaded data for later comparison.
Additionally, OpenJPA will ignore requests to evict persistent state for these types of instances. Finally, the default lazy
loading configuration will be ignored for single-valued fields (one-to-one, many-to-one, and any other non-collection or
non-map field that has alazy loading configuration). If you use fetch groups or programmatically configure your fetch plan,
OpenJPA will obey these directives, but will be unable to lazily load any data that you exclude from loading. As aresult of
these limitations, it is not recommended that you use field accessif you are not either running the enhancer or using OpenJPA
with ajavaagent or in a Java 6 environment.

5.3. Managed Interfaces

OpenJPA's managed interface feature allows you to define your object model entirely in terms of interfaces, instead of concrete
classes. To use this feature, you must annotate your managed interfaces with the Managed| nt er f ace annotation, and use the
OpenJPAENt i t yManager . cr eat el nst ance( Cl ass) method to create new records. Notethat cr eat el nst ance()
returns unmanaged instances; you must passthemto Ent i t yManager . per si st () to storethem in the database.

@mnagedl nterface

public interface Personlface {
@d @zener at edVval ue
int getld();
void setld(int id);

/1l inplicitly persistent per JPA property rules
String getName();
voi d set Nane(String nane);

OpenJPAENt i t yManager em = .. .;

Personl face person = em creat el nst ance(Personl face. cl ass);
person. set Nane(" Honer Si npson");

em get Transaction(). begin();

264




Persistent Classes

em per si st (person);
em get Transaction().commit();

5.4.

Object Identity

5.4.1.

OpenJPA makes several enhancementsto JPA's standard entity identity.

Datastore ldentity

The JPA specification requires you to declare one or more identity fields in your persistent classes. OpenJPA fully supports this
form of object identity, called application identity. OpenJPA, however, also supports datastore identity. In datastore identity, you
do not declare any primary key fields. OpenJPA manages the identity of your persistent objects for you through a surrogate key in
the database.

Y ou can control how your JPA datastore identity value is generated through OpenJPA's

or g. apache. openj pa. per si st ence. Dat aSt or el d class annotation. This annotation has st r at egy and

gener at or propertiesthat mirror the same-named properties on the standard j avax. per si st ence. Gener at edVal ue
annotation described in Section 5.2.3,“ 1d " [35] of the JPA Overview.

To retrieve the identity value of a datastore identity entity, use the OpenJPAENt i t yManager . get Qbj ect | d( Obj ect

entity) method. See Section 9.2.2, “ OpenJPAENtityManager " [323] for more information on the
OpenJPAENt i t yManager .

Example 5.4. JPA Datastore | dentity Metadata

i mport org. apache. openj pa. persi stence. *;
@ntity

@at aStoreld

public class Lineltem{

. no @d fields declared ...

5.4.2.

Internally, OpenJPA usesthe public or g. apache. openj pa. uti | . | d classfor datastore identity objects. When writing
OpenJPA plugins, you can manipul ate datastore identity objects by casting them to this class. Y ou can aso create your own | d
instances and pass them to any internal OpenJPA method that expects an identity object.

In JPA, you will never see | d instances directly. Instead, calling OQpenJPAENt i t yManager . get Obj ect | d on adatastore

identity object will return the Long surrogate primary key value for that object. Y ou can then usethisvaluein callsto
Entit yManager . fi nd for subsequent lookups of the same record.

Entities as Identity Fields

OpenJPA alows Many ToOne and OneToOne relations to be identity fields. To identify arelation field as an identity field,
simply annotate it with both the @/any ToOne or @neToOne relation annotation and the @ d identity annotation.

When finding an entity identified by arelation, passthe id of therelationto the Ent i t yManager . f i nd method:

265



../javadoc/org/apache/openjpa/persistence/DataStoreId.html
../javadoc/org/apache/openjpa/persistence/DataStoreId.html
../javadoc/org/apache/openjpa/util/Id.html

Persistent Classes

Example5.5. Finding an Entity with an Entity | dentity Field

public Delivery createDelivery(Order order) {
Delivery delivery = new Delivery();
delivery.setld(order);
delivery.setDelivered(new Date());
return delivery;

}

public Delivery findDelivery(EntityManager em Order order) {
I/ use the identity of the related instance
return emfind(Delivery.class, order.getld());

When your entity has multiple identity fields, at least one of which is arelation to another entity, you can use an identity
class (see Section 4.2.1, “ Identity Class” [22] in the JPA Overview), or an embedded identity object. |dentity classfields
corresponding to entity identity fields should be of the same type as the related entity's identity. If an embedded identity
object is used, you must annotate the relation field with both the @vany ToOne or @neToOne relation annotation and the
@vmappedBy| d annotation.

Example 5.6. 1d Classfor Entity | dentity Fields

@ntity
public class Oder {

@d
private long id;

}

/**
* Lineltemuses a conpound primary key. Part of the conpound key
* Lineltemd is relation or reference to Order instance.

**/

@ntity

@dd ass(Linelten d. cl ass)

public class Lineltem {

@d
private int index;

@d
@manyToOne
private Order order;

}

public class Lineltemd {

public int index;

public long order; // same type as identity of Oder i.e Oder.id
/1 also the variable nane nust match the nane of the
// variable in Lineltemthat refers to Order.

In the example above, if Or der had used an identity class Or der | d in place of asimplel ong value, then the
Li nel t em d. or der field would have been of type Or der | d.

266




Persistent Classes

Example 5.7. Embedded I1d for Entity | dentity Fields

@Entity
public class O der {

@d

private long id;

}

/**
* Lineltemuses a conpound primary key. Part of the conpound key
* Lineltemd is relation or reference to Order instance.

**/

@Entity

public class Lineltem{
@nbeddedl d Lineltemd id;

@anyToOne

@bppedByl d("orderld") // The value el ement of the MappedByld annotation
/1 must be used to specify the nane of the prinmary
/1 key attribute to which the relationship
/1 corresponds. If the primary key referenced by
/1 the relationship attribute is of the same Java
/1 type as the dependent's primary key, then the
/1 value element is not specified.

private Order order;

}

@nbeddabl e
public class Lineltenmd {

public int index;
public | ong orderld;

5.4.3.

In the example above, the Li nel t emuses an embedded id to represent its primary key. The primary key attribute corresponding
to the relationship in the Li nel t el d must be of the same type as the primary key of the Or der . The MappedByl d
annotation must be applied to the relationship field Li nel t em or der .

Application Identity Tool

If you choose to use application identity, you may want to take advantage of OpenJPA's application identity tool. The application
identity tool generates Java code implementing the identity class for any persistent type using application identity. The code
satisfies al the requirements the specification places on identity classes. Y ou can useit as-is, or smply useit as a starting point,
editing it to meet your needs.

Before you can run the application identity tool on a persistent class, the class must be compiled and must have complete
metadata. All primary key fields must be marked as such in the metadata.

In JPA metadata, do not attempt to specify the @ dCl ass annotation unless you are using the application identity tool to
overwrite an existing identity class. Attempting to set the value of the @ dCl ass to anon-existent classwill prevent your
persistent class from compiling. Instead, use the - nane or - suf fi x options described below to tell OpenJPA what name to
give your generated identity class. Once the application identity tool has generated the class code, you can set the @ dCl ass
annotation.

The application identity tool can be invoked viaits Javaclass, or g. apache. openj pa. enhance. Appl i cati onl dTool .

267



../javadoc/org/apache/openjpa/enhance/ApplicationIdTool

Persistent Classes

Section 14.1.3, “ Application Identity Tool Ant Task ” [366] describes the application identity tool's Ant task.

Example 5.8. Using the Application | dentity Tool

java org. apache. openj pa. enhance. Appl i cati onl dTool -s |d Magazine.java

5.4.4.

The application identity tool accepts the standard set of command-line arguments defined by the configuration framework (see
Section 2.3, “ Command Line Configuration ” [197]), including code formatting flags described in Section 2.3.1, “ Code
Formatting " [198]. It also accepts the following arguments:

e -directory/-d <output directory>: Pathto the output directory. If the directory does not match the generated
oid class package, the package structure will be created beneath the directory. If not specified, the tool will first try to find the
directory of the. j ava file for the persistence-capable class, and failing that will use the current directory.

e -ignoreErrors/-i <true/t | false/f>:Iffal se ,anexceptionwill bethrown if thetool isrun on any class
that does not use application identity, or is not the base class in the inheritance hierarchy (recall that subclasses never define the
application identity class; they inherit it from their persistent superclass).

* -token/-t <token>: Thetoken to use to separate stringified primary key valuesin the string form of the object id. This
option isonly used if you have multiple primary key fields. It defaultsto "::".

 -nanme/-n <id class nane>: The name of theidentity class to generate. If this option is specified, you must run the
tool on exactly one class. If the class metadata already names an object id class, this option isignored. If the nameis not fully
qualified, the persistent class package is prepended to form the qualified name.

e -suffix/-s <id class suffix>:A string to suffix each persistent class name with to form the identity class name.
Thisoption is overridden by - nane or by any object id class specified in metadata.

Each additional argument to the tool must be one of the following:
» Thefull name of apersistent class.

» The .javafilefor apersistent class.

e The. cl ass fileof apersistent class.

If you do not supply any argumentsto the tool, it will act on the classesin your persistent classes list (see Section 5.1, “
Persistent ClassList " [260]).

Autoassign / Identity Strategy Caveats

Section 5.2.4, “ Generated Value” [35] explains how to use JPA's | DENTI TY generation type to automatically assign field
values. However, here are some additional caveats you should be aware of when using | DENTI TY generation:

1. Your database must support auto-increment / identity columns, or some equivalent (see Section 4.4.4,“ OracleDictionary
Properties” [246] for how to configure a combination of triggers and sequences to fake auto-increment support in Oracle
database).

2. Auto-increment / identity columns must be an integer or long integer type.

3. Databases support auto-increment / identity columnsto varying degrees. Some do not support them at all. Others only allow
asingle such column per table, and require that it be the primary key column. More lenient databases may allow non-primary
key auto-increment columns, and may allow more than one per table. See your database documentation for details.

268




Persistent Classes

5.5.

Managed Inverses

Bidirectional relations are an essential part of data modeling. Chapter 13, Mapping Metadata [147] in the JPA Overview
explains how to use the mappedBy annotation attribute to form bidirectional relations that also share datastore storage in JPA.

OpenJPA also alows you to define purely logical bidirectional relations. The
or g. apache. openj pa. persi stence. I nver seLogi cal annotation namesalogical inversein JPA metadata.

Example5.9. Specifying Logical I nverses

Magazi ne. cover Phot o and Phot ogr aph. mag are each mapped to different foreign keysin their respective tables, but
form alogical bidirectional relation. Only one of the fields needs to declare the other asitslogical inverse, though it is not an
error to set the logical inverse of both fields.

i mport org. apache. openj pa. persi st ence. *;

@ntity
public class Magazine {

@neToOne
private Phot ograph cover Phot o;

}

@ntity
public class Photograph {

@neToOne
@ nver seLogi cal ("cover Phot 0")
private Magazi ne nag;

Java does not provide any native facilities to ensure that both sides of a bidirectional relation remain consistent. Whenever you set
one side of the relation, you must manually set the other side as well.

By default, OpenJPA behaves the same way. OpenJPA does not automatically propagate changes from one field in bidirectional
relation to the other field. Thisisin keeping with the philosophy of transparency, and also provides higher performance, as
OpenJPA does not need to analyze your object graph to correct inconsistent relations.

If convenience is more important to you than strict transparency, however, you can enable inverse relation management in
OpenJPA. Set theopenj pa. | nver seManager plugin property tot r ue for standard management. Under this setting,
OpenJPA detects changesto either side of abidirectional relation (logical or physical), and automatically sets the other side
appropriately on flush.

Example 5.10. Enabling Managed | nverses

<property name="openj pa. | nverseManager" val ue="true"/>

The inverse manager has options to log a warning or throw an exception when it detects an inconsistent bidirectional relation,
rather than correcting it. To use these modes, set the manager's Act i on property towar n or except i on, respectively.

By default, OpenJPA excludes largeresult set fields from management. Y ou can force large result set fields to be included by
setting the ManageL RS plugin property tot r ue.

269



../javadoc/org/apache/openjpa/persistence/InverseLogical.html
../javadoc/org/apache/openjpa/persistence/InverseLogical.html

Persistent Classes

Example5.11. Log Inconsistencies

<property name="openj pa.|nverseManager" val ue="true(Acti on=warn)"/>

5.6.

Persistent Fields

5.6.1.

OpenJPA enhances the specification's support for persistent fields in many ways. This section documents aspects of OpenJPA's
persistent field handling that may affect the way you design your persistent classes.

Restoring State

5.6.2.

While the JPA specification says that you should not use rolled back objects, such objects are perfectly valid in OpenJPA. You
can control whether the objects managed state isrolled back to its pre-transaction values with the openj pa. Rest or eSt at e
configuration property. none does not roll back state (the object becomes hollow, and will re-load its state the next timeitis
accessed), i mrut abl e restores immutable values (primitives, primitive wrappers, strings) and clears mutable values so that they
are reloaded on next access, and al | restores all managed values to their pre-transaction state.

Typing and Ordering

When loading datainto afield, OpenJPA examines the value you assign the field in your declaration code or in your no-args
constructor. If the field value's type is more specific than the field's declared type, OpenJPA uses the value type to hold the loaded
data. OpenJPA also uses the comparator you've initialized the field with, if any. Therefore, you can use custom comparators on
your persistent field simply by setting up the comparator and using it in your field'sinitial value.

Example 5.12. Using Initial Field Values

Though the annotations are left out for simplicity, assume enpl oyeesBySal and depart nment s are persistent fieldsin the
class below.

public class Conpany {

/1 OpenJPA will detect the custom conparator in the initial field value
/1 and use it whenever |oading data fromthe database into this field
private Collection enpl oyeesBySal = new TreeSet (new Sal aryConparator());
private Map departnents;

publ i c Conpany {
/1 or we can initialize fields in our no-args constructor; even though
/1 this field is declared type Map, OpenJPA will detect that it's
/] actually a TreeMap and use natural ordering for |oaded data
departments = new TreeMap();

}

/1 rest of class definition...

5.6.3.

Calendar Fields and TimeZones

OpenJPA's support for thej ava. uti | . Cal endar typewill store only the Dat e part of the field, not the Ti meZone
associated with the field. When loading the date into the Cal endar field, OpenJPA will usethe Ti meZone that was used to
initialize the field.

270




Persistent Classes

5.6.4. Proxies

At runtime, the values of all mutable second class object fields in persistent and transactional objects are replaced with
implementation-specific proxies. On modification, these proxies notify their owning instance that they have been changed, so that
the appropriate updates can be made on the datastore.

5.6.4.1. Smart Proxies

Most proxies only track whether or not they have been modified. Smart proxies for collection and map fields, however, keep
arecord of which elements have been added, removed, and changed. This record enables the OpenJPA runtime to make more
efficient database updates on these fields.

When designing your persistent classes, keep in mind that you can optimize for OpenJPA smart proxies by using fields of type
java.util.Set ,java.util.TreeSet,and java.util.HashSet for your collections whenever possible. Smart
proxies for these types are more efficient than proxiesfor Li st s. You can also design your own smart proxies to further
optimize OpenJPA for your usage patterns. See the section on custom proxies for details.

5.6.4.2. Large Result Set Proxies

Under standard ORM behavior, traversing a persistent collection or map field brings the entire contents of that field into memory.
Some persistent fields, however, might represent huge amounts of data, to the point that attempting to fully instantiate them can
overwhelm the JVM or seriously degrade performance.

OpenJPA uses specia proxy types to represent these "large result set" fields. OpenJPA's large result set proxies do not cache

any datain memory. Instead, each operation on the proxy offloads the work to the database and returns the proper result. For
example, the cont ai ns method of alarge result set collection will performa SELECT COUNT( *) query with the proper
WHERE conditions to find out if the given element exists in the database's record of the collection. Similarly, each time you obtain
an iterator OpenJPA performs the proper query using the current large result set settings, as discussed in the JDBC chapter. As
youinvokel t er at or . next , OpenJPA instantiates the result objects on-demand.

Y ou can free the resources used by alarge result set iterator by passing it to the static OpenJPAPer si st ence. cl ose
method.

Example5.13. Using a Large Result Set | terator

i nport org. apache. openj pa. per si st ence. *;

Col | ection enpl oyees = conpany. get Enpl oyees(); // enployees is a |Irs collection
Iterator itr = enployees.iterator()
while (itr.hasNext())
process(( Enpl oyee) itr.next());
OpenJPAPer si stence. cl ose(itr);

Y ou can also add and remove from large result set proxies, just as with standard fields. OpenJPA keeps arecord of all changes
to the elements of the proxy, which it uses to make sure the proper results are always returned from collection and map methods,
and to update the field's database record on commit.

In order to use large result set proxiesin JPA, add the or g. apache. openj pa. per si st ence. LRS annotation to the
persistent field.

The following restrictions apply to large result set fields:

271


../javadoc/org/apache/openjpa/persistence/LRS.html

Persistent Classes

e Thefield must be declared aseither aj ava. uti | . Col | ection orjava. util. Map. It cannot be declared as any other
type, including any sub-interface of collection or map, or any concrete collection or map class.

» Thefield cannot have an externalizer (see Section 5.6.5, “ Externalization ” [273]).

» Becausethey rely on their owning object for context, large result set proxies cannot be transferred from one persistent field to
another. The following code would result in an error on commit:

Col | ection enpl oyees = conpany. get Enpl oyees() // enployees is a |Irs collection
conpany. set Enpl oyees(nul ) ;
anot her Conpany. set Enpl oyees( enpl oyees) ;

Example 5.14. Marking a Large Result Set Field

i mport org. apache. openj pa. persi st ence. *;

@ntity
public class Conpany {

@/manyToMany
@RS private Collecti on<Enpl oyee> enpl oyees;

5.6.4.3. Custom Proxies

OpenJPA manages proxiesthrough the or g. apache. openj pa. uti | . ProxyManager interface. OpenJPA includes
adefault proxy manager, the or g. apache. openj pa. util . ProxyManager | npl (with aplugin alias hame of

def aul t), that will meet the needs of most users. The default proxy manager understands the following configuration
properties:

* TrackChanges: Whether to use smart proxies. Defaultstot r ue.

* Assert Al | owedType: Whether to immediately throw an exception if you attempt to add an element to a collection or map
that is not assignable to the element type declared in metadata. Defaultsto f al se.

The default proxy manager can proxy the standard methods of any Col | ecti on, Li st, Map, Queue, Dat e, or Cal endar
class, including custom implementations. It can also proxy custom classes whose accessor and mutator methods follow JavaBean
naming conventions. Y our custom types must, however, meet the following criteria

» Custom container types must have a public no-arg constructor or a public constructor that takes asingle Conpar at or
parameter.

» Custom date types must have a public no-arg constructor or a public constructor that takes asingle! ong parameter
representing the current time.

 Other custom types must have a public no-arg constructor or a public copy constructor. If a custom types does not have a copy
constructor, it must be possible to fully copy an instance A by creating a new instance B and calling each of B's setters with the
value from the corresponding getter on A.

If you have custom classes that must be proxied and do not meet these requirements, OpenJPA allows you to define your own
proxy classes and your own proxy manager. Seethe openj pa. uti | package Javadoc for details on the interfaces involved,
and the utility classes OpenJPA providesto assist you.

272


../javadoc/org/apache/openjpa/util/ProxyManager.html
../javadoc/

Persistent Classes

Y ou can plug your custom proxy manager into the OpenJPA runtime through the openj pa. Pr oxyManager configuration
property.

Example 5.15. Configuring the Proxy Manager

<property name="openj pa. ProxyManager" val ue="TrackChanges=fal se"/>

5.6.4.4. Serialization

5.6.5.

When objects are serialized, the Det achedSt at eFi el d in section Section 12.1.3.1, “ Detached State” [351] will be used
to help determine when build time proxies will be removed. If runtime created proxies are being used (proxies not supplied by
OpenJPA) or if an entity has already been detached, then any found proxies will be removed during serialization.

* transi ent: Useatransient detached state field. This gives the benefits of a detached state field to local objects that are
never serialized, but retains serialization compatibility for client tiers without access to the enhanced versions of your classes or
the OpenJPA runtime. All proxies will be removed during serialization. This is the default.

» true: Useanon-transient detached state field so that objects crossing serialization barriers can still be attached efficiently.
This requires, however, that your client tier have the enhanced versions of your classes and the OpenJPA runtime. No
OpenJPA provided proxies will be removed during serialization.

» fal se: Do not use adetached state field. All proxies will be removed during serialization.

Externalization

OpenJPA offers the ability to write custom field mappingsin order to have complete control over the mechanism with which
fields are stored, queried, and loaded from the datastore. Often, however, a custom mapping is overkill. Thereis often asimple
transformation from a Java field value to its database representation. Thus, OpenJPA provides the externalization service.
Externalization allows you to specify methods that will externalize afield value to its database equivalent on store and then
rebuild the value from its externalized form on load.

Fields of embeddable classes used for @nmbeddedl d valuesin JPA cannot have externalizers.

The OpenJPA or g. apache. openj pa. per si st ence. Ext er nal i zer annotation sets the name of a method that will be
invoked to convert the field into its external form for database storage. Y ou can specify either the name of a non-static method,
which will be invoked on the field value, or a static method, which will be invoked with the field value as a parameter. Each
method can also take an optional St or eCont ext parameter for access to a persistence context. The return value of the
method is the field's external form. By default, OpenJPA assumes that all named methods belong to the field value's class (or its
superclasses). Y ou can, however, specify static methods of other classes using the format <cl ass- nanme>. <net hod- nane>.

Given afield of type Cust onTType that externalizes to a string, the table below demonstrates several possible externalizer
methods and their corresponding metadata extensions.

Table5.1. Externalizer Options

Method Extension

public String Custonfype.toString() @xternalizer("toString")

273



../javadoc/org/apache/openjpa/persistence/Externalizer.html
../javadoc/org/apache/openjpa/kernel/StoreContext.html

Persistent Classes

Method Extension

public String @xternalizer("toString")

Cust omlype. toStri ng( St or eCont ext ctx)

public static String @xternalizer("Anyd ass.toString")
Anyd ass.toString(Custonflype ct)

public static String @xternalizer("Anyd ass.toString")
Anyd ass.toString(Custonfype ct,

St or eCont ext ct x)

The OpenJPA or g. apache. openj pa. per si st ence. Fact or y annotation contains the name of a method that will

be invoked to instantiate the field from the external form stored in the database. Specify a static method name. The method

will beinvoked with the externalized value and must return an instance of the field type. The method can also take an optional
St or eCont ext parameter for access to a persistence context. If afactory is not specified, OpenJPA will use the constructor
of the field type that takes a single argument of the external type, or will throw an exception if no constructor with that signature
exists.

Given afield of type Cust onTType that externalizes to a string, the table below demonstrates several possible factory methods
and their corresponding metadata extensions.

Table5.2. Factory Options

Method Extension

public CustonType(String str) none

public static Custonflype @-actory("fronttring")
Cust oniType. fronString(String str)

public static Custonflype @-actory("frontString")

Cust omlype. fronString(String str,
St or eCont ext ct x)

public static Custonflype @-actory("Anyd ass. frontring")
Anyd ass.fronBtring(String str)
public static Custonflype @-actory("Anyd ass. fronstring")

Anyd ass. fronBtring(String str,
St or eCont ext ct x)

If your externalized field is not a standard persistent type, you must explicitly mark it persistent. In OpenJPA, you can force a
persistent field by annotating it with or g. apache. openj pa. per si st ence. Per si st ent annotation.

If your custom field type is mutable and is not a standard collection, map, or date class, OpenJPA will not be
able to detect changesto the field. Y ou must mark the field dirty manually, or create a custom field proxy. See
OpenJPAENt i t yManager . di rty for how to mark afield dirty manually in JPA. See Section 5.6.4, “ Proxies
" [271] for adiscussion of proxies.

Y ou can externalize afield to virtually any value that is supported by OpenJPA's field mappings (embedded relations are

the exception; you must declare your field to be a persistence-capable type in order to embed it). This meansthat afield can
externalize to something as ssmple as a primitive, something as complex as a collection or map of entities, or anything in
between. If you do choose to externalize to a collection or map, OpenJPA recognizes afamily of metadata extensions for
specifying type information for the externalized form of your fields - see Section 6.4.2.6, “ Type” [287]. If the external form
of your field is an entity object or contains entities, OpenJPA will correctly include the objects in its persistence-by-reachability
algorithms and its del ete-dependent algorithms.

274


../javadoc/org/apache/openjpa/persistence/Factory.html
../javadoc/org/apache/openjpa/kernel/StoreContext.html
../javadoc/org/apache/openjpa/kernel/StoreContext.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html

Persistent Classes

The example below demonstrates afew forms of externalization.

Example 5.16. Using Externalization

i nport org. apache. openj pa. per si st ence. *;

@ntity

public class Magazine {

/'l use O ass.getNane and Cl ass.forNane to go to/from strings
@er si st ent

@Externalizer("get Nane")

@actory("forName")

private dass cls;

/'l use URL.getExternal Formfor externalization. no factory;
/1 we can rely on the URL string constructor

@er si st ent

@Externalizer ("t oExternal Form')

private URL url;

/'l use our custom net hods

@er si st ent

@Ext ernal i zer (" Magazi ne. aut hor sFr onCust onilype")
@ act ory("Magazi ne. aut hor sToCust onilype")

@l ement Type( Aut hor . cl ass)

private CustoniType custonType;

public static Collection authorsFronCustoniType(Custonilype custonilype) {

logic to pack customtype into a |ist of authors ...
}

public static CustonType authorsToCustonmlype(Col |l ection authors) {
logic to create customtype froma collection of authors ...
}

Y ou can query externalized fields using parameters. Pass in a value of the field type when executing the query. OpenJPA will
externalize the parameter using the externalizer method named in your metadata, and compare the externalized parameter with
the value stored in the database. As a shortcut, OpenJPA also alows you to use parameters or literals of the field's externalized
type in queries, as demonstrated in the example below.

Currently, queries are limited to fields that externalize to a primitive, primitive wrapper, string, or date types, due to
constraints on query syntax.

Example 5.17. Querying Externalization Fields

Assume the Magazi ne class has the same fields as in the previous example.

/1 you can query using paraneters

Query q = emcreateQuery("select mfrom Magazi ne mwhere murl = :u");
g. set Paraneter ("u", new URL("http://ww.solarnetric.com'));

List results = g.getResultList();

/'l or as a shortcut, you can use the externalized formdirectly
q = emcreateQuery("select mfrom Magazine mwhere murl = "http://ww.sol arnmetric.com");
results = g.getResultList();

275




Persistent Classes

5.6.5.1. External Values

Externalization often takes simple constant values and transforms them to constant values of a different type. An example
would be storinga bool ean fieldasachar , wheret rue andf al se would be stored in the databaseas' T' and' F'
respectively.

OpenJPA allows you to define these simple trandlations in metadata, so that the field behaves asin full-fledged exter nalization
without requiring externalizer and factory methods. External values supports translation of pre-defined simple types (primitives,
primitive wrappers, and Strings), to other pre-defined simple values.

Use the OpenJPA or g. apache. openj pa. per si st ence. Ext er nal Val ues annotation to define external value
trandations. The values are defined in aformat similar to that of configuration plugins, except that the value pairs represent
Java and datastore values. To convert the Java boolean values of t r ue and f al se to the character values T and F, for example,
you would use the extension value:  tr ue=T, f al se=F.

If the type of the datastore value is different from the field'stype, usethe or g. apache. openj pa. per si st ence. Type
annotation to define the datastore type.

Example5.18. Using External Values

This example uses external value trandation to transform a string field to an integer in the database.

public class Magazine {

@xt ernal Val ues({"SMALL=5", " MEDI UM=8", "LARGE=10"})
@ype(int.class)
private String sizeWdth;

S.7.

Fetch Groups

5.7.1.

Fetch groups are sets of fields that |oad together. They can be used to pool together associated fields in order to provide
performance improvements over standard data fetching. Specifying fetch groups allows for tuning of lazy loading and eager
fetching behavior.

The JPA Overview's Section 5.2.7.1, “ Fetch Type” [37] describes how to use JPA metadata annotations to control whether

afield isfetched eagerly or lazily. Fetch groups add a dynamic aspect to this standard ability. Asyou will see, OpenJPA's JPA
extensions alow you can add and remove fetch groups at runtime to vary the sets of fields that are eagerly loaded.

Custom Fetch Groups

OpenJPA places any field that is eagerly loaded according to the JPA metadata rules into the built-in default fetch group. Asits
name implies, the default fetch group is active by default. Y ou may also define your own named fetch groups and activate or
deactivate them at runtime, as described later in this chapter. OpenJPA will eagerly-load the fieldsin all active fetch groups when
loading objects from the datastore.

Y ou create fetch groups with the or g. apache. openj pa. per si st ence. Fet chGr oup annotation. If your class

only has one custom fetch group, you can place this annotation directly on the class declaration. Otherwise, use the

or g. apache. openj pa. per si st ence. Fet chG oups annotation to declare an array of individual Fet chGr oup values.
The Fet chG oup annotation has the following properties:

276



../javadoc/org/apache/openjpa/persistence/ExternalValues.html
../javadoc/org/apache/openjpa/persistence/Type.html
../javadoc/org/apache/openjpa/persistence/FetchGroup.html
../javadoc/org/apache/openjpa/persistence/FetchGroups.html
../javadoc/org/apache/openjpa/persistence/FetchGroups.html

Persistent Classes

e String nane: The name of the fetch group. Fetch group names are global, and are expected to be shared among classes. For
example, a shopping website may use adetail fetch group in each product class to efficiently load all the data needed to display
aproduct's "detail" page. The website might also define a sparse list fetch group containing only the fields needed to display a
table of products, asin a search result.

The following names are reserved for use by OpenJPA: def aul t , val ues, al | , none, and any name beginning with j do,
j pa, or openj pa.

e FetchAttribute[] attributes: Theset of persistent fields or propertiesin the fetch group.
e« String[] fetchG oups: Other fetch groups whose fields to include in this group.

Asyou might expect, listinga or g. apache. openj pa. persi st ence. Fet chAt tri but e withinaFet chG oup
includes the corresponding persistent field or property in the fetch group. Each Fet chAt t r i but e hasthe following properties:

e String nane: The name of the persistent field or property to include in the fetch group.

e recursi onDept h: If the attribute represents a relation, the maximum number of same-typed relations to eager-fetch from
thisfield. Defaults to 1. For example, consider an Enpl oyee classwith anmanager field, also of type Enpl oyee. When we
load an Enpl oyee andthe manager field isin an active fetch group, the recursion depth (along with the max fetch depth

setting, described below) determines whether we only retrieve the target Enpl oyee and his manager (depth 1), or whether we
also retrieve the manager's manager (depth 2), or the manager's manager's manager (depth 3), etc. Use -1 for unlimited depth.

Example 5.19. Custom Fetch Group Metadata

Creates adetail fetch group consisting of the publ i sher andarti cl es relations.

i nport org.apache. openj pa. per si st ence. *;

@Entity
@et chG oups({

@etchG oup(nanme="detail", attributes={
@etchAttribute(nane="publisher"),
@etchAttribute(nane="articles")

b,

b

public class Magazine {

}

A field can be amember of any number of fetch groups. A field can also declare aload fetch group. When you access a lazy-
loaded field for the first time, OpenJPA makes a datastore trip to fetch that field's data. Sometimes, however, you know that
whenever you access alazy field A, you're likely to access lazy fields B and C as well. Therefore, it would be more efficient to
fetch the datafor A, B, and C in the same datastore trip. By setting A's load fetch group to the name of afetch group containing
B and C, you can tell OpenJPA to load al of these fields together when A isfirst accessed.

Use OpendPA's or g. apache. openj pa. per si st ence. LoadFet chG oup annotation to specify the load fetch group
of any persistent field. The value of the annotation is the name of a declared fetch group whose members should be loaded along
with the annotated field.

277



../javadoc/org/apache/openjpa/persistence/FetchAttribute.html
../javadoc/org/apache/openjpa/persistence/LoadFetchGroup.html

Persistent Classes

Example 5.20. Load Fetch Group Metadata

i nport org. apache. openj pa. per si st ence. *;

@Entity
@et chG oups({

@etchG oup(nanme="detail", attributes={
@etchAttribute(nane="publisher"),
@etchAttribute(nane="articles")

b,

b

public class Magazine {

@manyToOne( f et ch=Fet chType. LAZY)
@oadFet chGroup("detail")
private Publisher publisher;

5.7.2.

Custom Fetch Group Configuration

Y ou can control the default set of fetch groups with the openj pa. Fet chGr oups configuration property. Set this property to
acommarseparated list of fetch group names.

Y ou can also set the system'’s default maximum fetch depth with the openj pa. MaxFet chDept h configuration property. The
maximum fetch depth determines how "deep" into the object graph to traverse when loading an instance. For example, with a
Max Fet chDept h of 1, OpenJPA will load at most the target instance and its immediate relations. With a MaxFet chDept h

of 2, OpenJPA may load the target instance, its immediate relations, and the relations of those relations. This works to arbitrary
depth. In fact, the default MaxFet chDept h valueis-1, which symbolizes infinite depth. Under this setting, OpenJPA will fetch
configured relations until it reaches the edges of the object graph. Of course, which relation fields are |oaded depends on whether
the fields are eager or lazy, and on the active fetch groups. A fetch group member's recursion depth may also limit the fetch depth
to something less than the configured maximum.

OpenJPA's OpenJPAENt i t yManager and OpenJPAQuery extensionsto the standard Ent i t yManager and

Query interfaces provide accessto a or g. apache. openj pa. per si st ence. Fet chPl an object. The Fet chPI an
maintains the set of active fetch groups and the maximum fetch depth. It begins with the groups and depth defined in the

openj pa. Fet chGr oups and openj pa. MaxFet chDept h properties, but allows you to add or remove groups and change
the maximum fetch depth for an individual Ent i t yManager or Quer y through the methods below.

public FetchPl an addFet chG oup(String group);

public FetchPl an addFet chGroups(String... groups);
public FetchPl an addFet chG oups(Col | ecti on groups);
public FetchPlan renpveFetchG op(String group);
public FetchPlan renpveFetchG oups(String... groups);
public FetchPlan renpveFet chG oups(Col | ecti on groups);
public FetchPlan resetFetchG oups();

public Collection<String> getFetchG oups();

public void cl earFetchG oups();

public FetchPl an set MaxFet chDept h(i nt depth);

public int getMaxFetchDepth();

Chapter 9, Runtime Extensions [322] detailsthe OpenJPAEnt i t yManager , OpenJPAQuery, and Fet chPl an
interfaces.

278



../javadoc/org/apache/openjpa/persistence/FetchPlan.html

Persistent Classes

Example5.21. Using the FetchPlan

i nport org. apache. openj pa. per si st ence. *;

OpenJPAQuery kg = OpenJPAPersi stence. cast (em createQuery(...));
kq. get Fet chPl an() . set MaxFet chDept h( 3) . addFet chG oup("detail ");
List results = kqg.getResultList();

5.7.3.

Per-field Fetch Configuration

In addition to controlling fetch configuration on a per-fetch-group basis, you can configure OpenJPA to include particular fields
in the current fetch plan. This alows you to add individual fields that are not in the default fetch group or in any other active fetch
groups to the set of fields that will be eagerly loaded from the database.

OpenJPA Fet chPl an methods:

public FetchPlan addField(String field);

public FetchPl an addFields(String... fields);

public FetchPl an addFields(Class cls, String... fields);
public FetchPl an addFi el ds(Col |l ection fields);

public FetchPl an addFi el ds(Cl ass cls, Collection fields);
public FetchPlan renpveField(String field);

public FetchPlan renmoveFields(String... fields);

public FetchPl an renpveFi el ds(C ass cls, String... fields);
public FetchPl an renpveFi el ds(Col | ection fields);

public FetchPlan renoveFi el ds(Cl ass cls, Collection fields);
public Collection<String> getFields();

public void clearFields();

The methods that take only string arguments use the fully-qualified field name, such asor g. mag. Magazi ne. publ i sher.
Similarly, get Fi el ds returnsthe set of fully-qualified field names. In al methods, the named field must be defined in the
class specified in the invocation, not a superclass. So, if thefield publ i sher isdefined in base classPubl i cat i on rather
than subclass Magazi ne, you must invoke addFi el d (Publication. cl ass, "publisher") andnotaddFi el d
(Magazi ne. cl ass, "publisher"). Thisisstricter than Java's default field-masking algorithms, which would allow the
latter method behavior if Magazi ne did not also defineafield called publ i sher.

To include the fields defined in a super class by the subclass or to distinguish between fields that are defined in both super- and
subclass, set set Ext endedPat hLookup( bool ean) onFet chPl an tot rue. By default, thisoptionissettof al se, to
reduce more extensive lookups for predominant use cases.

In order to avoid the cost of reflection, OpenJPA does not perform any validation of the field name / class name pairs that you put
into the fetch configuration. If you specify non-existent class/ field pairs, nothing adverse will happen, but you will receive no
notification of the fact that the specified configuration is not being used.

Example 5.22. Adding an Eager Field

i mport org. apache. openj pa. persi stence. *;

OpenJPAENt i t yManager kem = OpenJPAPer si st ence. cast (en);
kem get Fet chPl an() . addFi el d( Magazi ne. cl ass, "publisher");
Magazi ne mag = em find(Magazi ne. cl ass, magld);

279




Persistent Classes

5.7.4. Implementation Notes

5.8.

» Evenwhen adirect relation is not eagerly fetched, OpenJPA selects the foreign key columns and caches the values. This way
when you do traverse the relation, OpenJPA can often find the related object in its cache, or at least avoid joins when loading
the related object from the database.

» The above implicit foreign key-selecting behavior does not always apply when the relation isin a subclass table. If the subclass
table would not otherwise be joined into the select, OpenJPA avoids the extrajoin just to select the foreign key values.

Eager Fetching

Eager fetching is the ability to efficiently load subclass data and related objects along with the base instances being queried.
Typically, OpenJPA hasto make atrip to the database whenever arelation isloaded, or when you first access data that is mapped
to atable other than the least-derived superclass table. If you perform a query that returns 100 Per son objects, and then you
have to retrieve the Addr ess for each person, OpenJPA may make as many as 101 queries (the initial query, plus one for the
address of each person returned). Or if some of the Per son instances turn out to be Enpl oyees, where Enpl oyee has
additional datain its own joined table, OpenJPA once again might need to make extra database trips to access the additional
employee data. With eager fetching, OpenJPA can reduce these cases to asingle query.

Eager fetching only affects relationsin the active fetch groups, and is limited by the declared maximum fetch depth and field
recursion depth (see Section 5.7, “ Fetch Groups” [276]). In other words, relations that would not normally be loaded
immediately when retrieving an object or accessing afield are not affected by eager fetching. In our example above, the address
of each person would only be eagerly fetched if the query were configured to include the address field or its fetch group, or if the
address were in the default fetch group. This allows you to control exactly which fields are eagerly fetched in different situations.
Similarly, queries that exclude subclasses aren't affected by eager subclass fetching, described below.

Eager fetching has three modes:

» none: No eager fetching is performed. Related objects are aways loaded in an independent select statement. No joined
subclass datais loaded unlessit isin the table(s) for the base type being queried. Unjoined subclass data is loaded using
separate select statements rather than a SQL UNION operation.

e j oi n: Inthismode, OpenJPA joinsto to-one relations in the configured fetch groups. If OpenJPA isloading datafor asingle
instance, then OpenJPA will aso join to any collection field in the configured fetch groups. When loading data for multiple
instances, though, (such as when executing a Quer y) OpenJPA will not join to collections by default. Instead, OpenJPA
defaultsto par al | el mode for collections, as described below. Y ou can force OpenJPA use ajoin rather than parallel mode
for acollection field using the metadata extension described in Section 7.9.2.1, “ Eager Fetch Mode” [317].

Under j oi n mode, OpenJPA uses aleft outer join (or inner join, if the relations field metadata declares the relation non-
nullable) to select the related data along with the data for the target objects. This process works recursively for to-onejoins, so
that if Per son hasan Addr ess, and Addr ess hasaTel ephoneNunber , and the fetch groups are configured correctly,
OpenJPA might issue asingle select that joins across the tables for all three classes. To-many joins can not recursively spawn
other to-many joins, but they can spawn recursive to-one joins.

Under thej oi n subclass fetch mode, subclass data in joined tables is selected by outer joining to all possible subclass tables
of the type being queried. Asyou'll see below, subclass data fetching is configured separately from relation fetching, and can
be disabled for specific classes.

Some databases may not support outer joins. Also, OpenJPA can not use outer joins if you have set the
DBDi cti onary'sJoi nSynt ax totradi ti onal . See Section 4.6, “ Setting the SQL Join Syntax " [248].

280



Persistent Classes

e paral |l el : Under this mode, OpenJPA selects to-one relations and joined collections as outlined in thej oi n mode
description above. Unjoined collection fields, however, are eagerly fetched using a separate select statement for each
collection, executed in parallel with the select statement for the target objects. The parallel selects use the WHERE conditions
from the primary select, but add their own joins to reach the related data. Thus, if you perform a query that returns 100
Conpany objects, where each company has alist of Enpl oyee objects and Depar t ment objects, OpenJPA will make 3
queries. The first will select the company objects, the second will select the employees for those companies, and the third will
select the departments for the same companies. Just as for joins, this process can be recursively applied to the objectsin the
relations being eagerly fetched. Continuing our example, if the Enpl oyee classhad alist of Pr oj ect s in one of the fetch
groups being loaded, OpenJPA would execute asingle additional select in parallel to load the projects of all employees of the
matching companies.

Using an additional select to load each collection avoids transferring more data than necessary from the database to the
application. If eager joins were used instead of parallel select statements, each collection added to the configured fetch groups
would cause the amount of data being transferred to rise dangeroudly, to the point that you could easily overwhelm the
network.

Polymorphic to-one relations to table-per-class mappings use parallel eager fetching because proper joins areimpossible. You
can force other to-one relations to use parallel rather than join mode eager fetching using the metadata extension described in
Section 7.9.2.1, “ Eager Fetch Mode” [317].

Parallel subclass fetch mode only applies to queries on joined inheritance hierarchies. Rather than outer-joining to subclass
tables, OpenJPA will issue the query separately for each subclass. In all other situations, parallel subclass fetch mode acts just
like join mode in regards to vertically-mapped subclasses.

When OpenJPA knows that it is selecting for asingle object only, it never uses par al | el mode, because the additional

selects can be made lazily just as efficiently. This mode only increases efficiency over j oi n mode when multiple objects
with eager relations are being loaded, or when multiple selects might be faster than joining to all possible subclasses.

5.8.1. Configuring Eager Fetching

Y ou can control OpenJPA's default eager fetch mode through the openj pa. j dbc. Eager Fet chibde and
openj pa. j dbc. Subcl assFet chMode configuration properties. Set each of these properties to one of the mode names
described in the previous section: none, j oi n, parall el . If left unset, the eager fetch mode defaultsto par al | el and
the subclass fetch mode defaultsto j oi n These are generally the most robust and performant strategies.

You can easily override the default fetch modes at runtime for any lookup or query through OpenJPA's fetch configuration APIs.
See Chapter 9, Runtime Extensions [322] for details.

Example 5.23. Setting the Default Eager Fetch Mode

<property name="openj pa.j dbc. Eager Fet chMbde" val ue="parallel"/>
<property name="openj pa.]j dbc. Subcl assFet chMbde" val ue="joi n"/>

281



Persistent Classes

Example 5.24. Setting the Eager Fetch Mode at Runtime

i nport org. apache. openj pa. per si st ence. *;
i nport org.apache. openj pa. per si st ence. j dbc. *;

Query g = emcreateQuery("select p fromPerson p where p.address.state = 'TX' ");
OpenJPAQuery kg = OpenJPAPersi stence. cast(q);

JDBCFet chPl an fetch = (JDBCFetchPl an) kq.get FetchPl an();

f et ch. set Eager Fet chMbde( Fet chMbde. PARALLEL) ;

f et ch. set Subcl assFet chMbde( Fet chMbde. JO N) ;

List results = g.getResultList();

5.8.2.

Y ou can specify a default subclass fetch mode for an individual class with the metadata extension described in Section 7.9.1.1,
“ Subclass Fetch Mode ” [316]. Note, however, that you cannot "upgrade” the runtime fetch mode with your class setting. If
the runtime fetch mode isnone, no eager subclass data fetching will take place, regardless of your metadata setting.

This appliesto the eager fetch mode metadata extension as well (see Section 7.9.2.1, “ Eager Fetch Mode” [317]). You can
use this extension to disable eager fetching on afield or to declare that a collection would rather use joins than parallel selects or
vice versa. But an extension value of j 0i n won't cause any eager joining if the fetch configuration's setting isnone.

Eager Fetching Considerations and Limitations

There are several important points that you should consider when using eager fetching:

When you are using par al | el eager fetch mode and you have large result sets enabled (see Section 4.10, “ Large Result
Sets” [252]) or you place arange on a query, OpenJPA performs the needed parallel selects on one page of results at atime.
For example, supposeyour Fet chBat chSi ze isset to 20, and you perform alarge result set query on aclass that has
collection fieldsin the configured fetch groups. OpenJPA will immediately cache thefirst 20 results of the query using
j oi n mode eager fetching only. Then, it will issue the extra selects needed to eager fetch your collection fields according to
par al | el mode. Each select will useaSQL | N clause (or multiple OR clausesif your class has a compound primary key)
to limit the selected collection elements to those owned by the 20 cached results.

Once you iterate past the first 20 results, OpenJPA will cache the next 20 and again issue any needed extra selects for
collection fields, and so on. This pattern ensures that you get the benefits of eager fetching without bringing more data into
memory than anticipated.

Once OpenJPA eager-joinsinto aclass, it cannot issue any further eager to-many joins or parallel selects from that classin the
same query. To-one joins, however, can recurse to any level.

Using ato-many join makes it impossible to determine the number of instances the result set contains without traversing the
entire set. Thisis because each result object might be represented by multiple rows. Thus, queries with arange specification or
queries configured for lazy result set traversal automatically turn off eager to-many joining.

OpenJPA cannot eagerly join to polymorphic relations to non-leaf classes in a table-per-class inheritance hierarchy. Y ou can
work around this restriction using the mapping extensions described in Section 7.9.2.2, “ Nonpolymorphic” [317].

282




Chapter 6. Metadata

The JPA Overview covers JPA metadatain Chapter 5, Metadata [28]. This chapter discusses OpenJPA's extensions to standard
JPA metadata.

6.1. Metadata Factory

Theopenj pa. Met aDat aFact ory configuration property controls metadata loading and storing. This

property takes a plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing a concrete

or g. apache. openj pa. et a. Met aDat aFact or y implementation. A metadata factory can load mapping information
aswell as persistence metadata, or it can leave mapping information to a separate mapping factory (see Section 7.5, “ Mapping
Factory ” [299]). OpenJPA recognizes the following built-in metadata factories:

* j pa: Standard JPA metadata. Thisis an alias for the
or g. apache. openj pa. per si st ence. Per si st enceMet aDat aFact ory.

JPA has built-in settings for listing your persistent classes, which the JPA Overview describes. OpenJPA supports these JPA
standard settings by translating them into its own internal metadata factory properties. Each internal property represents a
different mechanism for locating persistent types; you can choose the mechanism or combination of mechanisms that are most
convenient. See Section 5.1, “ Persistent ClassList ” [260] for a discussion of when it is necessary to list your persistent
classes.

e Types: A semicolon-separated list of fully-qualified persistent class names.

» Resour ces: A semicolon-separated list of resource paths to metadata files or jar archives. Each jar archive will be scanned
for annotated JPA entities.

* URLs: A semicolon-separated list of URLSs of metadatafiles or jar archives. Each jar archive will be scanned for annotated
JPA entities.

» Cl asspat hScan: A semicolon-separated list of directories or jar archiveslisted in your classpath. Each directory and jar
archive will be scanned for annotated JPA entities.

Example 6.1. Setting a Standard Metadata Factory

<property name="openj pa. Met aDat aFact ory" val ue="j pa(d asspat hScan=buil d;lib.jar)"/>

Example 6.2. Setting a Custom Metadata Factory

<property name="openj pa. Met aDat aFact ory" val ue="com xyz. Cust om\et aDat aFact ory"/ >

6.2. Metadata Repository

The openjpa.M etaDataRepository configuration property controls the configuration of the MetaDataRepository. The following
arevalid properties:

* Pr el oad: A boolean property. If true, OpenJPA will eagerly load the repository on EntityManagerFactory creation. Asa
result, all Entity classes will be eagerly loaded by the VM. Once MetaData preloading completes, all locking is removed from

283


../javadoc/org/apache/openjpa/meta/MetaDataFactory.html
../javadoc/org/apache/openjpa/meta/MetaDataFactory.html
../javadoc/org/apache/openjpa/persistence/PersistenceMetaDataFactory.html
../javadoc/org/apache/openjpa/persistence/PersistenceMetaDataFactory.html

Metadata

the MetaDataRepository and thiswill result in a much more scalable repository. If false, the repository will be lazily loaded as
Entity classes are loaded by the JVM. The default value is false.

Example 6.3. Setting the Preload Property on Metadata Repository

<property name="openj pa. Met aDat aReposi tory" val ue="Prel oad=true"/>

6.3.

Additional JPA Metadata

6.3.1.

This section describes OpenJPA's core additions to standard entity metadata. We present the object-relational mapping syntax to
support these additionsin Section 7.7, “ Additional JPA Mappings” [301]. Finaly, Section 6.4, “ Metadata Extensions
" [285] covers additional extensionsto JPA metadata that allow you to access auxiliary OpenJPA features.

Datastore Identity

6.3.2.

JPA typically requires you to declare one or more | d fields to act as primary keys. OpenJPA, however, can create and maintain
asurrogate primary key value when you do not declare any | d fields. Thisform of persistent identity is called datastore identity.
Section 5.4, Object Identity ” [265] discusses OpenJPA's support for datastore identity in JPA. We cover how to map your
datastore identity primary key column in Section 7.7.1, “ Datastore I dentity Mapping ” [302]

Surrogate Version

6.3.3.

Just as OpenJPA can maintain your entity's identity without any | d  fields, OpenJPA can maintain your entity's optimistic
version without any Ver si on fields. Section 7.7.2, “ Surrogate Version Mapping” [302] shows you how to map surrogate
version columns.

Persistent Field Values

JPA definesBasi ¢, Lob, Enbedded , ManyToOne, and OneToOne persistence strategies for direct

field values. OpenJPA supports all of these standard strategies, but adds one of its own: Per si st ent . The

or g. apache. openj pa. per si st ence. Per si st ent metadata annotation can represent any direct field value, including
custom types. It has the following properties:

» FetchType f et ch: Whether to load the field eagerly or lazily. Corresponds exactly to the same-named property of
standard JPA annotationssuch as Basi ¢ . Defaultsto Fet chType. EAGER

» CascadeType[] cascade: Array of enum values defining cascade behavior for thisfield. Corresponds exactly to the
same-named property of standard JPA annotationssuchas Many ToOne. Defaults to empty array.

e String mappedBy: Namesthefield in the related entity that maps this bidirectional relation. Corresponds to the same-
named property of standard JPA annotationssuchas OneToOne.

» bool ean opti onal : Whether the value can be null. Corresponds to the same-named property of standard JPA annotations
suchas ManyToOne , but can apply to non-entity object values as well. Defaultstot r ue.

* bool ean enbedded: Set thisproperty tot r ue if thefield valueis stored as an embedded object.

Though you can use the Per si st ent annotation in place of most of the standard direct field annotations mentioned above,
we recommend primarily using it for non-standard and custom types for which no standard JPA annotation exists. For example,
Section 7.7.3, “ Multi-Column Mappings” [303] demonstrates the use of the Per si st ent annotation to denote a
persistent j ava. awt . Poi nt field.

284



../javadoc/org/apache/openjpa/persistence/Persistent.html
../javadoc/org/apache/openjpa/persistence/Persistent.html

Metadata

6.3.4.

Persistent Collection Fields

6.3.5.

JPA standardizes support for collections of entitieswith the OneToMany and Many ToMany persistence strategies.
OpenJPA supports these strategies, and may be extended for other strategies as well. For extended strategies, use the

or g. apache. openj pa. per si st ence. Per si st ent Col | ect i on metadata annotation to represents any persistent
collection field. It has the following properties:

e Cl ass el enent Type: Theclass of the collection elements. This information is usually taken from the parameterized
collection element type. Y ou must supply it explicitly, however, if your field isn't a parameterized type.

» FetchType f et ch: Whether to load the collection eagerly or lazily. Corresponds exactly to the same-named property of
standard JPA annotationssuch as Basi c. Defaultsto Fet chType. LAZY.

* String mappedBy: Namesthefield in the related entity that maps this bidirectional relation. Corresponds to the same-
named property of standard JPA annotations such as Many ToMany.

e CascadeType[] el enent Cascade: Array of enum values defining cascade behavior for the collection elements.
Corresponds exactly to the cascade property of standard JPA annotations such as Many ToMany. Defaultsto empty array.

* bool ean el ement Enbedded: Set thisproperty tot r ue if the elements are stored as embedded objects.

Persistent Map Fields

6.4.

JPA has limited support for maps. If you extend JPA's standard map support to encompass new mappings, use the
or g. apache. openj pa. per si st ence. Per si st ent Map metadata annotation to represent your custom persistent map
fields. It has the following properties:

* O ass keyType: Theclassof the map keys. Thisinformation is usually taken from the parameterized map key type. Y ou
must supply it explicitly, however, if your field isn't a parameterized type.

* O ass el enent Type: The class of the map values. Thisinformation is usually taken from the parameterized map value
type. You must supply it explicitly, however, if your field isn't a parameterized type.

* FetchType f et ch: Whether to load the collection eagerly or lazily. Corresponds exactly to the same-named property of
standard JPA annotationssuch as Basi c. Defaultsto Fet chType. LAZY.

e CascadeType[] keyCascade: Array of enum values defining cascade behavior for the map keys. Corresponds exactly to
thecascade property of standard JPA annotations suchas ManyToOne. Defaults to empty array.

» CascadeType[] el enent Cascade: Array of enum values defining cascade behavior for the map values. Corresponds
exactly to the cascade property of standard JPA annotations suchas Many ToOne. Defaults to empty array.

* bool ean keyEnbedded: Set thisproperty tot r ue if the map keys are stored as embedded objects.

* bool ean el enment Enbedded: Set thisproperty to t r ue if the map values are stored as embedded objects.

Metadata Extensions

6.4.1.

OpenJPA extends standard metadata to allow you to access advanced OpenJPA functionality. This section covers persistence
metadata extensions; we discuss mapping metadata extensionsin Section 7.9, “ Mapping Extensions” [316]. All metadata
extensions are optional; OpenJPA will rely on its defaults when no explicit datais provided.

Class Extensions

OpenJPA recognizes the following class extensions:

285


../javadoc/org/apache/openjpa/persistence/PersistentCollection.html
../javadoc/org/apache/openjpa/persistence/PersistentCollection.html
../javadoc/org/apache/openjpa/persistence/PersistentMap.html
../javadoc/org/apache/openjpa/persistence/PersistentMap.html

Metadata

6.4.1.1. Fetch Groups

The or g. apache. openj pa. persi st ence. Fet chG oups and

or g. apache. openj pa. per si st ence. Fet chG oup annotations allow you to define fetch groupsin your JPA entities.
Section 5.7, “ Fetch Groups” [276] discusses OpenJPA's support for fetch groups in general; see Section 5.7.1, “ Custom
Fetch Groups” [276] for how to use these annotationsin particular.

6.4.1.2. Data Cache

Section 10.1, “ Data Cache” [335] examines caching in OpenJPA. Metadata extensions allow individual classesto override
system caching defaults.

OpenJPA definesthe or g. apache. openj pa. per si st ence. Dat aCache annotation for caching information. This
annotation has the following properties:

* bool ean enabl ed: Whether to cache data for instances of the class. Defaultstot r ue for base classes, or the superclass
value for subclasses. If you set this property tof al se, al other properties are ignored.

e int tineout: Thenumber of milliseconds datafor the class remains valid. Use -1 for no timeout. Defaults to the
openj pa. Dat aCacheTi neout property value.

6.4.1.3. Detached State

The OpenJPA enhancer may add a synthetic field to detachable classes to hold detached state (see Section 12.1.3, “ Defining
the Detached Object Graph ” [351] for details). Y ou can instead declare your own detached state field or suppressthe
creation of adetached state field altogether. In the latter case, your class must not use datastor e identity, and should declare a
version field to detect optimistic concurrency errors during detached modifications.

OpenJPA definesthe or g. apache. openj pa. per si st ence. Det achedSt at e annotation for controlling detached state.
When used to annotate a class, Det achedSt at e recognizes the following properties:

* bool ean enabl ed: Set to false to suppress the use of detached state.

o String fiel dName: Usethis property to declare your own detached state field. The field must be of type Cbj ect .
Typically this property isonly used if the field is inherited from a non-persisted superclass. If the field is declared in your
entity class, you will typically annotate the field directly, as described below.

If you declare your own detached state field, you can annotate that field with Det achedSt at e directly, rather than placing the
annotation at the classlevel and using thef i el dNanme property. When placed on afield, Det achedSt at e acts as a marker
annotation; it does not recognize any properties. Y our annotated field must be of type Obj ect .

6.4.2. Field Extensions

OpenJPA recognizes the following field extensions:

6.4.2.1. Dependent

In a dependent relation, the referenced object is deleted whenever the owning object is deleted, or whenever therelationis
severed by nulling or resetting the owning field. For example, if the Magazi ne. cover Arti cl e field is marked dependent,
then setting Magazi ne. cover Arti cl etoanew Arti cl e instance will automatically deletetheold Arti cl e stored in
thefield. Similarly, deleting aMagazi ne object will automatically delete its current cover Art i cl e. (Thislatter processing
isanalogous to using JPA's CascadeType. REMOVE functionality as described in Section 5.2.9.1, “ Cascade Type” [38].)

Y ou can prevent an orphaned dependent object from being automatically deleted by assigning it to another relation in the same
transaction.

286


../javadoc/org/apache/openjpa/persistence/FetchGroups.html
../javadoc/org/apache/openjpa/persistence/FetchGroup.html
../javadoc/org/apache/openjpa/persistence/FetchGroup.html
../javadoc/org/apache/openjpa/persistence/DataCache.html
../javadoc/org/apache/openjpa/persistence/DetachedState.html

Metadata

OpenJPA offers afamily of marker annotations to denote dependent relationsin JPA entities:
» org. apache. openj pa. per si st ence. Dependent : Marks adirect relation as dependent.

» org. apache. openj pa. per si st ence. El enent Dependent : Marksthe entity elements of a collection, array, or
map field as dependent.

* org. apache. openj pa. per si st ence. KeyDependent : Marks the key entitiesin amap field as dependent.

6.4.2.2. Load Fetch Group

The or g. apache. openj pa. per si st ence. LoadFet chG oup annotation specifies afield's load fetch group.
Section 5.7, “ Fetch Groups” [276] discusses OpenJPA's support for fetch groups in general; see Section 5.7.1, “ Custom
Fetch Groups” [276] for how to use this annotation in particular.

6.4.2.3. LRS

This boolean extension, denoted by the OpenJPA  or g. apache. openj pa. per si st ence. LRS annotation, indicates that a
field should use OpenJPA's specia large result set collection or map proxies. A complete description of large result set proxiesis
availablein Section 5.6.4.2, “ Large Result Set Proxies” [271].

6.4.2.4. Inverse-Logical

This extension names the inverse field in alogical bidirectional relation. To create alogical bidirectional relation in OpenJPA,
usethe or g. apache. openj pa. persi st ence. | nver seLogi cal annotation. We discuss logical bidirectional relations
and this extension in detail in Section 5.5, “ Managed Inverses” [269].

6.4.2.5. Read-Only

The read-only extension makes a field unwritable. The extension only applies to existing persistent objects; new object fields are
always writeable.

To mark afield read-only in JPA metadata, set the or g. apache. openj pa. per si st ence. ReadOnl y annotation to an
or g. apache. openj pa. per si st ence. Updat eAct i on enum value. The Updat eAct i on enum includes:

* Updat eAct i on. | GNORE: Updates to the field are completely ignored. Thefield is not considered dirty. The new value will
not even get stored in the OpenJPA data cache.

* Updat eAct i on. RESTRI CT: Any attempt to change the field will result in an immediate exception.

6.4.2.6. Type

OpenJPA has three levels of support for relations:

1. Relationsthat hold a reference to an object of a concrete persistent class are supported by storing the primary key values of the
related instance in the database.

2. Relationsthat hold a reference to an object of an unknown persistent class are supported by storing the stringified identity
value of the related instance. Thislevel of support does not alow queries across the relation.

3. Relationsthat hold an unknown object or interface. The only way to support these relations isto serialize their value to the
database. This does not allow you to query thefield, and is not very efficient.

Clearly, when you declare afield's type to be another persistence-capable class, OpenJPA uses level 1 support. By default,
OpenJPA assumes that any interface-typed fields you declare will be implemented only by other persistent classes, and assigns
interfaces level 2 support. The exception to thisruleisthej ava. i 0. Seri al i zabl e interface. If you declare afield to be of

287


../javadoc/org/apache/openjpa/persistence/Dependent.html
../javadoc/org/apache/openjpa/persistence/ElementDependent.html
../javadoc/org/apache/openjpa/persistence/KeyDependent.html
../javadoc/org/apache/openjpa/persistence/LoadFetchGroup.html
../javadoc/org/apache/openjpa/persistence/LRS.html
../javadoc/org/apache/openjpa/persistence/InverseLogical.html
../javadoc/org/apache/openjpa/persistence/ReadOnly.html
../javadoc/org/apache/openjpa/persistence/UpdateAction.html
../javadoc/org/apache/openjpa/persistence/UpdateAction.html

Metadata

type Seri al i zabl e, OpenJPA lumpsit together with j ava. | ang. Obj ect fields and other non-interface, unrecognized
field types, which are all assigned level 3 support.

With OpenJPA's type family of metadata extensions, you can control the level of support given to your unknown/interface-typed
fields. Setting the value of thisextensionto Ent i t y indicates that the field value will always be some persistent object, and
gives level 2 support. Setting the value of this extension to the class of a concrete persistent type is even better; it givesyou level
1 support (just asif you had declared your field to be of that type in the first place). Setting this extension to bj ect useslevel
3 support. Thisis useful when you have an interface relation that may not hold other persistent objects (recall that OpenJPA
assumes interface fields will always hold persistent instances by default).

This extension is also used with OpenJPA's externalization feature, described in Section 5.6.5, “ Externalization ” [273].
OpenJPA defines the following type annotations for field values, collection, array, and map elements, and map keys, respectively:
e org. apache. openj pa. per si st ence. Type

e org. apache. openj pa. persi st ence. El enent Type

e org. apache. openj pa. persi stence. KeyType

6.4.2.7. Externalizer

The OpenJPA or g. apache. openj pa. per si st ence. Ext er nal i zer annotation names a method to transform afield
valueinto avalue of another type. See Section 5.6.5, “ Externalization ” [273] for details.

6.4.2.8. Factory

The OpenJPA or g. apache. openj pa. per si st ence. Fact or y annotation names a method to re-create afield value
from its externalized form. See Section 5.6.5, “ Externalization ” [273] for details.

6.4.2.9. External Values

6.4.3.

The OpenJPA or g. apache. openj pa. per si st ence. Ext er nal Val ues annotation declares values for transformation
of simplefieldsto different constant values in the datastore. See Section 5.6.5.1, “ External Values” [276] for details.

Example

The following example shows you how to specify extensions in metadata.

Example 6.4. OpenJPA Metadata Extensions

i mport org. apache. openj pa. persi stence. *;

@ntity
@pat aCache( enabl ed=f al se)
public class Magazine
{
@anyToMany
QRS
private Col |l ection<Subscriber> subscri bers;

@xt ernal Val ues({"true=1", "false=2"})
@vype(int.class)
private bool ean weekly;

288



../javadoc/org/apache/openjpa/persistence/Type.html
../javadoc/org/apache/openjpa/persistence/ElementType.html
../javadoc/org/apache/openjpa/persistence/KeyType.html
../javadoc/org/apache/openjpa/persistence/Externalizer.html
../javadoc/org/apache/openjpa/persistence/Factory.html
../javadoc/org/apache/openjpa/persistence/ExternalValues.html

Metadata

6.4.4. XML extensions

OpenJPA has extended the JPA 2.0 schema to include elements and attributes corresponding to OpenJPA extended metadata and
mapping annotations. The schema are contained in 2 files: extendable-orm.xsd and openjpa-or m.xsd. The extendable-orm.xsd
file provides copies of some of the JPA 2.0 schema elements with additional schemato make it extendable. The openjpa-orm.xsd
file extends the extendable-orm.xsd with OpenJPA specific elements and attributes representing OpenJPA annotations. Currently,
only a subset of annotations have actually been implemented, and some of those have been partially tested. The current status can
be found by comments in the openjpa-orm.xsd schemafile.

In order to use the OpenJPA extensionsin your mapping file you must include the namespaces for these 2 new schemas aswell as
for the schemafor JPA 2.0, as shown in the following example:

Example 6.5. OpenJPA Schema Extensions

<entity-mappi ngs xm ns="http://ww. apache. or g/ openj pa/ ns/ or mf ext endabl e"
xm ns: openj pa="http://ww. apache. or g/ openj pa/ ns/ or nf
xm ns: orne"http://java. sun. com xn / ns/ persi st ence/ or nt
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schera- i nst ance"
version="2.0">

<entity class="org. apache. openj pa. per si st ence. j dbc. annot ati ons. Mul ti Col umVer si onPC"
net adat a- conpl et e="true">
<t abl e name="MV'/>
<attributes>
<id name="id">
<or m gener at ed- val ue/ >
</id>
<basi c name="id"/>
<basi ¢ name="name"/>
</attributes>
<openj pa: entity version-strategy="version-nunbers">
<openj pa: ver si on- col unmms>
<openj pa: ver si on-col uimm nane="v1"/>
<openj pa: ver si on-col uimm nane="v2"/>
<openj pa: ver si on- col uimm nane="v3"
col um- def i ni ti on="FLOAT"
scal e="3"
preci si on="10"/>
</ openj pa: ver si on- col utms>
</ openj pa: entity>
</entity>

</ entity-nmappi ngs>

289


http://openjpa.apache.org/builds/latest/docs/schema/extendable-orm.xsd
http://openjpa.apache.org/builds/latest/docs/schema/openjpa-orm.xsd
http://openjpa.apache.org/builds/latest/docs/schema/openjpa-orm.xsd

Chapter 7. Mapping

7.1

The JPA Overview's Chapter 13, Mapping Metadata [147] explains object-relational mapping under JPA. This chapter reviews
the mapping utilities OpenJPA provides and examines OpenJPA features that go beyond the JPA specification.

Forward Mapping

Forward mapping is the process of creating mappings and their corresponding database schema from your object model.
OpenJPA supports forward mapping through the mapping tool. The next section presents several common mapping tool use
cases. Y ou can invoke the tool throughits Javaclass, or g. apache. openj pa. j dbc. et a. Mappi ngTool .

Section 14.1.4, “ Mapping Tool Ant Task " [367] describes the mapping tool Ant task.

Example 7.1. Using the Mapping Tool

java org. apache. openj pa. j dbc. net a. Mappi ngTool Magazi ne. j ava

In addition to the universal flags of the configuration framework, the mapping tool accepts the following command line
arguments:

 -schemaAction/-sa <add | refresh | drop | build | retain | reflect | createDB |
dropDB | import | export | none> :Theaction to take on the schema. These options correspond to the same-
named actions on the schematool described in Section 4.13, “ Schema Tool ” [255]. Actions can be composed in a comma-
separated list. Unless you are running the mapping tool on all of your persistent types at once or dropping a mapping, we
strongly recommend you use the default add action or the bui | d action. Otherwise you may end up inadvertently dropping
schema components that are used by classes you are not currently running the tool over.

» -schenaFil e/ -sf <stdout | output fil e>:Usethisoption towritethe planned schemato an XML document
rather than modify the database. The document can then be manipulated and committed to the database with the schematool.

 -sqgl Filel/-sqgl <stdout | output file>:Usethisoption towritethe planned schema modifications to a SQL
script rather than modify the database. Combine thiswith aschemaAct i on of bui | d to generate a script that recreates the
schemafor the current mappings, even if the schema already exists.

e -sql Encode/ - se <encodi ng>: Usethisoption with - sql Fi | e towritethe SQL script in adifferent Java character set
encoding than the default VM locale, such as- sql Ter ni nat or/-st <t erm nal >: Usethisoption with-sql Fi | e to
write the SQL terminating with a different character instead of a semicolon.

o -dropTabl es/-dt <true/t | fal se/f>:Correspondsto the same-named option on the schematool.

» -dropSequences/-dsq <true/t | fal se/f>:Correspondsto the same-named option on the schematool.
e -openj paTabl es/-ot <true/t | fal se/f>: Correspondsto the same-named option on the schematool.
e -ignoreErrors/-i <true/t | fal se/f>:Correspondsto the same-named option on the schematool.

e -schenmas/-s <schema and tabl e names>: Corresponds to the same-named option on the schematool. This option
isignoredif readSchemaisnotsettotrue.

290



../javadoc/org/apache/openjpa/jdbc/meta/MappingTool

Mapping

7.1.1.

 -readSchema/-rs <true/t | fal se/f>:Setthisoptiontot r ue toread the entire existing schema when the tool
runs. Reading the existing schema ensures that OpenJPA does not generate any mappings that use table, index, primary key, or
foreign key names that conflict with existing names. Depending on the JDBC driver, though, it can be aslow process for large
schemas.

e -primaryKeys/-pk <true/t | fal se/f>:Whethertoread and manipulate primary key information of existing
tables. Defaultsto false.

o -foreignKeys/-fk <true/t | false/f>:Whethertoread and manipulate foreign key information of existing
tables. Defaultsto false. This means that to add any new foreign keysto a class that has already been mapped, you must
explicitly set thisflag to true.

 -indexes/-ix <true/t | false/f>:Whethertoread and manipulate index information of existing tables. Defaults
to false. This means that to add any new indexes to a class that has already been mapped once, you must explicitly set thisflag
to true.

* -sequences/-sq <true/t | fal se/f>:Whetherto manipulate sequences. Defaults to true.
e -nmeta/-m<true/t | fal se/f>: Whether the given action applies to metadata rather than or in addition to mappings.
The mapping tool also usesan - act i on/ - a argument to specify the action to take on each class. The available actions are:

* bui | dSchena: Thisisthe default action. It makes the database schema match your existing mappings. If your provided
mappings conflict with your class definitions, OpenJPA will fail with an informative exception.

» val i dat e: Ensure that the mappings for the given classes are valid and that they match the schema. No mappings or tables
will be changed. An exception is thrown if any mappings are invalid.

Each additional argument to the tool should be one of:
» Thefull name of apersistent class.

* The javafilefor apersistent class.

» The. cl ass fileof apersistent class.

If you do not supply any arguments to the mapping tool, it will run on the classesin your persistent classes list (see Section 5.1, “
Persistent ClassList " [260]).

The mappings generated by the mapping tool are stored by the system mapping factory. Section 7.5, “ Mapping Factory
" [299] discusses your mapping factory options.

Using the Mapping Tool

The JPA specification defines a comprehensive set of defaults for missing mapping information. Thus, forward mapping in

JPA isvirtually automatic. After using the mapping annotations covered in Chapter 13, Mapping Metadata [147] of the JPA
Overview to override any unsatisfactory defaults, run the mapping tool on your persistent classes. The default bui | dScherma
mapping tool action manipulates the database schemato match your mappings. It failsif any of your mappings don't match your
object model.

Example 7.2. Creating the Relational Schema from Mappings

java org. apache. openj pa. j dbc. met a. Mappi ngTool Magazi ne. j ava

291




Mapping

To drop the schemafor a persistent class, set the mapping tool's schenaAct i on todr op.

Example 7.3. Refreshing entire schema and cleaning out tables

java org. apache. openj pa. j dbc. met a. Mappi ngTool -schemaActi on add, del et eTabl eCont ent s

Example 7.4. Dropping Mappings and Association Schema

java org. apache. openj pa. j dbc. met a. Mappi ngTool -schemaActi on drop Magazi ne.java

7.1.2.

Generating DDL SQL

The examples below show how to use the mapping tool to generate DDL SQL scripts, rather than modifying the database
directly.

Example 7.5. Create DDL for Current Mappings

This example uses your existing mappings to determine the needed schema, then writes the SQL to create that schemato
create.sql.

java org. apache. openj pa. j dbc. met a. Mappi ngTool -schemaAction build -sql create.sql Magazine.java

Example 7.6. Create DDL to Update Database for Current Mappings

This example uses your existing mappings to determine the needed schema. It then writes the SQL to add any missing tables and
columns to the current schemato updat e. sql .

java org. apache. openj pa. j dbc. met a. Mappi ngTool -sql update.sql Magazine.java

7.1.3.

Runtime Forward Mapping

Y ou can configure OpenJPA to automatically run the mapping tool at runtime through the
openj pa. j dbc. Synchr oni zeMappi ngs configuration property. Using this property saves you the trouble of running the
mapping tool manually, and is meant for use during rapid test/debug cycles.

In order to enable automatic runtime mapping, you must first list all your persistent classes as described in Section 5.1, “
Persistent ClassList " [260].

OpenJPA will run the mapping tool on these classes when your application obtainsitsfirst Ent i t yManager .
Theopenj pa. j dbc. Synchr oni zeMappi ngs property isaplugin string (see Section 2.4, “ Plugin Configuration

" [199]) where the class name is the mapping tool action to invoke, and the properties are the Mappi ngTool class JavaBean
properties. These properties correspond go the long versions of the tool's command line flags.

292




Mapping

Example 7.7. Configuring Runtime Forward Mapping

<property name="openj pa.j dbc. Synchroni zeMappi ngs" val ue="bui | dSchema( For ei gnKeys=true)"/>

The setting above corresponds to running the following command:

java org. apache. openj pa. j dbc. met a. Mappi ngTool -action buil dSchema -forei gnKeys true

Reverse Mapping

OpenJPA includes a reverse mapping tool for generating persistent class definitions, complete with metadata, from an existing
database schema. Y ou do not have to use the reverse mapping tool to access an existing schema; you are free to write your classes
and mappings yourself, as described in Section 7.3, “ Meet-in-the-Middle Mapping ” [297]. The reverse mapping tool,
however, can give you an excellent starting point from which to grow your persistent classes.

To use the reverse mapping tool, follow the steps below:

1. Usethe schematool to export your current schemato an XML schemafile. Y ou can skip this step and the next step if you
want to run the reverse mapping tool directly against the database.

Example 7.8. Reflection with the Schema Tool

java org. apache. openj pa. j dbc. schema. SchemaTool -a reflect -f schema. xn

2. Examine the generated schemafile. JDBC drivers often provide incomplete or faulty metadata, in which case the file will
not exactly match the actual schema. Alter the XML file to match the true schema. The XML format for the schemafileis
described in Section 4.14, “ XML Schema Format " [258].

After fixing any errorsin the schemafile, modify the XML to include foreign keys between al relations. The schematool will
have automatically detected existing foreign key constraints; many schemas, however, do not employ database foreign keys
for every relation. By manually adding any missing foreign keys, you will give the reverse mapping tool the information it
needs to generate the proper relations between the persistent classesit creates.

3. Run the reverse mapping tool on the finished schemafile. If you do not supply the schemafile to reverse

map, the tool will run directly against the schemain the database. The tool can be run viaits Java class,
or g. apache. openj pa. j dbc. net a. Rever seMappi ngTool .

Example 7.9. Using the Reverse Mapping Tool

java org. apache. openj pa. j dbc. net a. Rever seMappi ngTool -pkg com xyz -d ~/src -cp custom zer.properties schema. xn

In addition to OpenJPA's standard configuration flags, including code for matting options, the reverse mapping tool
recognizes the following command line arguments:

293



../javadoc/org/apache/openjpa/jdbc/meta/ReverseMappingTool
../javadoc/org/apache/openjpa/jdbc/meta/ReverseMappingTool

Mapping

-schenmas/-s <schena and tabl e nanes>: A comma-separated list of schema and table namesto

reverse map, if no XML schemafileis supplied. Each element of the list must follow the naming conventions for the
openj pa. j dbc. Schenas property described in Section 4.12.1, “ SchemasList ” [254]. In fact, if thisflag is omitted,
it defaults to the value of the Schemas property. If the Schemas property is not defined, al schemas will be reverse-
mapped.

- package/ - pkg <package name>: The package name of the generated classes. If no package nameis given, the
generated code will not contain package declarations.

-directory/-d <out put directory>:All generated code and metadata will be written to the directory at this
path. If the path does not match the package of a class, the package structure will be created beneath this directory. Defaults
to the current directory.

-metadata/-md <cl ass | package | none>: Specify thelevel the metadata should be generated at. Defaults to
generating a single package-level metadatafile. Set to none to disable orm.xml generation.

-annotations/-ann <true/t | false/f>:Settotrue togenerate JPA annotationsin generated Java classes.

-accessType/ -access <field | property>: Change accesstype for generated annotations. Defaultsto field
access.

-useSchemaNane/ -sn <true/t | fal se/f>:Setthisflagtotr ue toincludethe schemaaswell astable name
in the name of each generated class. This can be useful when dealing with multiple schemas with same-named tables.

-useForei gnKeyNane/ -fkn <true/t | false/f>:Setthisflagtotrue if youwould like field namesfor
relations to be based on the database foreign key name. By default, relation field names are derived from the name of the
related class.

-nul | abl eAsObj ect/-no <true/t | fal se/f>:By default, al non-foreign key columns are mapped to
primitives. Set thisflagto t r ue to generate primitive wrapper fieldsinstead for columns that allow null values.

-bl obAsObj ect/-bo <true/t | fal se/f>:By default, al binary columns are mapped to byt e[ ] fields. Set
thisflagtot r ue to map themto Obj ect fieldsinstead. Note that when mapped this way, the column is presumed to
contain a serialized Java object.

-pri maryKeyOnJoi n/ -pkj <true/t | fal se/f>:Thestandard reverse mapping tool behavior isto map all
tables with primary keys to persistent classes. If your schema has primary keys on many-many join tables as well, set this
flagtot r ue to avoid creating classes for those tables.

-inverseRel ations/-ir <true/t | false/f>:Settofal se toprevent the creation of inverse 1-many/1-1
relations for every many-1/1-1 relation detected.

-useCenericCol l ections/-gc <true/t | fal sel/f>:Settotrueto usegeneric collections on OneToMany
and ManyToMany relations.

-useDat astoreldentity/-ds <true/t | false/f>:Settotrue tousedatastoreidentity for tablesthat have
single numeric primary key columns. Thetool typically uses application identity for all generated classes.

-useBuiltinldentityC ass/-bic <true/t | false/f>:Settof al se toprevent thetool from using built-
in application identity classes when possible. Thiswill force the tool to create custom application identity classes even when
thereis only one primary key column.

-innerldentityd asses/-inn <true/t | false/f>:Settotr ue tohave any generated application identity
classes be created as static inner classes within the persistent classes. Defaultstof al se.

294



Mapping

7.2.1.

e -identityd assSuffix/-is <suffix>: Suffix to append to class names to form application identity class names,
or for inner identity classes, the inner class name. Defaultsto | d.

 -typeMap/ -typ <type mappi ng>: A string that specifies the default Java classes to generate for each SQL type
that is seen in the schema. Theformatis SQLTYPEl=Javad assl, SQ.TYPE2=JavaCl ass2 . The SQL type name
first looks for acustomization based on  SQLTYPE( SI ZE, PRECI SI ON) , then SQLTYPE( SI ZE) , then SQLTYPE.
So if acolumn whose type nameis CHAR isfound, it will first look for the CHAR( 50, 0) type name specification,
then it will look for CHAR( 50) , and finally it will just look for CHAR. For example, to generate a char array for every
CHAR column whose size is exactly 50, and to generate ashor t for every type name of | NTEGER, you might specify:
CHAR(50) =char[], | NTEGER=shor t . Note that since various databases report different type names differently, one
database's type name specification might not work for another database. Enable TRACE level logging on the Met aDat a
channel to track which type names OpenJPA is examining.

e -custom zerC ass/-cc <cl ass nane>: Thefull class name of a
or g. apache. openj pa. j dbc. net a. Rever seCust om zer customization plugin. If you do not specify areverse
customizer of your own, the system defaultsto a Pr operti esRever seCust om zer . This customizer allows you to
specify simple customization options in the properties file given with the - cust om zer Properti es flag below. We
present the available property keys below.

e -custom zerProperties/-cp <properties file or resource>: Thepath or resource name of a
propertiesfile to pass to the reverse customizer on initialization.

e -custom zer./-c.<property nanme> <property val ue>: Thegiven property name will be matched with the
corresponding Java bean property in the specified reverse customizer, and set to the given value.

Running the tool will generate . j ava filesfor each generated class (and its application identity class, if applicable),
along with JPA annotations (if enabled by setting - annot ati ons true),oranor m xm file(if not disabled with -
nmet adat a none) containing the corresponding persistence metadata.

. Examine the generated class, metadata, and mapping information, and modify it as necessary. Remember that the reverse

mapping tool only provides a starting point, and you are free to make whatever modifications you like to the code it generates.

After you are satisfied with the generated classes and their mappings, you should first compile the classeswith j avac,

j i kes, or your favorite Java compiler. Make sure the classes are located in the directory corresponding to the - package
flag you gave the reverse mapping tool. Next, if you have generated an or m xm , movethat fileto a META- | NF directory
within adirectory in your classpath. Finally, enhance the classes if necessary (see Section 5.2, “ Enhancement ” [260]).

Y our persistent classes are now ready to access your existing schema.

Customizing Reverse Mapping

Theor g. apache. openj pa. j dbc. net a. Rever seCust omi zer plugin interface allows you to customize the reverse
mapping process. See the class Javadoc for details on the hooks that thisinterface provides. Specify the concrete plugin
implementation to use withthe - cust om zer Cl ass/ - cc command-line flag, described in the preceding section.

By default, the reverse mapping tool usesa or g. apache. openj pa. j dbc. net a. Properti esRever seCust om zer
. This customizer alows you to perform relatively simple customizations through the properties file named with the -
cust om zer Properti es tool flag. The customizer recognizes the following properties:

* <tabl e nane>.tabl e-type <type>: Override the default type of the table with name <t abl e name>. Legal values

are:
* base: Primary table for abase class.

* secondary: Secondary table for a class. The table must have aforeign key joining to a class table.

295


../javadoc/org/apache/openjpa/jdbc/meta/ReverseCustomizer.html
../javadoc/org/apache/openjpa/jdbc/meta/ReverseCustomizer.html
../javadoc/org/apache/openjpa/jdbc/meta/PropertiesReverseCustomizer.html
../javadoc/org/apache/openjpa/jdbc/meta/ReverseCustomizer.html
../javadoc/org/apache/openjpa/jdbc/meta/PropertiesReverseCustomizer.html

Mapping

e secondar y- out er : Outer-joined secondary table for aclass. The table must have aforeign key joining to a classtable.
e associ at i on: Association table. The table must have two foreign keysto class tables.

e col | ecti on: Coallection table. The table must have one foreign key to aclass table and one data column.

* subcl ass: A joined subclass table. The table must have aforeign key to the superclass' table.

* none: The table should not be reverse-mapped.

<cl ass nane>.renane <new cl ass nane>: Override the given tool-generated name <cl ass nane> with anew
value. Use full class names, including package. Y ou are free to rename a class to a new package. Specify avalue of none to
reject the class and leave the corresponding table unmapped.

<t abl e nane>. cl ass- nanme <new cl ass nane>: Assign the given fully-qualified class name to the type created
from the table with name <t abl e nane>. Useavalue of none to prevent reverse mapping thistable. This property can be
used in place of ther enane property.

<class name>.identity <datastore | builtin | identity class name>: Setthisproperty to

dat ast or e to use datastore identity for the class<cl ass name>, bui | ti n to useabuilt-in identity class, or the desired
application identity class name. Give full class names, including package. Y ou are free to change the package of the identity
classthisway. If the persistent class has been renamed, use the new class name for this property key. Remember that datastore
identity requires a table with a single numeric primary key column, and built-in identity requires a single primary key column
of any type.

<cl ass nane>. <field nane>.renane <new fi el d nane> : Overidethetool-generated <f i el d nanme>in
class<cl ass nane> with the given name. Use the field owner's full class namein the property key. If the field owner's class
was renamed, use the new class name. The property value should be the new field name, without the preceding class name. Use
avalue of none to reject the generated mapping and remove the field from the class.

<t abl e nane>. <col um nane>. fi el d-nane <new fi el d nanme>: Set the generated field name for the <t abl e
nane> table's<col umm nane> column. If thisis a multi-column mapping, any of the columns can be used. Use avalue of
none to prevent the column and its associated columns from being reverse-mapped.

<cl ass nane>.<field name>.type <field type>:Thetypeto givethe named field. Usefull class names. If the
field or the field's owner class has been renamed, use the new name.

<cl ass nane>. <fi el d nanme>. val ue: Theinitial value for the named field. The given string will be placed as-isin the
generated Java code, so be sureit isvalid Java. If the field or the field's owner class has been renamed, use the new name.

All property keys are optional; if not specified, the customizer keeps the default value generated by the reverse mapping tool.

296



Mapping

Example 7.10. Customizing Reverse Mapping with Properties

j ava org. apache. openj pa. j dbc. net a. Rever seMappi ngTool -pkg com xyz -cp custom properties schema. xni

Examplecust om properti es:

com xyz. Thl Magazi ne. r enane: com xyz. Magazi ne

com xyz. Thl Articl e. renane: comxyz. Article

com xyz. Thl PubConpany. r enane: com xyz. pub. Conpany
com xyz. Thl Sysl nf o. r enane: none

com xyz. Magazi ne. al | Articl es. renane: articles

com xyz. Magazine. articles. type: java.util.Collection
com xyz. Magazi ne. articl es. val ue: new TreeSet ()

com xyz. Magazi ne.identity: dat astore

com xyz. pub. Conpany. i dentity: com xyz. pub. Conpanyl d

7.3.

Meet-in-the-Middle Mapping

In the meet-in-the-middle mapping approach, you control both the relational model and the object model. It is up to you to define
the mappings between these models. The mapping tool'sval i dat e action is useful to meet-in-the-middle mappers. This action
verifies that the mapping information for a class matches the class definition and the existing schema. It throws an informative
exception when your mappings are incorrect.

Example 7.11. Validating Mappings

java org. apache. openj pa. j dbc. met a. Mappi ngTool -action validate Magazine.java

7.4.

Thebui | dSchema action we discussed in Section 7.1, * Forward Mapping” [290] is also somewhat useful during meet-
in-the-middle mapping. Unlike theval i dat e action, which throws an exception if your mapping data does not match the
existing schema, the bui | dSchena action assumes your mapping datais correct, and modifies the schemato match your
mappings. This lets you modify your mapping data manually, but saves you the hassle of using your database's tools to bring the
schema up-to-date.

Mapping Defaults

The previous sections showed how to use the mapping tool to generate default mappings. But how does the mapping tool know
what mappings to generate? The answer liesinthe or g. apache. openj pa. j dbc. et a. Mappi ngDef aul t s interface.
OpenJPA uses an instance of this interface to decide how to name tables and columns, where to put foreign keys, and generally
how to create a schema that matches your object model.

| mportant

OpenJPA relies on foreign key constraint information at runtime to order SQL appropriately. Be sure to set your
mapping defaults to reflect your existing database constraints, set the schema factory to reflect on the database for
constraint information (see Section 4.12.2, “ Schema Factory ” [254]), or use explicit foreign key mappings as
described in Section 7.7.9.2, “ Foreign Keys” [309].

297



../javadoc/org/apache/openjpa/jdbc/meta/MappingDefaults.html

Mapping

The openj pa. j dbc. Mappi ngDef aul t s configuration property controls the Mappi ngDef aul t s interface
implementation in use. Thisis a plugin property (see Section 2.4, “ Plugin Configuration ” [199]), so you can substitute your
own implementation or configure the existing ones. OpenJPA includes the following standard implementations:

* | pa: Provides defaults in compliance with the JPA standard. Thisis an alias for the
or g. apache. openj pa. per si st ence. j dbc. Per si st enceMappi ngDef aul t s class. Thisclass extends the
Mappi ngDef aul t sl npl class described below, so it has all the same properties (though with different default values), as
well as:

* PrependFi el dNaneToJoi nTabl el nver seJoi nCol umms: Whether to prepend the owning field name to the names
of inverse join columnsin join tables. Defaults to true per the JPA specification. Set to false for compatibility with older
OpenJPA versions which did not prepend the field name.

« defaul t: Thisisanaliasfor the or g. apache. openj pa. j dbc. met a. Mappi ngDef aul t sl npl class. This default
implementation is highly configurable. It has the following properties:

e Def aul t M ssi ngl nf o: Whether to default missing column and table names rather than throw an exception. If set
to false, full explicit mappings are required at runtime and when using mapping tool actions like bui | dSchena and
val i dat e.

* RenpveHungari anNot at i on: Switches on/off removal of Hungarian notation when generating column names. Fields
such asnfFoobar and st r Bar Foo would become columns named f oobar and bar f oo respectively. OpenJPA will
search for the first instance of a uppercase character in the field name and then truncate the column name to remove anything
before it.

» BaseC assSt r at egy: The default mapping strategy for base classes. Y ou can specify abuilt-in
strategy alias or the full class name of a custom class strategy. Y ou can also use OpenJPA's plugin format
(see Section 2.4, “ Plugin Configuration ” [199]) to pass arguments to the strategy instance. See the
or g. apache. openj pa. j dbc. net a. st r at s package for available strategies.

e Subcl assStr at egy: The default mapping strategy for subclasses. Y ou can specify abuiltin strategy alias or the
full class name of a custom class strategy. Y ou can also use OpenJPA's plugin format (see Section 2.4, “ Plugin
Configuration ” [199]) to pass arguments to the strategy instance. Common strategiesareverti cal andfl at , the
default. Seethe or g. apache. openj pa. j dbc. net a. st r at s package for all available strategies.

« Ver si onSt r at egy: The default version strategy for classes without a version field. Y ou can specify a
builtin strategy alias or the full class name of a custom version strategy. Y ou can also use OpenJPA's plugin
format (see Section 2.4, “ Plugin Configuration ” [199]) to pass arguments to the strategy instance. Common
strategiesarenone, state-conpari son, tinmestanp,and versi on-nunber, the default. See the
or g. apache. openj pa. j dbc. net a. st r at s package for all available strategies.

e DiscrimnatorStrat egy: Thedefault discriminator strategy when no discriminator valueis given. Y ou can specify
abuiltin strategy alias or the full class name of a custom discriminator strategy. Y ou can also use OpenJPA's plugin
format (see Section 2.4, “ Plugin Configuration ” [199]) to pass arguments to the strategy instance. Common strategies
aref i nal for abase class without subclasses, none to use joins to subclass tables rather than a discriminator column, and
cl ass- nane, the default. Seethe or g. apache. openj pa. j dbc. net a. st r at s package for all available strategies.

* Fiel dStrat egi es: Thisproperty associates field types with custom strategies. The format of this property is similar to
that of plugin strings (see Section 2.4, “ Plugin Configuration ” [199] ), without the class name. It is a comma-separated
list of key/value pairs, where each key is apossible field type, and each value isitself a plugin string describing the strategy
for that type. We present an example below. See Section 7.10.3, “ Custom Field Mapping ” [318] for information on
custom field strategies.

« For ei gnKeyDel et eAct i on: The default delete action of foreign keys representing relations to other objects.
Recognized valuesincluder estri ct,cascade, nul | , def aul t . These values correspond exactly to the standard
database foreign key actions of the same names.

298


../javadoc/org/apache/openjpa/persistence/jdbc/PersistenceMappingDefaults.html
../javadoc/org/apache/openjpa/persistence/jdbc/PersistenceMappingDefaults.html
../javadoc/org/apache/openjpa/jdbc/meta/MappingDefaultsImpl.html
../javadoc/org/apache/openjpa/jdbc/meta/strats/package-summary.html
../javadoc/org/apache/openjpa/jdbc/meta/strats/package-summary.html
../javadoc/org/apache/openjpa/jdbc/meta/strats/package-summary.html
../javadoc/org/apache/openjpa/jdbc/meta/strats/package-summary.html
../javadoc/org/apache/openjpa/jdbc/meta/strats/package-summary.html
../javadoc/org/apache/openjpa/jdbc/meta/strats/package-summary.html

Mapping

The value none tells OpenJPA not to create database foreign keys on relation columns. Thisis the default.

« Joi nFor ei gnKeyDel et eAct i on: The default delete action of foreign keys that join secondary, collection, map, or
subclass tables to the primary table. Accepts the same valuesasthe For ei gnKeyDel et eAct i on property above.

« Def er Constr ai nt s: Whether to use deferred database constraints if possible. Defaults to false.

* I ndexLogi cal For ei gnKeys: Boolean property controlling whether to create indexes on logical foreign keys. Logical
foreign keys are columns that represent a link between tables, but have been configured through the For ei gnKey
properties above not to use a physical database foreign key. Defaults to true.

» Dat aSt or el dCol urmNane: The default name of datastore identity columns.

e Di scri m nat or Col utmNane: The default name of discriminator columns.

e I ndexDi scri m nat or : Whether to index the discriminator column. Defaults to true.
e Ver si onCol utmNanre: The default name of version columns.

e | ndexVer si on: Whether to index the version column. Defaults to false.

e AddNul I I ndi cat or : Whether to create a synthetic null indicator column for embedded mappings. The null indicator
column allows OpenJPA to distinguish between a null embedded object and one with default values for all persistent fields.

e Nul I I ndi cat or Col utmName: The default name of synthetic null indicator columns for embedded objects.
e OrderLi st s: Whether to create a database ordering column for maintaining the order of persistent lists and arrays.
e O der Col utmNane: The default name of collection and array ordering columns.

¢ St or eEnun®r di nal : Set to true to store enum fields as numeric ordina values in the database. The default isto store the
enum value name as a string, which is more robust if the Java enum declaration might be rearranged.

e St oreUnmappedObj ect | dSt ri ng: Set to true to store the stringified identity of related objects when the declared
related type is unmapped. By default, OpenJPA stores the related object's primary key value(s). However, this breaks down
if different subclasses of the related type use incompatible primary key structures. In that case, stringifying the identity value
is the better choice.

The example below turns on foreign key generation during schema creation and associatesthe or g. mag. dat a. | nf oSt r uct
field type with the custom or g. mag. mappi ng. | nf oSt r uct Handl er vaue handler.

Example 7.12. Configuring Mapping Defaults

<property nanme="openj pa.j dbc. Mappi ngDef aul t s"
val ue="For ei gnKeyDel et eActi on=restrict,
Fi el dStrat egi es=' org. mag. dat a. | nf oSt ruct =or g. mag. mappi ng. | nf oSt ruct Handl er' "/ >

Mapping Factory

An important decision in the object-relational mapping process is how and where to store the data necessary to map your
persistent classes to the database schema.

Section 6.1, “ Metadata Factory " [283] introduced OpenJPA's Met aDat aFact or y interface. OpenJPA uses this same
interface to abstract the storage and retrieval of mapping information. OpenJPA includes the built-in mapping factories below,

299




Mapping

and you can create your own factory if you have custom needs. Y ou control which mapping factory OpenJPA uses with the
openj pa. j dbc. Mappi ngFact or y configuration property.

The bundled mapping factories are:

» -:Leavingthe openj pa.jdbc. Mappi ngFact ory property unset allows your metadata factory to take over mappings
aswell. If you are using the default j pa metadata factory, OpenJPA will read mapping information from your annotations and
orm xm when you leave the mapping factory unspecified.

Example 7.13. Standard JPA Configuration

In the standard JPA configuration, the mapping factory isleft unset.

<property name="openj pa. Met aDat aFact ory" val ue="j pa"/>

7.6.

Non-Standard Joins

The JPA Overview's Chapter 13, Mapping Metadata [147] explainsjoin mapping. All of the examplesin that document,
however, use "standard" joins, in that there is one foreign key column for each primary key column in the target table. OpenJPA
supports additional join patterns, including partial primary key joins, non-primary key joins, and joins using constant values.

In apartial primary key join, the source table only has foreign key columns for a subset of the primary key columnsin the target
table. So long as this subset of columns correctly identifies the proper row(s) in the referenced table, OpenJPA will function
properly. Thereis no special syntax for expressing apartial primary key join - just do not include column definitions for missing
foreign key columns.

In anon-primary key join, at least one of the target columnsis not a primary key. Once again, OpenJPA supports thisjoin type
with the same syntax as a primary key join. Thereis one restriction, however: each non-primary key column you are joining to
must be controlled by afield mapping that implementsthe or g. apache. openj pa. j dbc. net a. Joi nabl e interface.
All built in basic mappings implement this interface, including basic fields of embedded objects. OpenJPA will aso respect any
custom mappings that implement thisinterface. See Section 7.10, “ Custom Mappings” [317] for an examination of custom

mappings.

Not al joins consist of only links between columns. In some cases you might have a schemain which one of the join criteriais
that a column in the source or target table must have some constant value. OpenJPA calls joins involving constant val ues constant
joins.

To form a constant join in JPA mapping, first set the Joi nCol unm 'snane attribute to the name of the column. If the column
with the constant value is the target of the join, giveitsfully qualified namein the form <t abl e nane>. <col um nane> .
Next, set ther ef er encedCol urmNanre attribute to the constant value. If the constant value is a string, placeit in single quotes
to differentiate it from a column name.

300



../javadoc/org/apache/openjpa/jdbc/meta/Joinable.html

Mapping

Consider the tables above. First, wewant to joinrow T1. R1 torow T2. R1. If wejust join column T1. FKto T2. PK1, we
will wind up matching both T2. RL and T2. R2. Soinadditiontojoining T1. FKto T2. PK1, we also have to specify that
T2. PK2 hasthe value a. Here is how we'd accomplish this in mapping metadata.

@ntity
@rabl e(name="T1")
public class ... {

@manyToOne
@oi nCol ums({
@oi nCol um( name="FK" referencedCol umNanme="PK1"),
@oi nCol um( nane="T2. PK2" referencedCol umNane=""a"'")
s

private ...;

Notice that we had to fully qualify the name of column PK2 becauseit isin the target table. Also notice that we put single quotes
around the constant value so that it won't be confused with a column name. Y ou do not need single quotes for numeric constants.
For example, the syntax tojoin T1. R2 to T2. R4 is:

@ntity
@abl e(nanme="T1")
public class ... {

@manyToOne
@oi nCol ums({
@oi nCol uim( name="FK" referencedCol uimNanme="PK2"),
@oi nCol umm( name="T2. PK1" referencedCol uimNane="2")
1

private ...;

Finally, from the inverse direction, these joins would look like this:

@ntity
@rabl e( nane="T2")
public class ... {

@manyToOne
@oi nCol ums({
@oi nCol umm( name="T1. FK" ref er encedCol uimNane="PK1"),
@oi nCol utm( nane="PK2" referencedCol umNanme=""a'")
s

private ...;

@/manyToOne

@oi nCol ums({
@oi nCol uim( name="T1. FK" ref er encedCol unmNane="PK2") ,
@oi nCol uim( nanme="PK1" referencedCol utmNanme="2")

1)

private ...;

7.7.

Additional JPA Mappings

OpenJPA supports many persistence strategies beyond those of the JPA specification. Section 6.3, “ Additional JPA M etadata
" [284] covered the logical metadata for OpenJPA's additional persistence strategies. We now demonstrate how to map entities
using these strategies to the database.

301




Mapping

7.7.1.

Datastore ldentity Mapping

Section 5.4, Object Identity ” [265] describes how to use datastore identity in JPA.

OpenJPA requires asingle numeric primary key column to hold datastore identity values. The

or g. apache. openj pa. persi st ence. j dbc. Dat aSt or el dCol unm annotation customizes the datastore identity
column. This annotation has the following properties:

e String nane: Defaultsto| D.

e int precision

* String columDefinition

* bool ean insertabl e

* bool ean updat abl e

All properties correspond exactly to the same-named properties on the standard Col unm annotation, described in Section 13.3, “
Column ” [150].

Example 7.14. Datastore | dentity Mapping

i mport org. apache. openj pa. per si stence. *;
i mport org. apache. openj pa. persi stence. jdbc. *;

@ntity

@abl e(name="L0GS")

@pat aSt or el dCol utm( nanme="ENTRY")
public class LogEntry {

@ob
private String content;

7.7.2.

Surrogate Version Mapping

OpenJPA supports version fields as defined by the JPA specification, but allows you to use a surrogate

version column in place of aversion field if you like. Y ou map the surrogate version column with the

or g. apache. openj pa. persi st ence. j dbc. Ver si onCol unn annotation. Y ou can aso use the

or g. apache. openj pa. persi st ence. j dbc. Ver si onCol unms annotation to declare an array of Ver si onCol urm
values. Each Ver si onCol um has the following properties:

e String namne: Defaultsto VERSN.

« String table

e int length

e int precision

e int scale

e String columbDefinition

302



../javadoc/org/apache/openjpa/persistence/jdbc/DataStoreIdColumn.html
../javadoc/org/apache/openjpa/persistence/jdbc/DataStoreIdColumn.html
../javadoc/org/apache/openjpa/persistence/jdbc/VersionColumn.html
../javadoc/org/apache/openjpa/persistence/jdbc/VersionColumn.html
../javadoc/org/apache/openjpa/persistence/jdbc/VersionColumns.html
../javadoc/org/apache/openjpa/persistence/jdbc/VersionColumns.html

Mapping

e bool ean nul | abl e
* bool ean insertabl e
* bool ean updat abl e

All properties correspond exactly to the same-named properties on the standard Col unm annotation, described in Section 13.3, “
Column ” [150].

By default, OpenJPA assumes that surrogate versioning uses aversion number strategy. Y ou can choose a different strategy with
the Ver si onSt r at egy annotation described in Section 7.9.1.4, “ Version Strategy " [316].

If multiple columns are used for surrogate versioning, then each column, by default, uses a version number. But column
definition for each version column can be set independently to other numeric types. The version values are compared to detect
optimistic concurrent modification. Such comparison must determine whether aversion value v1 represents an earlier, later or
same with respect to another version value v2. While result of such comparison is obvious for a single numeric column that
monotonically increases on each update, the same is not true when version valueis an array of numbers. By default, OpenJPA
compares aversion v1 aslater than another version v2, if any array element of v1 islater than the corresponding element of v2.
v1isequal tov2 if every array element isequal and vl isearlier tov1 if some elementsof v1 are earlier and rest are equal to
corresponding element of v2.

Multiple surrogate version columns can be spread across primary and secondary tables. For example, following example shows 3
version columnsv01, v11, v12, v21 defined acrossthe primary and secondary tables of apersistent entity

@ntity

@abl e( name=" PRI MARY")

@secondar yTabl es({
@secondar yTabl e( nanme
@secondar yTabl e( nanme

" SECONDARY_1")
" SECONDARY_2")

b
@/er si onSt rat egy("versi on- nunbers")
@/er si onCol ums({
@/er si onCol umm( nane
@/er si onCol umm( nane
@/er si onCol umm( nane
@/er si onCol umm( nane

"v01") // default is the PRI MARY table

"v11", tabl e="SECONDARY_1", col umbDefi niti on="FLOAT", scal e=3, precision=10),
"v12", tabl e=" SECONDARY_1"),

"v21", tabl e=" SECONDARY_2"),

})

7.7.3.

Multi-Column Mappings

7.7.4.

OpenJPA makes it easy to create multi-column custom mappings. The JPA specification includes a Col umm
annotation, but is missing away to declare multiple columns for asingle field. OpenJPA remedies this with the
or g. apache. openj pa. per si st ence. j dbc. Col utms annotation, which contains an array of Col urm values.

Remember to annotate custom field types with Per si st ent , asdescribed in Section 6.3.3, “ Persistent Field Values” [284].

Join Column Attribute Targets

Section 13.8.4, “ Direct Relations” [175] in the JPA Overview introduced you to the Joi nCol umm annotation. A

Joi nCol um's r ef er encedCol unmNane property declares which column in the table of the related type this join column
links to. Suppose, however, that the related type is unmapped, or that it is part of atable-per-classinheritance hierarchy. Each
subclass that might be assigned to the field could reside in a different table, and could use entirely different names for its primary
key columns. It becomes impossible to supply asingler ef er encedCol ummNane that works for all subclasses.

OpenJPA rectifies this by allowing you to declare which attribute in the related type each join column links to, rather than which
column. If the attribute is mapped differently in various subclass tables, OpenJPA automatically forms the proper join for the

303



../javadoc/org/apache/openjpa/persistence/jdbc/Columns.html
../javadoc/org/apache/openjpa/persistence/jdbc/Columns.html

Mapping

7.7.5.

subclass record at hand. The or g. apache. openj pa. per si st ence. j dbc. XJoi nCol unn annotation has all the same
properties as the standard Joi nCol umm  annotation, but adds an additional r ef er encedAt t ri but eNane property for
this purpose. Simply use aXJoi nCol um in place of aJoi nCol utm  whenever you need to access this added functionality.

For compound keys, usethe or g. apache. openj pa. per si st ence. j dbc. XJoi nCol unms annotation. The value of
this annotation is an array of individual XJoi nCol urms.

Embedded Mapping

JPA usesthe At t ri but eOver ri de annotation to override the default mappings of an embeddable class. The JPA Overview
details this processin Section 13.8.3, “ Embedded Mapping” [172]. Attri but eOverri dessuffice for simple mappings,
but do not allow you to override complex mappings. Also, JPA has no way to differentiate between a null embedded object and
one with default values for all of itsfields.

OpenJPA overcomes these shortcomings with the or g. apache. openj pa. per si st ence. j dbc. EnbeddedMappi ng
annotation. This annotation has the following properties:

e String nulllndicatorCol umNane: If the named column's valueis NULL, then the embedded object is assumed to be
null. If the named column has anon- NULL value, then the embedded object will get loaded and populated with data from the
other embedded fields. This property is entirely optional. By default, OpenJPA always assumes the embedded object is hon-
null, just asin standard JPA mapping.

If the column you name does not belong to any fields of the embedded object, OpenJPA will create a synthetic null-indicator
column with this name. In fact, you can specify avaue of t r ue to ssimply indicate that you want a synthetic null-indicator
column, without having to come up with anamefor it. A value of f al se signals that you explicitly do not want anull-
indicator column created for this mapping (in case you have configured your mapping defaults to create one by default).

e String nulllndicatorFi el dName: Rather than name a null indicator column, you can name a field of the embedded
type. OpenJPA will use the column of thisfield as the null-indicator column.

* Mappi ngOverride[] overrides: Thisarray alowsyou to override any mapping of the embedded object.

The EnbeddedMappi ng'soverri des array servesthe same purpose as standard JPA's At t ri but eOverri de sand
Associ ati onOverri de s. Infact, you can aso use the Mappi ngOver ri de annotation on an entity classto override a
complex mapping of its mapped superclass, just asyou canwith Attri but eOverri de and Associ ati onOverri de
s. The Mappi ngOver ri des annotation, whose valueis an array of Mappi ngOverri de s, allowsyou to override multiple
mapped superclass mappings.

Each or g. apache. openj pa. per si st ence. j dbc. Mappi ngOverri de annotation has the following properties:
e String nane: The name of the field that is being overridden.

e Col um[] col ums: Columnsfor the new field mapping.

* XJoi nCol um[] j oi nCol umms: Join columns for the new field mapping, if it isarelation field.

e Cont ai ner Tabl e cont ai ner Tabl e: Tablefor the new collection or map field mapping. We cover collection mappings
in Section 7.7.6, “ Collections” [305], and map mappingsin Section 7.7.8,“ Maps™” [307].

* El ement Joi nCol um[] el enent Joi nCol umrms: Element join columns for the new collection or map field mapping.
Y ou will see how to use element join columnsin Section 7.7.6.2, “ Element Join Columns™” [306].

The following example defines an embeddable Pat hCoor di nat e classwith a custom mapping of aj ava. awt . Poi nt
field to two columns. It then defines an entity which embedsa Poi nt Coor di nat e and overrides the default mapping for
the point field. The entity also declaresthat if the Pat hCoor di nat e 'ssi t eNane field column isnull, it means that no
Pat hCoor di nat e is stored in the embedded record; the owning field will load as null.

304


../javadoc/org/apache/openjpa/persistence/jdbc/XJoinColumn.html
../javadoc/org/apache/openjpa/persistence/jdbc/XJoinColumns.html
../javadoc/org/apache/openjpa/persistence/jdbc/EmbeddedMapping.html
../javadoc/org/apache/openjpa/persistence/jdbc/MappingOverride.html

Mapping

Example 7.15. Overriding Complex Mappings

i nport org.apache. openj pa. per si st ence. j dbc. *;

@nbeddabl e
public class PathCoordinate {

private String siteNane;

@er si st ent
@bt rat egy( " com xyz. openj pa. Poi nt Val ueHandl er ")
private Point point;

}

@Entity
public class Path {

@nbedded
@nbeddedMappi ng( nul I I ndi cat or Fi el dNanme="si t eNane", overri des={
@bppi ngOverri de( name="si t eNane", col utms=@Col um( nanme="START_SI TE")),
@bappi ngOverri de( name="poi nt", col ums={
@col um( name="START_X"),
@ol um( nanme="START_Y")
b
b

private PathCoordinate start;

7.7.6.

Collections

In Section 6.3.4, “ Persistent Collection Fields’ [285], we explored the Per si st ent Col | ect i on annotation for persistent
collection fields that aren't a standard OneToMany or ManyToMany relation. To map these non-standard collections, combine
OpenJPA's Cont ai ner Tabl e annotation with El enent Joi nCol urms. We explore the annotations below.

7.7.6.1. Container Table

The or g. apache. openj pa. per si st ence. j dbc. Cont ai ner Tabl e annotation describes a database table that holds
collection (or map) elements. This annotation has the following properties:

e String name

 String catal og

 String schema

e XJoi nCol um[] j oi nCol utms

» Forei gnKey | oi nForei gnKey

e I ndex j oi nl ndex

Thenane, cat al og, schema , andj oi nCol urms properties describe the container table and how it joins to the owning
entity's table. These properties correspond to the same-named properties on the standard Joi nTabl e annotation, described in
Section 13.8.5,“ Join Table” [179] . If left unspecified, the name of the table defaultsto the first five characters of the entity

table name, plus an underscore, plusthefield name. Thej oi nFor ei gnKey and | oi nl ndex properties override default
foreign key and index generation for the join columns. We explore foreign keys and indexes later in this chapter.

305



../javadoc/org/apache/openjpa/persistence/jdbc/ContainerTable.html

Mapping

Y ou may notice that the container table does not define how to store the collection elements. That is left to separate annotations,
which are the subject of the next sections.

7.7.6.2. Element Join Columns

Element join columns are equivalent to standard JPA join columns, except that they represent ajoin to a collection

or map element entity rather than a direct relation. Y ou represent an element join column with OpenJPA's

or g. apache. openj pa. persi st ence. j dbc. El ement Joi nCol unm annotation. To declare acompound join, enclose
anarray of El erent Joi nCol umsinthe or g. apache. openj pa. persi st ence. j dbc. El enent Joi nCol urms
annotation.

An El ement Joi nCol umm alwaysresidesin a container table, so it does not havethe t abl e property of a standard

Joi nCol um. Like XJoi nCol utmsabove, El erment Joi nCol umms can reference alinked attribute rather than a
static linked column. Otherwise, the El erment Joi nCol unm and standard Joi nCol unm annotations are equivalent. See
Section 13.8.4, “ Direct Relations” [175] in the JPA Overview for areview of the Joi nCol urm annotation.

7.7.6.3. Order Column

7.7.7.

Relational databases do not guarantee that records are returned in insertion order. If you want to make sure that your collection
elements are loaded in the same order they were in when last stored, you must declare an order column. An order column can

be declared using OpenJPA's or g. apache. openj pa. per si st ence. j dbc. O der Col urm annotation or the JPA 2.0
j avax. per si st ence. O der Col umrm annotation or or der - col urm orm element as defined in Section 5.3, “ XML
Schema” [43]. OpenJPA's or g. apache. openj pa. per si st ence. j dbc. Or der Col unm annotation has the following
properties:

e String nane: Defaultstot he nane of the relationship property or field of the entity
or enbeddabl e class + _ORDER. To usethe JPA 1.0 default order column name ORDR, set the Section 2.5.7, “
openjpa.Compatibility ” [202] option UseJPA2Def aul t Or der Col umNane to f al se.

* bool ean enabl ed

e int precision

* String columDefinition

* bool ean insertabl e

* bool ean updat abl e

Order columns are always in the container table. Y ou can explicitly turn off ordering (if you have enabled it by default viayour

mapping defaults) by setting the enabl ed property to f al se. All other properties correspond exactly to the same-named
properties on the standard Col urm annotation, described in Section 13.3, “ Column ” [150].

One-Sided One-Many Mapping

The previous section covered the use of El enent Joi nCol unn annotations in conjunction with aCont ai ner Tabl e for
mapping collections to dedicate tables. El enent Joi nCol urm s, however, have one additional use: to create a one-sided one-
many mapping. Standard JPA supports OneToMany fields without amappedBy inverse, but only by mapping thesefieldsto a
Joi nTabl e (see Section 13.8.5,“ Join Table” [179] in the JPA Overview for details). Often, you'd like to create a one-many
association based on an inverse foreign key (logical or actual) in the table of the related type.

306


../javadoc/org/apache/openjpa/persistence/jdbc/ElementJoinColumn.html
../javadoc/org/apache/openjpa/persistence/jdbc/ElementJoinColumn.html
../javadoc/org/apache/openjpa/persistence/jdbc/ElementJoinColumns.html
../javadoc/org/apache/openjpa/persistence/jdbc/OrderColumn
../javadoc/org/apache/openjpa/persistence/jdbc/OrderColumn

Mapping

org.mag.subscribe

Subscription
- tems: Collection<Lineltem= |}

Lineltern

SUB_ID: BIG

Consider the model above. Subscri pti on hasacollection of Li nel t ems, but Li nel t emhas no inverse relation to
Subscri pti on. Toretrieveal of theLi nel t emrecordsfor aSubscri pti on ,wejointhe SUB | Dinverse foreign key
columninthe LI NE_| TEMtableto the primary key column of the SUB table. The example below shows how to represent this
model in mapping annotations. Note that OpenJPA automatically assumes an inverse foreign key mapping when element join
columns are given, but no container or join table is given.

Example 7.16. One-Sided One-Many Mapping

package org. mag. subscri be;
i nport org. apache. openj pa. per si st ence. j dbc. *;

@ntity
@rabl e(name="LI NE_| TEM', schema="CNTRCT")
public class Lineltem{

}

@ntity
@rabl e(name="SUB", schema="CNTRCT")
public class Subscription {

@d private long id;
@neToMany

@l ement Joi nCol uim( name="SUB_| D', referencedCol umNane="1D")
private Col |l ection<Linelten> itens;

7.7.8. Maps

We detailed the Cont ai ner Tabl e annotation in Section 7.7.6.1, “ Container Table” [305]. Custom map mappings may
al so use this annotation to represent a map table.

7.7.8.1. Key Columns

Key columns serve the same role for map keys as the element join columns described in

Section 7.7.6.2, “ Element Join Columns” [306] serve for collection elements. OpenJPA's

or g. apache. openj pa. persi st ence. j dbc. KeyCol unm annotation represents a map key. To map custom multi-
column keys, usethe or g. apache. openj pa. per si st ence. j dbc. KeyCol unms annotation, whose value is an array
of KeyCol ums.

A KeyCol umm always resides in a container table, so it does not have thet abl e property of a standard Col urm. Otherwise,
the Key Col umm and standard Col urm annotations are equivalent. See Section 13.3, “ Column ” [150] in the JPA Overview for
areview of the Col unm annotation.

307


../javadoc/org/apache/openjpa/persistence/jdbc/KeyColumn.html
../javadoc/org/apache/openjpa/persistence/jdbc/KeyColumn.html
../javadoc/org/apache/openjpa/persistence/jdbc/KeyColumns.html

Mapping

7.7.8.2. Key Join Columns

Key join columns are equivalent to standard JPA join columns, except that they represent ajoin

to amap key entity rather than a direct relation. Y ou represent a key join column with OpenJPA's

or g. apache. openj pa. persi st ence. j dbc. KeyJoi nCol umm annotation. To declare a compound join, enclose an
array of KeyJoi nCol utmmsinthe or g. apache. openj pa. per si st ence. j dbc. KeyJoi nCol unms annotation.

A KeyJoi nCol umrm alwaysresidesin a container table, so it does not havethet abl e property of a standard Joi nCol um.
Like XJoi nCol utms above, Key Joi nCol umms can reference alinked field rather than a static linked column. Otherwise, the
KeyJoi nCol umm and standard Joi nCol umm annotations are equivalent. See Section 13.8.4, “ Direct Relations” [175] in the
JPA Overview for areview of the Joi nCol unm annotation.

7.7.8.3. Key Embedded Mapping

The or g. apache. openj pa. per si st ence. j dbc. KeyEnbeddedMappi ng annotation allows you to map your map
field's embedded key type to your container table. This annotation has exactly the same properties as the EnbeddedMappi ng
annotation described above.

7.7.8.4. Examples

org.mag

c——
Article A
-1d: long i . -

- authors: Map<String,Author>

Author

org.mag.pub

Map mapping in OpenJPA uses the same principles you saw in collection mapping. The example below maps the
Arti cl e. aut hor s map according to the diagram above.

308


../javadoc/org/apache/openjpa/persistence/jdbc/KeyJoinColumn.html
../javadoc/org/apache/openjpa/persistence/jdbc/KeyJoinColumn.html
../javadoc/org/apache/openjpa/persistence/jdbc/KeyJoinColumns.html
../javadoc/org/apache/openjpa/persistence/jdbc/KeyEmbeddedMapping.html

Mapping

Example 7.17. String Key, Entity Value Map Mapping

package org. nag. pub;

i nport org.apache. openj pa. per si st ence. *;
i nport org. apache. openj pa. per si st ence. j dbc. *;

@ntity

@rabl e( name="AUTH")

@at aSt or el dCol um( narme="Al D', col umbDefi nition="1NTEGER64")
public class Author {

}
package org. nag;

@ntity

@rabl e( name="ART")

public class Article {
@d private long id;

@Per si st ent Map

@Cont ai ner Tabl e( nane="ART_AUTHS", j oi nCol umms=@XJoi nCol um( nane="ART_I D"))
@KeyCol utm( nanme="LNAME")

@l emrent Joi nCol um( name="AUTH_| D")

private Map<String, Author> authors;

7.7.9. Indexes and Constraints

OpenJPA uses index information during schema generation to index the proper columns. OpenJPA uses foreign key and unique
constraint information during schema creation to generate the proper database constraints, and also at runtime to order SQL
statements to avoid constraint violations while maximizing SQL batch size.

OpenJPA assumes certain columns have indexes or constraints based on your mapping defaults, as detailed in Section 7.4, ©
Mapping Defaults” [297]. Y ou can override the configured defaults on individua joins, field values, collection elements,
map keys, or map values using the annotations presented in the following sections.

7.7.9.1. Indexes

The or g. apache. openj pa. per si st ence. j dbc. | ndex annotation represents an index on the columns of afield. It is
also used within the Cont ai ner Tabl e annotation to index join columns. To index the columns of a collection element, use
the org. apache. openj pa. persi stence. j dbc. El ement | ndex annotation. These annotations have the following
properties:

* bool ean enabl ed: Set thisproperty tof al se to explicitly tell OpenJPA not to index these columns, when OpenJPA
would otherwise do so.

* String nane: The name of the index. OpenJPA will choose anameif you do not provide one.

» bool ean uni que: Whether to create a unique index. Defaults to false.

7.7.9.2. Foreign Keys

The or g. apache. openj pa. per si st ence. j dbc. For ei gnKey annotation represents a
foreign key on the columns of afield. It isalso used withinthe Cont ai ner Tabl e annotation to set a
database foreign key on join columns. To set a constraint to the columns of a collection element, use the

309


../javadoc/org/apache/openjpa/persistence/jdbc/Index.html
../javadoc/org/apache/openjpa/persistence/jdbc/ElementIndex.html
../javadoc/org/apache/openjpa/persistence/jdbc/ForeignKey.html
../javadoc/org/apache/openjpa/persistence/jdbc/ElementForeignKey.html

Mapping

or g. apache. openj pa. persi st ence. j dbc. El enment For ei gnKey annotation. These annotations have the following
properties:

* bool ean enabl ed: Set thisproperty tof al se to explicitly tell OpenJPA not to set aforeign key on these columns, when
OpenJPA would otherwise do so.

e String nane: The name of the foreign key. OpenJPA will choose aname if you do not provide one, or will create an
anonymous key.

e bool ean def erred: Whether to create adeferred key if supported by the database.

* bool ean inplicit:Whether to mark arelation field value asimplicitly referring to arelated entity. This property can be
used, for example, when afield value represents primary key field of arelated entity, but for legacy or other logistic reasons,
the field is declared as the same type of the primary key of the related entity instead of areference to the entity itself. Hence
no actual mapping can be defined on the field itself. If thisimplicit property is set, then no other property on the ForeignKey
annotation can be set to their non-default value. This setting does not manifest as a database foreign key constraint.

* Forei gnKeyActi on del et eActi on: Vauefromthe
or g. apache. openj pa. persi st ence. j dbc. For ei gnKeyAct i on enum identifying the desired delete action.
Defaultsto RESTRI CT.

» Forei gnKeyActi on updat eActi on: Vauefromthe
or g. apache. openj pa. per si st ence. j dbc. For ei gnKeyAct i on enum identifying the desired update action.
Defaultsto RESTRI CT.

Keep in mind that OpenJPA uses foreign key information at runtime to avoid constraint violations; it isimportant, therefore, that
your mapping defaults and foreign key annotations combine to accurately reflect your existing database constraints, or that you
configure OpenJPA to reflect on your database schemato discover existing foreign keys (see Section 4.12.2, “ Schema Factory
" [254]).

7.7.9.3. Unique Constraints

The or g. apache. openj pa. per si st ence. j dbc. Uni que annotation represents a unique constraint on the columns of a
field. It is more convenient than using the uni queConst r ai nt s property of standard JPA Tabl e and Secondar yTabl e
annotations, because you can apply it directly to the constrained field. The Uni que annotation has the following properties:

* bool ean enabl ed: Set thisproperty tof al se to explicitly tell OpenJPA not to constrain these columns, when OpenJPA
would otherwise do so.

e String name: The name of the constraint. OpenJPA will choose aname if you do not provide one, or will create an
anonymous constraint.

* bool ean def erred: Whether to create a deferred constraint if supported by the database.

7.7.10. XML Column Mapping

Some databases support XML column types and X Path queries and indexes over these columns. OpenJPA supports mapping of
an entity property mapped to an XML column on the following databases and their minimum versions.

- DB29
« MySQL 5.1.30

* Oracle9

310


../javadoc/org/apache/openjpa/persistence/jdbc/ElementForeignKey.html
../javadoc/org/apache/openjpa/persistence/jdbc/ForeignKeyAction.html
../javadoc/org/apache/openjpa/persistence/jdbc/ForeignKeyAction.html
../javadoc/org/apache/openjpa/persistence/jdbc/ForeignKeyAction.html
../javadoc/org/apache/openjpa/persistence/jdbc/ForeignKeyAction.html
../javadoc/org/apache/openjpa/persistence/jdbc/Unique.html

Mapping

 PostgreSQL 8.3 (XML support must be compiled in, the minimum JDBC driver version is 8.3-603)
¢ SQL Server 2005
See Appendix 2, Supported Databases [380] for possible database-specific restrictions.

Annotate the entity property using the XMLVaueHandler strategy:

@Per si st ent
@Bt r at egy("org. apache. openj pa. j dbc. met a. st rats. XM_Val ueHandl er")

The default fetch type is EAGER but can be changed to LAZY by using:

@er si st ence(f et ch=Fet chType. LAZY)

The entity property classis required to have JAXB binding annotations. Y ou can generate property class from an XML schema
by using the xj ¢ generator from the JAXB reference implementation. The Xj ¢ will generate the class along with the required
annotations. Ensure that @Xm Root El enment appearsin the root class. In some cases this annotation needs to be added
manually.

The entity property class is required to have getter and setter methods for al itsfields. By default, the xj ¢ will not generate setter
methods for collections but you can force it to do so by using the setters plugin or collection setter injector plugin.

The JAXB jar files must be on the application classpath (jaxb-api .jar, jaxb-impl.jar, jsr173 1.0 api.jar or equivalent).
JPQL path expressions can navigate into the mapped class and its subfields to any level.
The path expression is rewritten into an equivalent X Path expression using SQL XML functions.

The path expression must be single-valued. Path expressions over XML mapped classes can only be used in the WHERE clause
as an operand to asimple predicate (= <> <> >= <=),

Path expressions over XML mapped fields can not be:

» aninput to aJPQL scalar function

 anoperand of BETWEEN, ISNULL, LIKE or IN predicate

* used to project out subfieldsin the SELECT clause

» used inthe FROM, GROUP BY, HAVING, ORDER BY clauses

XML schema must not contain namespace declarations. The JPQL path expressions can not refer to Javafields generated from
XML ANY type or XML mixed element types.

The data type generated by JAXB must be avalid type to use the property in a JPQL predicate.

Shown below isasample XML schema myaddress.xsd, in which the JPA entity Order hasshi pAddr ess persistent field that
maps to an XML column.

311



http://jaxb.java.net/
http://confluence.highsource.org/display/J2B/Setters+Plugin

Mapping

Example 7.18. myaddress.xsd

<?xm version="1.0" ?>
<xs:schema xm ns: xs="http://wwm. w3. or g/ 2001/ XM_Schenma" >

<xs: conpl exType nanme="Address">
<xs:sequence>
<xs: el ement nane="Nane" type="xs:string" />
<xs: el ement nane="Street" type="xs:string"
m nCccurs="1" maxQccurs="3" />
<xs: el ement nane="City" type="xs:string" />
</ xs: sequence>
</ xs: conpl exType>

<xs: conpl exType nanme="CAN_Address">
<xs: conpl exCont ent >
<xs: extensi on base="Address">
<xs:sequence>
<xs: el ement nane="Province" type="xs:string" />
<xs: el ement nane="Post al Code" type="xs:string" />
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<xs:si npl eType name="USPS_Z| P">
<xs:restriction base="xs:integer">
<xs: m nl ncl usive val ue="01000" />
<xs: maxl ncl usi ve val ue="99999" />
</xs:restriction>

</ xs: si nmpl eType>

<xs: conpl exType nanme="USA Address">
<xs: conpl exCont ent >
<xs: extensi on base="Address">
<xs:sequence>
<xs: el ement nane="State" type="xs:string" />
<xs: el ement nane="Z| P* type="USPS_ZIP" />
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<xs: el ement nane="Mai | Address" type="Address" />

<xs: el ement nane="Addr CAN' type="CAN_Address"
substituti onG oup="Mai | Address" />

<xs: el ement nane="Addr USA" type="USA_Address"
substituti onG oup="Mai | Address" />

</ xs: schema>

Java classes Address, USAAddress and CANAddress are produced from myaddr ess schemaby using the xj ¢ generator.

312




Mapping

Example 7.19. Addressjava

@l Root El enent
@m Accessor Type( Xm AccessType. FI ELD)
@ Type(nanme = "Address", propOrder = {

“hame"
"street",
"eity"
b
public class Address {
@ El enent (nane = "Nanme", required = true)
protected String nang;
@ El enent (nane = "Street”, required = true)
protected List<String> street;
@ El enent (nanme = "City", required = true)
protected String city;
/**
* Cetter and Setter nethods.
*
*/
}

Example 7.20. USAAddress.java

@M Root El emrent

@Xm Accessor Type( Xm AccessType. Fl ELD)

@Xm Type(nanme = "USA Address", propOrder = {
"state",
" 2i p"

9]

public class USAAddress
extends Address

{

@Xm El enent (nane = "State")
protected String state;
@Xm El enent (nane = "ZI P")
protected int zip;

| **

* Cetter and Setter nethods.

*

*/

313




Mapping

Example 7.21. CANAddress.java

@l Root El enent

@m Accessor Type( Xm AccessType. FI ELD)

@ Type(name = "CAN_Address", propOrder = {
"province",
" post al Code"

b

public class CANAddress
ext ends Address

{
@<l El enent (nane = "Provi nce")
protected String province;
@Xnl El enent (nane = " Post al Code")
protected String postal Code;
/**
* Cetter and Setter nethods.
*
*/
}

Example 7.22. Showing annotated Order entity with XML mapping strategy

@ntity
public class Oder {
@d private into id;
@per si st ent
@Bt rategy ("org.apache. openj pa. jdbc. neta. strats. XM_Val ueHandl er")
private Address shi pAddress;

Example 7.23. Showing creation of Order entity having shipAddress mapped to XML column

nyaddr ess. Obj ect Factory addressFactory = new nyaddress. Cbj ect Factory();
Customer cl = new Custoner();

cl.set G d( new Custoner. CustonerKey("USA", 1) );
cl.setNane("Harry's Auto");

O der ol = new Order( 850, false, cl);

USAAddr ess addr1 = addressFactory. creat eUSAAddr ess();
addr1.setCity("San Jose");

addr 1. set State("CA");

addr 1. set ZI P(new | nteger ("95141"));

addr 1. get Street ().add("12500 Monterey");

addr 1. set Narmre( cl. getNare());

ol. set Shi pAddr ess(addr1);

em persist(ol);

314




Mapping

Example 7.24. Sample JPQL queriesfor XML column mapping

. sel ect

. sel ect

. sel ect

. sel ect

from Order o where o.shipAddress.city = "San Jose" or

. shi pAddress.city = "San Franci sco" (OK)
. shi paAddress from Order o (OK)

. shi pAddress.city from Order o (I NVALID)

from Order o where o.shi pAddress. street = "San Jose" (INVALID nulti-val ued)

7.7.11. LOB Streaming

In addition to handling LOBsin a standard JPA manner (LOB annotation and | ob XML element), OpenJPA supports LOB
streaming. This feature makes it possible to stream large amounts of data into and out of persistent field without ever holding all
the datain memory at the same time.

LOB streaming is supported on the following databases.

« MySQL

* Oracle

» PostgreSQL
* SQL Server

» DB2

See Appendix 2, Supported Databases [380] for possible database-specific restrictions.

To persist astream, apply the or g. apache. openj pa. per si st ence. Per si st ent annotation to either
java.io. |l nputStreamorjava.i o. Reader field.

Example 7.25. Annotated | nputStream and Reader

@ntity

public class Enployee {

@er si st ent
private |nputStream photoStream

@Per si st ent
private Reader photoDescription

7.8.

Mapping Limitations

7.8.1.

The following sections outline the limitations OpenJPA places on specific mapping strategies.

Table Per Class

Table-per-class inheritance mapping has the following limitations;

315



../javadoc/org/apache/openjpa/persistence/Persistent.html

Mapping

* You cannot traverse polymorphic relations to non-leaf classes in atable-per-class inheritance hierarchy in queries.

 You cannot map aone-sided polymorphic relation to a non-leaf class in a table-per-class inheritance hierarchy using an inverse
foreign key.

 You cannot use an order column in a polymorphic relation to a non-leaf class in atable-per-class inheritance hierarchy mapped
with an inverse foreign key.

 Table-per-class hierarchies impose limitations on eager fetching. See Section 5.8.2, “ Eager Fetching Considerationsand
Limitations” [282].

Non-polymorphic relations do not suffer from these limitations. Y ou can declare a non-polymorphic relation using the
extensions described in Section 7.9.2.2, “ Nonpolymorphic” [317].

7.9. Mapping Extensions

Mapping extensions allow you to access OpenJPA-specific functionality from your mappings. Note that all extensions below are
specific to mappings. If you store your mappings separately from your persistence metadata, these extensions must be specified
along with the mapping information, not the persistence metadata information.

7.9.1. Class Extensions

OpenJPA recognizes the following class extensions.

7.9.1.1. Subclass Fetch Mode

This extension specifies how to eagerly fetch subclass state. It overridesthe global openj pa. j dbc. Subcl assFet chiMbde
property. Set the OpenJPA or g. apache. openj pa. per si st ence. j dbc. Subcl assFet chMode annotation to a
valuefromthe or g. apache. openj pa. persi st ence. j dbc. Fet chvbde enum: JO N, PARALLEL, or NONE. See
Section 5.8, “ Eager Fetching” [280] for a discussion of eager fetching.

7.9.1.2. Strategy

The or g. apache. openj pa. persi st ence. j dbc. Str at egy class annotation allows you to specify a custom mapping
strategy for your class. See Section 7.10, “ Custom Mappings” [317] for information on custom mappings.

7.9.1.3. Discriminator Strategy

The or g. apache. openj pa. persi st ence. j dbc. Di scri m nat or St rat egy classannotation allows you to specify
a custom discriminator strategy. See Section 7.10, “ Custom Mappings” [317] for information on custom mappings.

7.9.1.4. Version Strategy

The or g. apache. openj pa. per si st ence. j dbc. Ver si onStr at egy class annotation allows you to specify a
custom version strategy. See Section 7.10, “ Custom Mappings” [317] for information on custom mappings.

7.9.2. Field Extensions

OpenJPA recognizes the following field extensions.

316


../javadoc/org/apache/openjpa/persistence/jdbc/SubclassFetchMode.html
../javadoc/org/apache/openjpa/persistence/jdbc/FetchMode.html
../javadoc/org/apache/openjpa/persistence/jdbc/Strategy.html
../javadoc/org/apache/openjpa/persistence/jdbc/DiscriminatorStrategy.html
../javadoc/org/apache/openjpa/persistence/jdbc/VersionStrategy.html

Mapping

7.9.2.1. Eager Fetch Mode

This extension specifies how to eagerly fetch related objects. It overridesthe global openj pa. j dbc. Eager Fet chMbde
property. Set the OpenJPA or g. apache. openj pa. per si st ence. j dbc. Eager Fet chMode annotation to avalue
fromthe or g. apache. openj pa. persi st ence. j dbc. Fet chMbde enum: JO N, PARALLEL, or NONE. See
Section 5.8, “ Eager Fetching” [280] for a discussion of eager fetching.

7.9.2.2. Nonpolymorphic

All fields in Java are polymorphic. If you declare afield of type T , you can assign any subclass of T to the field aswell. This
isvery convenient, but can make relation traversal very inefficient under some inheritance strategies. It can even make querying
across the field impossible. Often, you know that certain fields do not need to be entirely polymorphic. By telling OpenJPA about
such fields, you can improve the efficiency of your relations.

OpenJPA also includesthet y pe metadata extension for narrowing the declared type of afield. See Section 6.4.2.6, “
Type” [287].

OpenJPA defines the following extensions for nonpolymorphic values:
e org. apache. openj pa. persi st ence. j dbc. Nonpol ynor phi ¢
e org. apache. openj pa. persi st ence. j dbc. El enment Nonpol ynor phi c

The value of these extensions is a constant from the

or g. apache. openj pa. persi st ence. j dbc. Nonpol ynor phi cType enumeration. The default value, EXACT,
indicates that the relation will always be of the exact declared type. A value of JO NABLE, on the other hand, means that the
relation might be to any joinable subclass of the declared type. This value only excludes table-per-class subclasses.

7.9.2.3. Class Criteria

This family of boolean extensions determines whether OpenJPA will use the expected class of related objects as criteriain the
SQL itissuestoload arelation field. Typicaly, thisis not needed. The foreign key values uniquely identify the record for the
related object. Under some rare mappings, however, you may need to consider both foreign key values and the expected class
of the related object - for example, if you have an inverse relation that shares the foreign key with another inverse relation to an
object of adifferent subclass. In these cases, set the proper class criteriaextensiontot r ue  to force OpenJPA to append class
criteriato its select SQL.

OpenJPA defines the following class criteria annotations for field relations and array or collection element relations, respectively:
* org. apache. openj pa. persi stence.jdbc. Cl assCriteria

e org. apache. openj pa. persi stence. jdbc. El enent Cl assCriteria

7.9.2.4. Strategy

OpenJPA's or g. apache. openj pa. per si st ence. j dbc. Strat egy extension allows you to specify a custom mapping
strategy or value handler for afield. See Section 7.10, “ Custom Mappings” [317] for information on custom mappings.

7.10. Custom Mappings

In OpenJPA, you are not limited to the set of standard mappings defined by the specification. OpenJPA allows you to define
custom class, discriminator, version, and field mapping strategies with all the power of OpenJPA's built-in strategies.

317


../javadoc/org/apache/openjpa/persistence/jdbc/EagerFetchMode.html
../javadoc/org/apache/openjpa/persistence/jdbc/FetchMode.html
../javadoc/org/apache/openjpa/persistence/jdbc/Nonpolymorphic.html
../javadoc/org/apache/openjpa/persistence/jdbc/ElementNonpolymorphic.html
../javadoc/org/apache/openjpa/persistence/jdbc/NonpolymorphicType.html
../javadoc/org/apache/openjpa/persistence/jdbc/NonpolymorphicType.html
../javadoc/org/apache/openjpa/persistence/jdbc/ClassCriteria.html
../javadoc/org/apache/openjpa/persistence/jdbc/ElementClassCriteria.html
../javadoc/org/apache/openjpa/persistence/jdbc/Strategy.html

Mapping

7.10.1. Custom Class Mapping

To create a custom class mapping, write an implementation of the or g. apache. openj pa. j dbc. neta. G assStr at egy
interface. Y ou will probably want to extend one of the existing abstract or concrete strategiesin the
or g. apache. openj pa.j dbc. meta. strats package.

The or g. apache. openj pa. persi st ence. j dbc. St r at egy annotation allows you to declare a custom class mapping
strategy in JPA mapping metadata. Set the value of the annotation to the full class name of your custom strategy. Y ou can
configure your strategy class' bean properties using OpenJPA's plugin syntax, detailed in Section 2.4, “ Plugin Configuration

" [199].

7.10.2. Custom Discriminator and Version Strategies

To define a custom discriminator or version strategy, implement the

or g. apache. openj pa. j dbc. neta. Di scri m nator Strategy or

or g. apache. openj pa. j dbc. et a. Ver si onSt r at egy interface, respectively. You might extend one of the existing
abstract or concrete strategiesinthe or g. apache. openj pa. j dbc. net a. strats package.

OpenJPA includesthe or g. apache. openj pa. persi stence. jdbc. Di scri m nator Strategy and

or g. apache. openj pa. persi stence. j dbc. Ver si onSt r at egy class annotations for declaring a custom
discriminator or version strategy in JPA mapping metadata. Set the string value of these annotations to the full class name of your
implementation, or to the class name or alias of an existing OpenJPA implementation.

Aswith custom class mappings, you can configure your strategy class bean properties using OpenJPA's plugin syntax, detailed in
Section 2.4, “ Plugin Configuration ” [199].

7.10.3. Custom Field Mapping

While custom class, discriminator, and version mapping can be useful, custom field mappings are far more common. OpenJPA
offers two types of custom field mappings: value handlers, and full custom field strategies. The following sections examine each.

7.10.3.1. Value Handlers

Vaue handlers make it trivial to map any type that you can break down into one or more simple values. All value handlers
implement the or g. apache. openj pa. j dbc. net a. Val ueHandl er interface; seeits Javadoc for details. Also,
examinethe built-in handlersinthe src/ openj pa/ j dbc/ net a/ st rat s directory of your OpenJPA source distribution.
Use these functional implementations as examples when you create your own value handlers.

7.10.3.2. Field Strategies

OpenJPA interacts with persistent fields through the or g. apache. openj pa. j dbc. net a. Fi el dSt r at egy interface.
Y ou can implement this interface yourself to create a custom field strategy, or extend one of the existing abstract or concrete
strategiesinthe or g. apache. openj pa. j dbc. et a. st r at s package. Creating a custom field strategy is more difficult
than writing a custom value handler, but gives you more freedom in how you interact with the database.

7.10.3.3. Configuration

OpenJPA gives you two ways to configure your custom field mappings. The Fi el dSt r at egi es property of the built-in
Mappi ngDef aul t s implementations allows you to globally associate field types with their corresponding custom value
handler or strategy. OpenJPA will automatically use your custom strategies when it encounters afield of the associated type.
OpenJPA will use your custom value handlers whenever it encounters afield of the associated type. Section 7.4, “ Mapping
Defaults” [297] described mapping defaults in detail.

318


../javadoc/org/apache/openjpa/jdbc/meta/ClassStrategy.html
../javadoc/org/apache/openjpa/persistence/jdbc/Strategy.html
../javadoc/org/apache/openjpa/jdbc/meta/DiscriminatorStrategy.html
../javadoc/org/apache/openjpa/jdbc/meta/DiscriminatorStrategy.html
../javadoc/org/apache/openjpa/jdbc/meta/VersionStrategy.html
../javadoc/org/apache/openjpa/jdbc/meta/VersionStrategy.html
../javadoc/org/apache/openjpa/persistence/jdbc/DiscriminatorStrategy.html
../javadoc/org/apache/openjpa/persistence/jdbc/VersionStrategy.html
../javadoc/org/apache/openjpa/persistence/jdbc/VersionStrategy.html
../javadoc/org/apache/openjpa/jdbc/meta/ValueHandler.html
../javadoc/org/apache/openjpa/jdbc/meta/FieldStrategy

Mapping

Y our other option isto explicitly install acustom value handler or strategy on a particular field. To do so, specify

the full name of your implementation class in the proper mapping metadata extension. OpenJPA includes the

or g. apache. openj pa. persi st ence. j dbc. St r at egy annotation. Y ou can configure the named strategy or handler's
bean properties in these extensions using OpenJPA's plugin format (see Section 2.4, “ Plugin Configuration ” [199]).

7.11. Orphaned Keys

Unless you apply database foreign key constraints extensively, it is possible to end up with orphaned keys in your database. For
example, suppose Magazi ne mhasareferenceto Arti cl e a. If you delete a without nulling mis reference, nis database
record will wind up with an orphaned key to the non-existent a record.

One way of avoiding orphaned keysis to use dependent fields.

OpenJPA's openj pa. O phanedKeyAct i on configuration property controls what action to take when OpenJPA encounters
an orphaned key. Y ou can set this plugin string (see Section 2.4, “ Plugin Configuration ” [199]) to a custom implementation of
the org. apache. openj pa. event. O phanedKeyAct i on interface, or use one of the built-in options:

* | 0g: Thisisthe default setting. This option logs a message for each orphaned key. It is an alias for the
or g. apache. openj pa. event . LogOr phanedKeyAct i on class, which has the following additional properties:

e Channel : The channel to log to. Defaultsto  openj pa. Runti ne.
e Level : Thelevel tolog at. Defaults to WARN .

» exception: Throwan EntityNot FoundExcepti on when OpenJPA discovers an orphaned key. Thisisan alias for
the or g. apache. openj pa. event . Excepti onOr phanedKeyAct i on class.

» none: Ignore orphaned keys. Thisisan aliasfor the or g. apache. openj pa. event . NoneOr phanedKeyAct i on
class.

Example 7.26. Custom Logging Orphaned Keys

<property name="openj pa. O phanedKeyActi on" val ue="1 og( Channel =Or phans, Level =DEBUG) "/ >

319


../javadoc/org/apache/openjpa/persistence/jdbc/Strategy.html
../javadoc/org/apache/openjpa/persistence/jdbc/Strategy.html
../javadoc/org/apache/openjpa/event/OrphanedKeyAction.html
../javadoc/org/apache/openjpa/event/LogOrphanedKeyAction.html
../javadoc/org/apache/openjpa/event/LogOrphanedKeyAction.html
../javadoc/org/apache/openjpa/event/ExceptionOrphanedKeyAction.html
../javadoc/org/apache/openjpa/event/NoneOrphanedKeyAction.html

Chapter 8. Deployment

8.1.

OpenJPA deployment includes choosing a factory deployment strategy, and in a managed environment, optionally integrating
with your application server's managed and XA transactions. This chapter examines each aspect of deployment in turn.

Factory Deployment

8.1.1.

OpenJPA offerstwo Ent i t yManager Fact or y deployment options.

Standalone Deployment

8.1.2.

The JPA Overview describesthej avax. per si st ence. Per si st ence class. You can use Per si st ence
toobtain Ent i t yManager Fact or y instances, as demonstrated in Chapter 6, Persistence [68]. OpenJPA
also extends Per si st ence to add additional Ent i t yManager Fact or y creation methods. The

or g. apache. openj pa. persi st ence. OQpenJPAPer si st ence class Javadoc details these extensions.

After obtaining the factory, you can cacheit for all Entit yManager creation duties. OpenJPA factories support being bound
to INDI aswell.

EntityManager Injection

8.2.

Java EE application servers allow you to inject entity managers into your session beans using the Per si st enceCont ext
annotation. See your application server documentation for details.

Integrating with the Transaction Manager

OpenJPA Ent i t yManager s have the ability to automatically synchronize their transactions with an external transaction
manager. Whether or not Ent i t yManager sfromagiven EntityManager Fact ory exhibit this behavior by default
depends on the transaction type you set for the factory's persistence unit in your per si st ence. xnl file. OpenJPA usesthe
given transaction type internally to set the openj pa. Tr ansact i onMbde configuration property. This property accepts the
following modes:

* | ocal : Perform transaction operations locally.
* nmanaged: Integrate with the application server's managed global transactions.

Y ou can override the global transaction mode setting when you obtain an Ent i t yManager using the
Enti t yManager Fact ory'screat eEnti t yManager (Map props) method. Simply set the
openj pa. Transact i onMode key of thegiven Map to the desired value.

You can aso override the openj pa. Connect i onUser Nane, openj pa. Connect i onPasswor d, and
openj pa. Connect i onRet ai nMbde settings using the given Map.

In order to use global transactions, OpenJPA must be able to access the application server's
j avax.transaction. Transact i onManager . OpenJPA can automatically discover the transaction manager for

most major application servers. Occasionally, however, you might have to point OpenJPA to the transaction manager for an
unrecognized or non-standard application server setup. Thisis accomplished through the openj pa. ManagedRunt i ne
configuration property. This property describesan or g. apache. openj pa. ee. ManagedRunt i ne implementation to use
for transaction manager discovery. Y ou can specify your own implementation, or use one of the built-ins:

320


../javadoc/org/apache/openjpa/persistence/OpenJPAPersistence.html
http://download.oracle.com/javaee/6/api/javax/persistence/EntityManagerFactory.html
http://download.oracle.com/javaee/6/api/javax/persistence/EntityManagerFactory.html
../javadoc/org/apache/openjpa/ee/ManagedRuntime.html

Deployment

e aut o: Thisisthedefault. Itisan dliasfor the or g. apache. openj pa. ee. Aut omat i cManagedRunt i ne class. This
managed runtime is able to automatically integrate with several common application servers.

e invocation: Analiasfor the or g. apache. openj pa. ee. | nvocat i onManagedRunt i ne class. Y ou can configure
this runtime to invoke any static method in order to obtain the appserver's transaction manager.

* jndi: Analiasforthe or g. apache. openj pa. ee. JNDI ManagedRunt i ne class. Y ou can configure this runtime to
look up the transaction manager at any JNDI location.

See the Javadoc for of each class for details on the bean properties you can pass to these plugins in your configuration string.

Example 8.1. Configuring Transaction Manager | ntegration

<property nanme="openjpa. Transacti onMbde" val ue="rmanaged"/>
<property nanme="openjpa. ManagedRunti me" val ue="j ndi (Transacti onManager Nane=j ava: / Tr ansact i onManager) "/ >

38.3.

XA Transactions

8.3.1.

The X/Open Distributed Transaction Processing (X/Open DTP) model, designed by The Open Group (a vendor consortium),
defines a standard communication architecture that provides the following:

» Concurrent execution of applications on shared resources.
 Coordination of transactions across applications.

» Components, interfaces, and protocols that define the architecture and provide portability of applications.

Atomicity of transaction systems.

Single-thread control and sequential function-calling.

The X/Open DTP XA standard defines the application programming interfaces that a resource manager uses to communicate with
atransaction manager. The XA interfaces enable resource managers to join transactions, to perform two-phase commit, and to
recover in-doubt transactions following afailure.

Using OpenJPA with XA Transactions

OpenJPA supports X A-compliant transactions when used in a properly configured managed environment. The following
components are required:

» A managed environment that provides an XA compliant transaction manager. Examples of this are application servers such as
WebL ogic or JBoss.

» Instancesof aj avax. sql . XADat aSour ce for each of the Dat aSour ces that OpenJPA will use.
Given these components, setting up OpenJPA to participate in distributed transactions is a simple two-step process:

1. Integrate OpenJPA with your application server's transaction manager, as detailed in Section 8.2, “ Integrating with the
Transaction Manager ” [320] above.

2. Point OpenJPA at an enlisted XADat aSour ce, and configure a second non-enlisted data source. See Section 4.2.1, “
Managed and XA DataSources” [233].

321



../javadoc/org/apache/openjpa/ee/AutomaticManagedRuntime.html
../javadoc/org/apache/openjpa/ee/InvocationManagedRuntime.html
../javadoc/org/apache/openjpa/ee/JNDIManagedRuntime.html
http://www.opengroup.org/

Chapter 9. Runtime Extensions

This chapter describes OpenJPA extensions to the standard JPA interfaces, and outlines some additional features of the OpenJPA
runtime.

9.1. Architecture

Internally, OpenJPA does not adhere to any persistence specification. The OpenJPA kernel hasits own set of APIsand
components. Specifications like JPA and JDO are simply different "personalities’ that OpenJPA's native kernel can adopt.

As an OpenJPA user, you will not normally see beneath OpenJPA's JPA personality. OpenJPA allows you to access its feature set
without leaving the comfort of JPA. Where OpenJPA goes beyond standard JPA functionality, we have crafted JPA-specific APIs
to each OpenJPA extension for as seamless an experience as possible.

When writing OpenJPA plugins or otherwise extending the OpenJPA runtime, however, you will use OpenJPA's native APIs. So
that you won't feel logt, the list below associates each specification interface with its backing native OpenJPA component:

e javax. persi stence. EntityManager Fact ory: or g. apache. openj pa. ker nel . Br oker Fact ory

» javax. persi stence. EntityManager: org. apache. openj pa. kernel . Br oker

* javax. persi stence. Query: org.apache. openj pa. kernel . Query

* org. apache. openj pa. persi st ence. Ext ent: or g. apache. openj pa. ker nel . Ext ent

e org. apache. openj pa. persi st ence. St oreCache: or g. apache. openj pa. dat acache. Dat aCache

» org. apache. openj pa. persi stence. Quer yResul t Cache:
or g. apache. openj pa. dat acache. Quer yCache

» org. apache. openj pa. persi st ence. Fet chPl an:
or g. apache. openj pa. ker nel . Fet chConfi gurati on

» org. apache. openj pa. persi st ence. Gener at or: or g. apache. openj pa. ker nel . Seq

The org. apache. openj pa. persi st ence. OpenJPAPer si st ence helper alows you to convert between
Enti t yManager Fact ori es and Br oker Fact ori es, Ent i t yManager sand Br oker s.

9.1.1. Broker Finalization

Outside of a Java EE application server or other JPA persistence container environment, the default OpenJPA EntityManager
implementation automatically closesitself during instance finalization. This guards against accidental resource leaks that may
occur if adeveloper failsto explicitly close EntityManagers when finished with them, but it also incurs a scalability bottleneck,
since the VM must perform synchronization during instance creation, and since the finalizer thread will have more instances to
monitor. To avoid this overhead, set the openj pa. Br oker | npl configuration property tonon- fi nal i zi ng.

9.1.2. Broker Customization and Eviction

Asaplugin string, this property can be used to configurethe Br oker | npl with the following properties:

e Evi ct Fr onDat aCache: When evicting an object through the QpenJPAENt i t yManager . evi ct methods, whether to
also evict it from the OpenJPA's data cache. Defaultstof al se.

322



Runtime Extensions

Example9.1. Evict from Data Cache

<property name="openj pa. Broker | npl " val ue="Evi ct FronDat aCache=true"/>

9.2.

Additionally, some advanced users may want to add capabilities to OpenJPA's internal

or g. apache. openj pa. ker nel . Broker | npl . You can configure OpenJPA to use a custom subclass of Br oker | npl
withtheopenj pa. Br oker | npl  configuration property. Set this property to the full class name of your custom subclass.
When implementing your subclass, consider the finalization issues mentioned in Section 9.1.1, “ Broker Finalization

" [322]. It may be appropriate to create a subtype of both or g. apache. openj pa. ker nel . Broker | npl and

or g. apache. openj pa. kernel . Fi nal i zi ngBr oker | npl .

JPA Extensions

The following sections outline the runtime interfaces you can use to access OpenJPA-specific functionality from JPA. Each
interface contains services and convenience methods missing from the JPA specification. OpenJPA strives to use the same
naming conventions and API patterns as standard JPA methods in all extensions, so that OpenJPA extension APIsfeel as much as
possible like standard JPA.

Y ou may have noticed the examples throughout this document using the QpenJPAPer si st ence. cast methodsto cast from
standard JPA interfaces to OpenJPA extended interfaces. Thisis the recommended practice. Some application server vendors
may proxy OpenJPA's JPA implementation, preventing a straight cast. OpenJPAPer si st ence’'scast methods work around
these proxies.

public static OpenJPAEntityManager Factory cast(EntityManager Factory enf);
public static OpenJPAEntityManager cast(EntityManager em);
public static OpenJPAQuery cast(Query Qq);

9.2.1.

We provide additional information on the QpenJPAPer si st ence helper below.

OpenJPAENtityManagerFactory

9.2.2.

Theor g. apache. openj pa. per si st ence. OpenJPAEnt i t yManager Fact ory interface extends
thebasic j avax. persi stence. EntityManager Fact ory with OpenJPA-specific features. The
OpenJPAENt i t yManager Fact or y offers APIsto access the OpenJPA data and query caches and to perform other
OpenJPA-specific operations. Seethe interface Javadoc for details.

OpenJPAENtityManager

9.2.3.

All OpenJPA Ent i t yManager simplement the or g. apache. openj pa. per si st ence. OpenJPAEnt i t yManager
interface. Thisinterface extends the standard j avax. per si st ence. Enti t yManager . Just asthe standard

Enti t yManager isthe primary window into JPA services, the QpenJPAENt i t yManager isthe primary window from JPA
into OpenJPA-specific functionality. We strongly encourage you to investigate the APl extensions thisinterface contains.

OpenJPAQuery

OpenJPA extends JPA's standard query functionality withthe or g. apache. openj pa. per si st ence. OQpenJPAQuery
interface. Seeits Javadoc for details on the convenience methods it provides.

323



../javadoc/org/apache/openjpa/kernel/BrokerImpl.html
../javadoc/org/apache/openjpa/kernel/BrokerImpl.html
../javadoc/org/apache/openjpa/kernel/BrokerImpl.html
../javadoc/org/apache/openjpa/kernel/FinalizingBrokerImpl.html
../javadoc/org/apache/openjpa/kernel/FinalizingBrokerImpl.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManagerFactory.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html
../javadoc/org/apache/openjpa/persistence/OpenJPAQuery.html

Runtime Extensions

9.2.4. Extent

An Ext ent isalogical view of all persistent instances of a given entity class, possibly including subclasses. OpenJPA adds the
or g. apache. openj pa. per si st ence. Ext ent classto the set of Java Persistence APIs. The following code illustrates
iterating over al instances of the Magazi ne entity, without subclasses:

Example 9.2. Using a JPA Extent

i mport org. apache. openj pa. persi st ence. *;

OpenJPAENt i t yManager kem = QpenJPAPer si st ence. cast (en);
Ext ent <Magazi ne> mags = kem cr eat eExt ent (Magazi ne. cl ass, fal se);
for (Magazine m: nags)

processMagazi ne(n;

9.2.5. StoreCache

In additiontothe Ent i t yManager object cache the JPA specification provides access to a second level cache viathe
javax.persistence.Cache interface. OpenJPA provides further extensions via the org.apache.openjpa.persistence.StoreCache
interface documented at or g. apache. openj pa. per si st ence. St or eCache. Section 10.1, “ Data Cache” [335]
has detailed information on OpenJPA's data caching system, including the St or eCache facade.

9.2.6. QueryResultCache

OpenJPA can cache query results as well as persistent object data. The
or g. apache. openj pa. persi st ence. Quer yResul t Cache isan JPA-flavored facade to OpenJPA'sinternal query
cache. See Section 10.1.4, “ Query Cache” [341] for details on query caching in OpenJPA.

9.2.7. FetchPlan

Many of the aforementioned OpenJPA interfaces give you accessto an
or g. apache. openj pa. per si st ence. Fet chPl an instance. The Fet chPl an alowsyou to exercise some control
over how objects are fetched from the datastore, including lar ge result set support, custom fetch groups, and lock levels.

OpenJPA goes one step further, extending Fet chPl an with

or g. apache. openj pa. persi st ence. j dbc. JDBCFet chPl an to add additional JDBC-specific tuning methods.
Unless you have customized OpenJPA to use a non-relational back-end (see Section 9.8, “ Non-Relational Stores” [334] ),
al Fet chPl ansin OpenJPA implement JDBCFet chPl an, sofeel freeto cast to thisinterface.

Fetch plans pass on from parent components to child components. The Enti t yManager Fact or y settings (viayour
configuration properties) for things like the fetch size, result set type, and custom fetch groups are passed on to the fetch plan
of the Ent i t yManager sit produces. The settings of each Ent i t yManager , in turn, are passed on to each Quer y and
Ext ent it returns. Note that the opposite, however, is not true. Modifying the fetch plan of aQuer y or Ext ent  doesnot
affect the Ent i t yManager 's configuration. Likewise, modifying an Ent i t yManager 's configuration does not affect the
Entit yManager Fact ory.

Section 5.7, “ Fetch Groups” [276] includes examplesusing Fet chPl ans.

9.2.8. OpenJPAENntityTransaction

324


../javadoc/org/apache/openjpa/persistence/Extent.html
../javadoc/org/apache/openjpa/persistence/Extent.html
../javadoc/org/apache/openjpa/persistence/StoreCache.html
../javadoc/org/apache/openjpa/persistence/QueryResultCache.html
../javadoc/org/apache/openjpa/persistence/QueryResultCache.html
../javadoc/org/apache/openjpa/persistence/jdbc/JDBCFetchPlan.html
../javadoc/org/apache/openjpa/persistence/jdbc/JDBCFetchPlan.html

Runtime Extensions

9.2.9.

or g. apache. openj pa. persi st ence. QpenJPAENnt i t yTransact i on extends
j avax. persi stence. Enti tyTransacti on to provide additional transaction-debugging capabilities and some
concurrency-related commit and rollback features.

OpenJPAPersistence

9.3.

or g. apache. openj pa. persi st ence. OpenJPAPer si st ence isastatic helper class that adds OpenJPA-specific
utility methodstoj avax. per si st ence. Per si st ence.

Object Locking

9.3.1.

Controlling how and when objects are locked is an important part of maximizing the performance of your application under load.
This section describes OpenJPA's APIs for explicit locking, as well asits rules for implicit locking.

Configuring Default Locking

Y ou can control OpenJPA's default transactional read and write lock levelsthrough the openj pa. ReadLockLevel
and openj pa. Wi teLockLevel configuration properties. Each property acceptsavalueof none,read,wite,
optimstic,optinmistic-force-increnent,pessimstic-read,pessinistic-wite,pessimstic-
force-increment, or anumber corresponding to alock level defined by the lock manager in use. These properties apply
only to non-optimistic transactions; during optimistic transactions, OpenJPA never locks objects by default.

Y ou can control the default amount of time OpenJPA will wait when trying to obtain locks through the

openj pa. LockTi meout configuration property. Set this property to the number of milliseconds you are willing to wait for a
lock before OpenJPA will throw an exception, or to -1 for no limit. It defaultsto -1.

Example 9.3. Setting Default Lock Levels

<property name="openjpa. ReadLockLevel " val ue="none"/>
<property name="openjpa. WitelLockLevel" value="wite"/>
<property nanme="openj pa. LockTi meout" val ue="30000"/>

9.3.2.

Configuring Lock Levels at Runtime

At runtime, you can override the default lock levelsthroughthe Fet chPl an interface described above. At the beginning of
each datastore transaction, OpenJPA initializesthe Enti t yManager 'sfetch plan with the default lock levels and timeouts
described in the previous section. By changing the fetch plan's locking properties, you can control how objects |oaded at different
pointsin the transaction are locked. Y ou can also use the fetch plan of anindividual Query to apply your locking changes only
to objects loaded through that Query.

publ i c LockMbdeType get ReadLockMode();

public FetchPl an set ReadLockMbde(LockModeType node);
public LockMbdeType get WiteLockMde();

public FetchPlan setWitelLockMde(LockMbdeType node);
I ong get LockTi neout () ;

Fet chPl an set LockTi meout (1 ong ti neout);

Controlling locking through these runtime APIs works even during optimistic transactions. At the end of the transaction,
OpenJPA resets the fetch plan's lock levelsto none. You cannot lock objects outside of atransaction.

325



../javadoc/org/apache/openjpa/persistence/OpenJPAEntityTransaction.html
../javadoc/org/apache/openjpa/persistence/OpenJPAPersistence.html

Runtime Extensions

Example 9.4. Setting Runtime Lock Levels

i nport org. apache. openj pa. per si st ence. *;

EntityManager em= ...;
em get Transaction(). begi n();

/1 1oad stock we know we're going to update at wite | ock node
Query g = emcreateQuery("select s from Stock s where synbol = :s");
g. set Paraneter ("s", synbol);

OpenJPAQuery og = OpenJPAPersi stence. cast(q);

FetchPl an fetch = oq. get FetchPl an();

f et ch. set ReadLockMbde( LockModeType. WRI TE) ;

fetch. set LockTi meout (3000); // 3 seconds

Stock stock = (Stock) g.getSingleResult();

/1 1oad an object we don't need | ocked at none | ock npbde
fetch = OpenJPAPersi stence. cast (en). get FetchPl an();
fetch. set ReadLockMode(nul I');

Mar ket market = em find(Mrket.class, nmarketld);

stock. set Pri ce(market. cal cul atePrice(stock));
em get Transaction().commt();

9.3.8.

Object Locking APIs

In addition to allowing you to control implicit locking levels, OpenJPA provides explicit APIsto lock objects and to retrieve their
current lock level.

public LockMbdeType OpenJPAEntityManager. get LockMbde( Obj ect pc);

Returnsthe level at which the given object is currently locked.

In addition to the standard Enti t yManager .| ock( OGbj ect, LockMbdeType) method, the
OpenJPAENt i t yManager exposes the following methods to lock objects explicitly:

public void | ock(Object pc);

public void | ock(Object pc, LockMbdeType npde, |ong tineout);

public void | ockAl |l (Object... pcs);

public void |l ockAll (Object... pcs, LockMbdeType node, |ong tineout);
public void | ockAll (Collection pcs);

public void | ockAll (Collection pcs, LockMbdeType nbde, |ong tineout);

Methods that do not take alock level or timeout parameter default to the current fetch plan. The example below demonstrates
these methods in action.

326



http://download.oracle.com/javaee/6/api/javax/persistence/EntityManager.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html

Runtime Extensions

Example 9.5. Locking APIs

i nport org. apache. openj pa. per si st ence. *;

Il retrieve the lock |level of an object
OpenJPAENt i t yManager oem = OpenJPAPer si st ence. cast (em);

Stock stock = ...;
LockModeType | evel = oem getLockMdde(stock);
if (level == OpenJPAMbdeType. WRITE) ...

oem set Optim stic(true);
oem get Transaction(). begi n();

/1 override default of not |ocking during an opt trans to | ock stock object
oem | ock(stock, LockMddeType. WRI TE, 1000);
stock. set Pri ce(market. cal cul atePrice(stock));

oem get Transaction().commt();

9.3.4.

Lock Manager

OpenJPA delegates the actual work of locking objectsto the system's or g. apache. openj pa. ker nel . LockManager .
Thispluginis controlled by the openj pa. LockManager configuration property. Y ou can write your own lock manager, or
use one of the bundled options:

« m xed: Thisisan diasfor the or g. apache. openj pa. j dbc. ker nel . M xedLockManager , which implements the
JPA 2.0 specification entity locking behaviors. It combines both the optimistic and pessimistic semantics controlled by lock
mode argument in methods define in the EntityManager and Query interfaces or OpenJPA lock level properties.

Them xed LockManager inherits all the properties available from ver si on and pessi m st i ¢ LockManagers. For
example: Ver si onCheckOnReadLock and Ver si onUpdat eOnW i t eLock properties.

Thisisthe default openj pa. LockManager settingin OpenJPA.

e pessim stic: Thisisanaiasforthe or g. apache. openj pa. j dbc. ker nel . Pessi m sti cLockManager
which uses SELECT FOR UPDATE statements (or the database's equivalent) to lock the database rows corresponding to
locked objects. Thislock manager does not distinguish between read locks and write locks; all locks are write locks.

Thepessi m sti ¢ LockManager can be configured to additionally perform the version checking and incrementing
behavior of thever si on lock manager described below by settingits Ver si onCheckOnReadLock and
Ver si onUpdat eOnW i t eLock properties:

<property nanme="openj pa. LockManager" val ue="pessi m sti c(Versi onCheckOnReadLock=tr ue, Ver si onUpdat eOnW i t eLock=true)"/>

» version: Thisisan diasfor the or g. apache. openj pa. ker nel . Ver si onLockManager . Thislock manager
does not perform any exclusive locking, but instead ensures read consistency by verifying that the version of all read-locked
instances is unchanged at the end of the transaction. Furthermore, awrite lock will force an increment to the version at the end
of the transaction, even if the object is not otherwise modified. This ensures read consistency with non-blocking behavior.

* none: Thisisan dliasfor the or g. apache. openj pa. ker nel . NoneLockManager , which does not perform any
locking at all.

327



../javadoc/org/apache/openjpa/kernel/LockManager.html
../javadoc/org/apache/openjpa/jdbc/kernel/MixedLockManager.html
../javadoc/org/apache/openjpa/jdbc/kernel/PessimisticLockManager.html
../javadoc/org/apache/openjpa/kernel/VersionLockManager.html
../javadoc/org/apache/openjpa/kernel/NoneLockManager.html

Runtime Extensions

In order for thever si on or ni xed lock managersto prevent the dirty read phenomenon, the underlying data store's
transaction isolation level must be set to the equivalent of "read committed" or higher.

Example 9.6. Disabling Locking

<property name="openj pa. LockManager" val ue="none"/>

9.3.5.

Rules for Locking Behavior

9.3.6.

Advanced persistence concepts like lazy-loading and object uniquing create several locking corner-cases. The rules below outline
OpenJPA'simplicit locking behavior in these cases.

1. When an object's state is first read within a transaction, the object islocked at the fetch plan's current read lock level. Future

reads of additional lazy state for the object will use the same read lock level, even if the fetch plan'slevel has changed.

. When an object's state is first modified within a transaction, the object is locked at the write lock level in effect when the

object was first read, even if the fetch plan'slevel has changed. If the object was not read previoudly, the current write lock
level is used.

. When objects are accessed through a persistent relation field, the related objects are loaded with the fetch plan's current lock

levels, not the lock levels of the object owning the field.

. Whenever an object is accessed within a transaction, the object is re-locked at the current read lock level. The current read and

write lock levels become those that the object "remembers* according to rules one and two above.

. If you lock an object explicitly through the APIs demonstrated above, it is re-locked at the specified level. Thislevel also

becomes both the read and write level that the object "remembers’ according to rules one and two above.

. When an object is already locked at a given lock level, re-locking at alower level has no effect. Locks cannot be downgraded

during atransaction.

Known Issues and Limitations

Due to performance concerns and database limitations, locking cannot be perfect. Y ou should be aware of the issues outlined in
this section, as they may affect your application.

Typically, during optimistic transactions OpenJPA does not start an actual database transaction until you flush or the optimistic
transaction commits. This allows for very long-lived transactions without consuming database resources. When using the
pessimistic lock manager, however, OpenJPA must begin a database transaction whenever you decide to lock an object during
an optimistic transaction. Thisis because the pessimistic lock manager uses database locks, and databases cannot lock rows
without atransaction in progress. OpenJPA will log an INFO message to the openj pa. Runt i ne logging channel when it
begins a datastore transaction just to lock an object.

In order to maintain reasonable performance levels when loading object state, OpenJPA can only guarantee that an object is
locked at the proper lock level after the state has been retrieved from the database. This meansthat it istechnically possible
for another transaction to "sneak in" and modify the database record after OpenJPA retrieves the state, but before it locks the
object. The only way to positively guarantee that the object islocked and has the most recent state to refresh the object after
locking it.

328




Runtime Extensions

9.4.

When using the pessimistic lock manager, the case above can only occur when OpenJPA cannot issue the state-loading
SELECT as alocking statement due to database limitations. For example, some databases cannot lock SELECTs that use joins.
The pessimistic lock manager will log an INFO messageto the openj pa. Runt i me logging channel whenever it cannot
lock theinitial SELECT due to database limitations. By paying attention to these log messages, you can see where you might
consider using an object refresh to guarantee that you have the most recent state, or where you might rethink the way you load
the state in question to circumvent the database limitations that prevent OpenJPA from issuing alocking SELECT in the first
place.

» When using the pessimistic lock manager and named queries you will see the following WARNI NG message |ogged if you do
not specify alockMode on the named query or you explicitly set it to LockModeType. NONE. When using the pessimistic
lock manager aLockModeType. NONE will always be promoted to LockMode Ty pe. READ.

WARN [ main] openjpa. MetaData - Encountered a read | ock |evel |ess than LockMddeType. READ when processi ng the NanedQuery ann

If you are using the pessimistic lock manager and you truly do want to set the lock mode to NONE for a given query, you can
use afetch plan to do so.

OpenJPAQuery g = em creat eNamedQuery("fi ndEnpl oyeeByl d");
FetchPlan fp = q.get FetchPl an();
f p. set ReadLockMbde( LockMbdeType. NONE) ;

Savepoints

9.4.1.

Savepoints alow for fine grained control over the transactional behavior of your application. OpenJPA's savepoint APl allow
you to set intermediate rollback pointsin your transaction. Y ou can then choose to rollback changes made only after a specific
savepoint, then commit or continue making new changes in the transaction. This feature is useful for multi-stage transactions,
such as editing a set of objects over several web pages or user screens. Savepoints also provide more flexibility to conditional
transaction behavior, such as choosing to commit or rollback a portion of the transaction based on the results of the changes. This
chapter describes how to use and configure OpenJPA savepoints.

Using Savepoints

OpenJPA's OpenJPAENt i t yManager have the following methods to control savepoint behavior. Note that the savepoints
work in tandem with the current transaction. This means that savepoints require an open transaction, and that a rollback of the
transaction will rollback all of the changes in the transaction regardless of any savepoints set.

voi d set Savepoi nt (String nane);
voi d rel easeSavepoi nt (String nane);
voi d rol | backToSavepoi nt (String nane);

To set asavepoint, smply call set Savepoi nt, passing in asymbolic savepoint name. This savepoint will define a point at
which you can preserve the state of transactional objects for the duration of the current transaction.

Having set a named savepoint, you can rollback changes made after that point by calling r ol | backToSavepoi nt . This
method will keep the current transaction active, while restoring all transactional instances back to their saved state. Instances that
were deleted after the save point will no longer be marked for deletion. Similarly, transient instances that were made persistent
after the savepoint will become transient again. Savepoints made after this savepoint will be released and no longer valid,
although you can still set new savepoints. Savepoints will also be cleared after the current transaction is committed or rolled back.

329


../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html

Runtime Extensions

If asavepoint is no longer needed, you can release any resources it is consuming resources by calling r el easeSavepoi nt .
This method should not be called for savepoints that have been released automatically through other means, such as commit of
atransaction or rollback to a prior savepoint. While savepoints made after this savepoint will also be released, there are no other
effects on the current transaction.

The following simple example illustrates setting, releasing, and rolling back to a savepoint.

Example 9.7. Using Savepoints

i mport org. apache. openj pa. persi st ence. *;

OpenJPAENt i t yManager oem = QpenJPAPer si st ence. cast (en) ;
oem get Transaction(). begi n();

Magazi ne mag = oem fi nd(Magazi ne. cl ass, id);
mag. set PageCount (300) ;
oem set Savepoi nt (" pages");

mag. set Pri ce(mag. get PageCount () * pricePer Page);

/1 we decide to rel ease "pages"...

oem r el easeSavepoi nt (" pages");

/1 ... and set a new savepoint which includes all changes
oem set Savepoi nt ("price");

mag. set Price(testPrice);

/1l we determine the test price is not good

oem rol | backToSavepoi nt ("price");

/1 had we chosen to not rel ease "pages", we m ght have rolled back to
/1 "pages" instead

/1 the price is now restored to nag. get PageCount () * pricePer Page
oem get Transaction().commit();

9.4.2.

Configuring Savepoints

9.5.

OpenJPA usesthe or g. apache. openj pa. ker nel . Savepoi nt Manager plugin to handle preserving the savepoint
state. OpenJPA includes the following Savepoi nt Manager plugins:

* i n- mem The default. Thisisan aliasfor the or g. apache. openj pa. ker nel . | nMenor ySavepoi nt Manager .
This plugin stores al state, including field values, in memory. Due to this behavior, each set savepoint is designed for small to
medium transactional object counts.

e jdbc: Thisisanaliasforthe org. apache. openj pa.j dbc. ker nel . JDBC3Savepoi nt Manager . Thisplugin
requiresJDBC 3 and j ava. sql . Savepoi nt support to operate. Note that this plugin implements savepoints by issuing
aflush to the database.

MethodQL

If JPQL and SQL queries do not match your needs, OpenJPA also allows you to name a Java method to use to load a set of
objects. In aMethodQL query, the query string names a static method to invoke to determine the matching objects:

i nport org. apache. openj pa. per si st ence. *;

/1 the method query |anguage is 'openjpa. MethodQ.'.
/'l set the query string to the target nmethod to execute, prefixed by fullly-

330



../javadoc/org/apache/openjpa/kernel/SavepointManager
../javadoc/org/apache/openjpa/kernel/InMemorySavepointManager.html
../javadoc/org/apache/openjpa/jdbc/kernel/JDBC3SavepointManager.html

Runtime Extensions

/1 qualified class nane.

/1 1f a candidate class has been specified for the query, then if the class is
/1 in the candidate class' package or in the query inports, you can omt the

/'l package. If the nmethod is in the candidate class, you can onmit the class nane
/1 and just specify the nethod nane.

OpenJPAENt i t yManager oem = OpenJPAPer si st ence. cast (enf);
OpenJPAQuery g = oem creat eQuery("openj pa. Met hodQ.", "com xyz. Fi nder. get ByNane") ;

/] paranmeters are passed the same way as in standard queries
/1 but you have to declare the paranmeters with their types on the inplenentation

/1 Unwap the inplenentation and declare paraneters with types in a
/1 comma-separated |ist
g. unw ap(or g. apache. openj pa. kernel . Query. cl ass)
.decl areParaneters("String firstNane, String |astNane");

g.set Parameter ("firstName", "Fred").setParanmeter ("l ast Name", "Lucas");

/1 this executes the target nethod to get the results
List results = g.getResultList();

/! The result is returned as a list but the element(s) in the list is determ ned
/1 by the returned value of the target method

For datastore queries, the method must have the following signature:

public static ResultObjectProvider xxx(StoreContext ctx, Cl assMetaData neta, bool ean subcl asses, Map parans, FetchConfiguration

The returned result object provider should produce objects of the candidate class that match the method's search criteria. If the
returned objects do not have all fieldsin the given fetch configuration loaded, OpenJPA will make additional trips to the datastore
as necessary to fill in the data for the missing fields.

In-memory execution is slightly different, taking in one object at atime and returning a boolean on whether the object matches
the query:

public static bool ean xxx(StoreContext ctx, C assMetaData nmeta, bool ean subcl asses, Object obj, Map parans, FetchConfiguration fe

9.6.

In both method versions, the given par ans map contains the names and values of al the parameters for the query.

Generators

The JPA Overview's Chapter 13, Mapping Metadata [147] details using generators to automatically populate identity fieldsin
JPA.

OpenJPA represents all generatorsinternally withthe or g. apache. openj pa. ker nel . Seq interface. Thisinterface
supplies all the context you need to create your own custom generators, including the current persistence environment, the JDBC
Dat aSour ce , and other essentials. The or g. apache. openj pa. j dbc. ker nel . Abst r act JDBCSeq helpsyou create
custom JDBC-based sequences. OpenJPA also supplies the following built-in Seqgs:

e tabl e: Thisis OpenJPA's default implementation. It isan alias for the
or g. apache. openj pa. j dbc. ker nel . Tabl eJDBCSeq class. The Tabl eJDBCSeq uses a special single-row table
to store aglobal sequence number. If the table does not already exist, it is created the first time you run the mapping tool on
aclassthat requiresit. You can also use the classs mai n method to manipulate the table; seethe Tabl eJDBCSeq. mai n
method Javadoc for usage details.

331


../javadoc/org/apache/openjpa/lib/rop/ResultObjectProvider.html
../javadoc/org/apache/openjpa/kernel/StoreContext.html
../javadoc/org/apache/openjpa/meta/ClassMetaData.html
../javadoc/org/apache/openjpa/kernel/FetchConfiguration.html
../javadoc/org/apache/openjpa/kernel/StoreContext.html
../javadoc/org/apache/openjpa/meta/ClassMetaData.html
../javadoc/org/apache/openjpa/kernel/FetchConfiguration.html
../javadoc/org/apache/openjpa/kernel/Seq.html
../javadoc/org/apache/openjpa/jdbc/kernel/AbstractJDBCSeq.html
../javadoc/org/apache/openjpa/jdbc/kernel/TableJDBCSeq.html
../javadoc/org/apache/openjpa/jdbc/kernel/TableJDBCSeq.html

Runtime Extensions

This Seq has the following properties:

e Tabl e: The name of the sequence number table to use. Defaultsto OPENJPA SEQUENCE_TABLE. If the
entities are mapped to the same table name but with different schema name within one PersistenceUnit, one
OPENJPA SEQUENCE TABLE iscreated for each schema.

e Pri mar yKeyCol urm: The name of the primary key column for the sequence table. Defaultsto | D.
¢ SequenceCol um: The name of the column that will hold the current sequence value. Defaults to SEQUENCE VAL UE.

e Al | ocat e: The number of values to allocate on each database trip. Defaults to 50, meaning the class will set aside the
next 50 numbers each time it accesses the sequence table, which in turn meansit only has to make a database trip to get new
sequence numbers once every 50 sequence number requests.

cl ass-tabl e: Thisisandiasfor the or g. apache. openj pa. j dbc. kernel . Cl assTabl eJDBCSeq .
ThisSeq islikethe Tabl eJDBCSeq above, but maintains a separate table row, and therefore a separate sequence
number, for each base persistent class. It has all the properties of the Tabl e JDBCSeq. Its table name defaultsto
OPENJPA_SEQUENCES_TABLE. It also adds the following properties:

« | gnor eUnmapped: Whether to ignore unmapped base classes, and instead use one row per least-derived mapped class.
Defaultsto f al se.

e UseAl i ases: Whether to use each class entity name as the primary key value of each row, rather than the full class name.
Defaultstof al se.

Aswiththe Tabl eJDBCSeq, the C assTabl eJDBCSeq createsits table automatically during mapping tool
runs. However, you can manually manipulate the table through the class mai n method. See the Javadoc for the
Cl assTabl eJDBCSeq. mai n method for usage details.

val ue-t abl e: Thisisan dliasfor the or g. apache. openj pa. j dbc. ker nel . Val ueTabl eJDBCSeq . ThisSeq is
likethe Cl assTabl eJDBCSeq above, but has an arbitrary number of rows for sequence values, rather than afixed pattern
of onerow per class. Its table defaults to OPENJPA SEQUENCES_ TABLE. It has all the properties of the Tabl eJDBCSeq,
plus:

e Pri mar yKeyVal ue: The primary key value used by thisinstance.

Aswiththe Tabl eJDBCSeq, the Val ueTabl eJDBCSeq createsits table automatically during mapping tool
runs. However, you can manually manipulate the table through the class mai n method. See the Javadoc for the
Val ueTabl eJDBCSeq. mai h method for usage details.

nati ve: Thisisandiasfor the or g. apache. openj pa. j dbc. ker nel . Nat i veJDBCSeq. Many databases have a
concept of "native sequences’ - a built-in mechanism for obtaining incrementing numbers. For example, in Oracle database,
you can create a database sequence with a statement like CREATE SEQUENCE MYSEQUENCE . Sequence values can then
be atomically obtained and incremented with the statement SELECT MYSEQUENCE. NEXTVAL FROM DUAL. OpenJPA
provides support for this common mechanism of sequence generation withthe Nat i veJDBCSeq, which accepts the
following properties:

¢ Sequence: The name of the database sequence. Defaults to OPENJPA _SEQUENCE.

e I'nitial Val ue: Theinitial sequence value. Defaultsto 1.

¢ | ncr enent : The amount the sequence increments. Defaultsto 1.

e Al | ocat e: The number of valuesto allocate on each database trip. Defaults to 50, meaning the class will set aside the next

50 numbers each time it accesses the sequence, which in turn meansit only has to make a database trip to get new sequence
numbers once every 50 sequence number requests.

332


../javadoc/org/apache/openjpa/jdbc/kernel/ClassTableJDBCSeq.html
../javadoc/org/apache/openjpa/jdbc/kernel/ValueTableJDBCSeq.html
../javadoc/org/apache/openjpa/jdbc/kernel/NativeJDBCSeq.html

Runtime Extensions

e tine: Thisisanaliasforthe or g. apache. openj pa. ker nel . Ti neSeededSeq. Thistype uses an in-memory static
counter, initialized to the current time in milliseconds and monotonically incremented for each value requested. It is only
suitable for single-JVM environments.

You can use JPA SequenceGener at or sto describe any built-in Seqs or your own Seq implementation. Set the
seqguenceNanme attribute to a plugin string describing your choice.

If specifying your own class name, you must include parentheses at the end of the class name, even if you have
no plugin properties to configure. (E.g., sequenceNanme="com exanpl e. Seql npl ()".

See Section 13.5, “ Generators” [154] in the JPA Overview for details on defining SequenceCGener at or s.

See Section 2.4, “ Plugin Configuration ” [199] for plugin string formatting.

Example 9.8. Named Seq Sequence

@Entity
@rabl e( name="AUTO")
public class Author {

@d

@=ener at edVal ue( st rat egy=Cener ati onType. SEQUENCE, gener at or =" Aut hor Seq")

@equenceCener at or (name="Aut hor Seq", sequenceNane="t abl e( Tabl e=AUTO SEQ ", al | ocati onSi ze=100)
@col um( nanme="Al D")

private long id;

Note that if you want to use a plugin string without any arguments, you must still suffix the plugin type with () to differentiate it
from a sequence namein the SequenceGener at or . sequenceNane attribute:

@equenceCener at or (name="Aut hor Seq", sequenceNanme="table()")

OpenJPA maintains a system sequence to generate datastore identity values for classes that do not declare a specific datastore
identity strategy. Y ou can configure the system sequence through the openj pa. Sequence configuration property. This
property accepts aplugin string describing a Seq instance.

Example 9.9. System Sequence Configuration

<property name="openj pa. Sequence" val ue="ti me(Il ncrenment=100)"/>

In JPA, set your Gener at edVal ue annotation's st r at egy attribute to AUTOto use the configured system sequence. Or,
because AUTOis the default strategy, use the annotation without attributes:

@zener at edVal ue
private long id;

9.6.1. Runtime Access

333


../javadoc/org/apache/openjpa/kernel/TimeSeededSeq.html

Runtime Extensions

OpenJPA allows you to access named generators at runtime through the QpenJPAENt i t yManager . get NanedGener at or
method:

publ i c Generator getNamedGenerator(String nane);

9.7.

Thereturned or g. apache. openj pa. per si st ence. Gener at or isafacade over an internal OpenJPA Seq.

The OpenJPAENt i t yManager includes additional APIsto retrieve the identity generator of any class, or

the generator of any field. With these APIs, you do not have to know the generator name. Additionally, they

allow you to access the implicit generator used by default for datastore identity classes. See the Javadoc for the
OpenJPAENt i t yManager . get I dentityGenerator andQpenJPAENtityManager. get Fi el dGener at or
methods for API details.

Transaction Events

The OpenJPA runtime supports broadcasting transaction-related events. By registering one or more

or g. apache. openj pa. event. Transact i onLi st ener s, you can receive notifications when transactions begin, flush,
rollback, commit, and more. Where appropriate, event notifications include the set of persistence-capable objects participating in
the transaction.

public void addTransacti onLi stener (CObject |istener);
public void renoveTransactionLi stener (Object |istener);

9.8.

These OpenJPAENt i t yManager SPI methods allow you to add and remove listeners. These methods are outside the bounds
of the published OpenJPA APIs, and are subject to change in the future.

For details on the transaction framework, seethe or g. apache. openj pa. event package Javadoc. Also see Section 12.2,
“ Remote Event Notification Framework ” [353] for a description of OpenJPA's remote event support.

Non-Relational Stores

It is possible to adapt OpenJPA to access a non-relational datastore by creating an implementation of the
or g. apache. openj pa. ker nel . St or eManager interface. OpenJPA provides an abstract St or eManager
implementation to facilitate this process. Seethe or g. apache. openj pa. abstract st ore package Javadoc for details.

334



../javadoc/org/apache/openjpa/persistence/Generator.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html
../javadoc/org/apache/openjpa/event/TransactionListener.html
../javadoc/org/apache/openjpa/event/TransactionListener.html
../javadoc/org/apache/openjpa/event/package-summary.html
../javadoc/org/apache/openjpa/kernel/StoreManager.html
../javadoc/org/apache/openjpa/kernel/StoreManager.html
../javadoc/org/apache/openjpa/abstractstore/package-summary.html

Chapter 10. Caching

OpenJPA utilizes several configurable caches to maximize performance. This chapter explores OpenJPA's data cache, query
cache, and query compilation cache.

10.1. Data Cache

The OpenJPA data cache is an optional cache of persistent object data that operates at the Ent i t yManager Fact ory level.
This cacheis designed to significantly increase performance while remaining in full compliance with the JPA standard. This

means that turning on the caching option can transparently increase the performance of your application, with no changes to your
code.

OpenJPA's data cacheis not related to the Ent i t yManager cache dictated by the JPA specification. The JPA specification

mandates behavior for the Ent i t yManager cache aimed at guaranteeing transaction isolation when operating on persistent
objects.

OpenJPA's data cache is designed to provide significant performance increases over cacheless operation, while guaranteeing that
behavior will beidentical in both cache-enabled and cachel ess operation.

There are five ways to access data via the OpenJPA APIs: standard relation traversal, large result set relation traversal, queries,
looking up an object by id, and iteration over an Ext ent . OpenJPA's cache plugin accel erates three of these mechanisms. It
does not provide any caching of large result set relations or Ext ent iterators. If you find yourself in need of higher-performance
Ext ent iteration, see Example 10.22, “ Query Replaces Extent ” [345].

Table 10.1. Data access methods

Access method Uses cache
Standard relation traversal Yes

Large result set relation traversal No

Query Yes
Lookups by object id Yes
Iteration over an Ext ent No

When enabled, the cache is checked before making atrip to the datastore. Data is stored in the cache when objects are committed
and when persistent objects are loaded from the datastore.

OpenJPA's data cache can operate in both single-JVM and multi-JVM environments. Multi-JVM caching is achieved through
the use of the distributed event notification framework described in Section 12.2, “ Remote Event Notification Framework
" [353], or through custom integrations with a third-party distributed cache.

The single VM mode of operation maintains and shares a data cache across all Ent i t yManager instances obtained from a

particular Ent i t yManager Fact ory. Thisis not appropriate for use in a distributed environment, as cachesin different VMs
or created from different Ent i t yManager Fact or y objects will not be synchronized.

10.1.1. Data Cache Configuration

To enable the basic single-factory cache set the openj pa. Dat aCache property tot r ue:

335




Caching

Example 10.1. Single-JVM Data Cache

<property name="openj pa. Dat aCache" val ue="true"/>

To configure the data cache to remain up-to-date in a distributed environment, set the openj pa. Renot eCommi t Pr ovi der
property appropriately, or integrate OpenJPA with athird-party caching solution. Remote commit providers are described in
Section 12.2, “ Remote Event Notification Framework ” [353].

OpenJPA's default implementation maintains a map of object ids to cache data. By default, 1000 elements are kept in cache.
When the cache overflows, random entries are evicted. The maximum cache size can be adjusted by setting the CacheSi ze
property in your plugin string - see below for an example. Objects that are pinned into the cache are not counted when
determining if the cache size exceeds its maximum size.

Expired objects are moved to a soft reference map, so they may stick around for alittle while longer. Y ou can control the number
of soft references OpenJPA keeps with the Sof t Ref er enceSi ze property. Soft references are unlimited by default. Setto 0 to
disable soft references completely.

Both the QueryCache and DataCache can be configured to use abacking Lr u map rather than the default concurrent HashMap.
Note that enabling the Lr u cache can hurt performance as this map in not as scalable as the default map.

Example 10.2. Lru Cache

<property nanme="openj pa. Dat aCache" val ue="true(Lru=true)"/>
<property nanme="openjpa. QueryCache" val ue="true(Lru=true)"/>

Example 10.3. Data Cache Size

<property nanme="openj pa. Dat aCache" val ue="true(CacheSi ze=5000, Soft ReferenceSi ze=0)"/>

Y ou can specify a cache timeout value for a class by setting the timeout metadata extension to the amount of timein
milliseconds a classs datais valid. Use avalue of -1 for no expiration. Thisis the default value.

Example 10.4. Data Cache Timeout

Timeout Enpl oyee objects after 10 seconds.

@ntity
@pat aCache(ti meout =10000)
public class Enployee {

}

Entities may be explicitly excluded from the cache by providing alist of fully qualified class namesin the Excl udedTypes
argument. The entities provided viaExcl udedTypes will not be cached regardless of the Dat aCache annotation.

336




Caching

Example 10.5. Excluding entities

Exclude entitiesf 00. bar . Per son and f 00. bar . Enpl oyee from the cache.

<property name="openj pa. Dat aCache" val ue="true(Excl udedTypes=f 0o. bar. Person; f 0o. bar. Enpl oyee) "/ >

Entities may be explicitly included in the cache by providing alist of fully qualified class namesin the Types argument. Any
entities which are not included in thislist will not be cached.

Example 10.6. Including entities

Include only entity f 0o. bar . Ful | Ti meEnpl oyee in the cache.

<property nanme="openj pa. Dat aCache" val ue="true(Types=foo. bar. Ful | Ti meEnpl oyee) "/ >

Seethe or g. apache. openj pa. per si st ence. Dat aCache Javadoc for more information on the Dat aCache
annotation.

A cache can specify that it should be cleared at certain times rather than using data timeouts. The Evi ct i onSchedul e
property of OpenJPA's cache implementation can be input in two different formats. Thefirstisacr on style eviction schedule.
The format of this property is a whitespace-separated list of five tokens, where the* symbol (asterisk), indicates match all. The
tokens are, in order:

* Minute

Hour of Day
» Day of Month
* Month

e Day of Week

For example, the following openj pa. Dat aCache setting schedules the default cache to evict values from the cache at 15 and
45 minutes past 3 PM on Sunday.

true(Evicti onSchedul e=' 15,45 15 * * 1')

The second format for this property is an interval style eviction schedule. The format of this property isa+ followed by the
number of minutes between each time that the cache should be evicted.

For example, the following openj pa. Dat aCache setting schedules the default cache to evict values from the cache every 120
minutes.

true( Evi cti onSchedul e=' +120")

337



../javadoc/org/apache/openjpa/persistence/DataCache.html

Caching

Example 10.7. Bulk updates and cache eviction

Setting Evi ct OnBul kUpdat e tof al se will tell OpenJPA to not evict from the DataCache when executing an UPDATE or
DELETE statement. The default for the valueist r ue.

<property name="openj pa. Dat aCache" val ue="true(Evi ct OnBul kUpdat e=f al se)"/ >

10.1.1.1. Distributing instances across cache partitions

OpenJPA also supports a partitioned cache configuration where the cached instances can be distributed across partitions by

an application-defined policy. Each partition behaves as a data cache by itself, identified by its name and can be configured
individually. The distribution policy determines the specific partition that stores the state of a managed instance. The default
distribution policy distributes the instances by their type as specified by the nane attributein @at aCache annotation. Cache
distribution policy isasimple interface that can be implemented by an application to distribute among the partitions on a per
instance basis. To enable a partitioned cache set the openj pa. Dat aCache property topartiti oned, and configure
individual partitions as follows:

Example 10.8. Partitioned Data Cache

<property name="openj pa. CacheDi stributionPolicy" val ue="org.acne.foo. D stributionPolicy"/>
<property name="openj pa. Dat aCache" val ue="partitioned(PartitionType=concurrent, partitions=
' (nanme=a, cacheSi ze=100), ( name=b, cacheSi ze=200)"' )"/ >

The distribution policy is configured by a full-qualified class name that implements

or g. apache. openj pa. dat acahe. CachebDi st ri buti onPol i cy. The partitions are specified as value of the
partitions attribute as aseries of individually configurable plug-in strings. As the example shows, i) each partition plug-in
configuration must be enclosed in parentheses, ii) must be separated by comma and iii) the complete set be enclosed in single
guote. Each individual partition is a Data Cache by itself and the class that implements the partition can be configured via
Partiti onType attribute. The above example configuration will configure a partitioned cache with two partitions named

a and b of cache size 100 and 200, respectively. The partitions are of concur r ent type which isamnemonic or alias for

or g. apache. openj pa. dat acache. Concurrent Dat aCache. TheParti ti onType isdefaultedto concur r ent
though explicitly mentioned in this example.

10.1.2. Data Cache Usage

Theor g. apache. openj pa. dat acache package defines OpenJPA's data caching framework. While you may use this
framework directly (seeits Javadoc for details), its APIs are meant primarily for service providers. In fact, Section 10.1.5, “
Cache Extension ” [344] below hastips on how to use this package to extend OpenJPA's caching service yourself.

Rather than use the low-level or g. apache. openj pa. dat acache package APIs, JPA users should typically
access the data cache through the JPA standard j avax. per si st ence. Cache interface, or OpenJPA's high-level
or g. apache. openj pa. persi st ence. St or eCache facade.

Both interfaces provide methods to evict data from the cache and detect whether an entity isin the cache. The OpenJPA facade
adds methods to pin and unpin records, additional methods to evict data, and provides basic statistics of number of read or write
requests and hit ratio of the cache.

10.1.2.1. Using the JPA standard Cache interface

You may obtainthej avax. per si st ence. Cache through the EntityManagerFactory.getCache() method.

338


../javadoc/org/apache/openjpa/datacache/package-summary.html
../javadoc/org/apache/openjpa/persistence/StoreCache.html
../javadoc/org/apache/openjpa/persistence/StoreCache.html

Caching

Example 10.9. Accessing the Cache

i mport javax. persi stence. Cache;
i mport javax. persistence. EntityManager Factory;
i mport javax. persi stence. Persi stence;

EntityManager Factory enf =
Per si st ence. creat eEnti t yManager Fact ory(" nmyPersi stenceUnit");
Cache cache = enf. get Cache();

Example 10.10. Using the javax.persistence.Cache interface

/| Check whether the cache contains an entity with a provided ID
Cache cache = enf. get Cache();
bool ean contains = cache. contai ns(M/Entity.class, entitylD);

// evict a specific entity fromthe cache
cache. evict (M/Entity.class, entitylD);

/'l evict all instances of an entity class fromthe cache
cache. evi ct (Anot herEntity. cl ass);

/'l evict everything fromthe cache
cache.evictA |l ();

10.1.2.2. Using the OpenJPA StoreCache extensions

Y ou obtain the St or eCache throughthe OpenJPAENti t yManager Fact ory. get St or eCache method.

Example 10.11. Accessing the StoreCache

i nport org.apache. openj pa. per si st ence. *;

OpenJPAENt i t yManager Fact ory oenf = QpenJPAPer si st ence. cast (enf);
St or eCache cache = oenf. get StoreCache();

Alternatively you can just cast the same abject returned from the EntityM anager.getCache() method.

i mport org. apache. openj pa. per si st ence. St or eCache;

St oreCache cache = (StoreCache) enf.getCache();

public void evict(Cass cls, Object oid);

public void evictAll();

public void evictAll (Class cls, Object... oids);
public void evictAll (Class cls, Collection oids);

339



Caching

Theevi ct methodstell the cache to release data. Each method takes an entity class and one or more identity values, and
releases the cached data for the corresponding persistent instances. The evi ct Al | method with no arguments clears the cache.
Eviction is useful when the datastore is changed by a separate process outside OpenJPA's control. In this scenario, you typicaly
have to manually evict the data from the datastore cache; otherwise the OpenJPA runtime, oblivious to the changes, will maintain
its stale copy.

public void pin(Cass cls, Object oid);

public void pinAll (Cass cls, Object... oids);
public void pinAll(Cdass cls, Collection oids);
public void unpin(dass cls, Object oid);

public void unpinAll(Cdass cls, Qbject... oids);
public void unpinAll(dass cls, Collection oids);

Most caches are of limited size. Pinning an identity to the cache ensures that the cache will not kick the data for the
corresponding instance out of the cache, unless you manually evict it. Note that even after manual eviction, the data will get
pinned again the next timeit is fetched from the store. Y ou can only remove a pin and make the data once again available for
normal cache overflow eviction through the unpi n methods. Use pinning when you want a guarantee that a certain object will
always be available from cache, rather than requiring a datastore trip.

Example 10.12. StoreCache Usage

i mport org. apache. openj pa. per si stence. *;

OpenJPAENt i t yManager Fact ory oenf = OpenJPAPersi st ence. cast (enf);
St oreCache cache = oenf. get StoreCache();

cache. pi n(Magazi ne. cl ass, popul ar Mag. getld());

cache. evi ct (Magazi ne. cl ass, changedMag. getld());

Seethe St or eCache Javadoc for information on additional functionality it provides. Also, Chapter 9, Runtime Extensions
[322] discusses OpenJPA's other extensions to the standard set of JPA runtime interfaces.

The examples aboveinclude callsto evi ct to manually remove data from the data cache. Rather than evicting objects from
the data cache directly, you can also configure OpenJPA to automatically evict objects from the data cache when you use the
OpenJPAENt i t yManager 'seviction APIs.

Example 10.13. Automatic Data Cache Eviction

<property name="openj pa. Broker | npl" val ue="Evi ct FronDat aCache=true"/>

i mport org. apache. openj pa. persi stence. *;

OpenJPAENt i t yManager oem = QpenJPAPer si st ence. cast (en) ;
oem evi ct (changedMag); // will evict fromdata cache al so

10.1.3. Cache Statistics

Number of requests to read and write requests and hit ratio of the data cache is available via
or g. apache. openj pa. dat acache. CacheSt ati sti cs interface. The collection of cache statisticsis disabled by



../javadoc/org/apache/openjpa/persistence/StoreCache.html
../javadoc/org/apache/openjpa/datacache/CacheStatistics.html
../javadoc/org/apache/openjpa/datacache/CacheStatistics.html

Caching

default and needs to be enabled on a per cache basis. By default all counts returned from the CacheStatistics interface will return
0.

Example 10.14. Configuring CacheStatistics

<property name="openj pa. Dat aCache" val ue="true(Enabl eStati stics=true)"/>

Once cache statistics are enabled you can access them via StoreCache

i mport org. apache. openj pa. dat acache. CacheStati sti cs;

OpenJPAENt i t yManager Fact ory oenf = OpenJPAPersi st ence. cast (enf);
CacheStatistics statistics = oenf.getStoreCache().getCacheStatistics();

The statistics includes number of read and write requests made to the cache since start and last reset. The statistics can be
obtained also per class basis.

public interface org.apache. openj pa. datacache. CacheStati stics extends java.io. Serializabl ef
/1l Statistics since |ast reset
public | ong get ReadCount ();
public | ong getHtCount();
public long getWiteCount();

/l Statistics since start

public | ong get Tot al ReadCount () ;
public | ong getTotal Hi t Count();
public | ong get Total WiteCount();

Il Per-Class statistics since |ast reset
public | ong get ReadCount (j ava. | ang. C ass);
public | ong getH tCount(java.lang.d ass);
public | ong getWiteCount(java.lang.d ass);

Il Per-Class statistics since start

public | ong getTot al ReadCount (j ava. | ang. C ass);
public | ong getTotal Hi t Count (j ava. | ang. d ass);
public | ong get Total WiteCount(java.lang.C ass);

// Starting and |ast reset tine
public java.util.Date since();
public java.util.Date start();

/'l Resets the statistics.
public void reset();

/1 Returns whether or not statistics will be collected.
publ i ¢ bool ean i sEnabl ed();

Collecting per-class statistics depends on determining the runtime type of a cached data el ement, when the given context does not
permit determination of exact runtime type, the statisticsis registered against genericj ava. | ang. Qbj ect . Also each method
that accepts Class argument, treats null argument asj ava. | ang. Qbj ect

10.1.4. Query Cache

In addition to the data cache, the or g. apache. openj pa. dat acache package defines service provider interfaces
for aquery cache. The query cache is disabled by default and needs to be enabled separately from the data cache. The query

341



Caching

cache stores the object ids returned by query executions. When you run a query, OpenJPA assembles a key based on the query
properties and the parameters used at execution time, and checks for a cached query result. If oneisfound, the object idsin the
cached result are looked up, and the resultant persistence-capabl e objects are returned. Otherwise, the query is executed against
the database, and the object ids |oaded by the query are put into the cache. The object id list is not cached until the list returned at
query execution timeisfully traversed.

OpenJPA exposes a high-level interface to the query cache through the
or g. apache. openj pa. per si st ence. Quer yResul t Cache class. Y ou can access this class through the
OpenJPAENt i t yManager Fact ory.

Example 10.15. Accessing the QueryResultCache

i mport org. apache. openj pa. persi stence. *;

OpenJPAENt i t yManager Fact ory oenf = OpenJPAPersi st ence. cast (enf);
QueryResul t Cache gqcache = oenf. get QueryResul t Cache();

The default query cache implementation caches 100 query executionsin aleast-recently-used cache. This can be changed by
setting the cache size in the CacheSi ze plugin property. Like the data cache, the query cache also has a backing soft reference
map. The Sof t Ref er enceSi ze property controlsthe size of this map. It is disabled by default.

Example 10.16. Query Cache Size

<property name="openj pa. QueryCache" val ue="true(CacheSi ze=1000, Soft ReferenceSi ze=100)"/>

To disable the query cache (default), set the openj pa. Quer yCache propertytof al se:

Example 10.17. Disabling the Query Cache

<property name="openj pa. QueryCache" val ue="fal se"/>

Query Cache's default behaviour on eviction isto evict al the queries from the cache if any of the entities that are in the access
path of the query are modified. Scanning through the whole query cache to evict the queries upon an entity update slows down
the entity update action. The configurable eviction policy "timestamp" isto track the timestamp of the query and the timestamp
of last update for each entity class and compare the timestamps when retrieving the query for reuse. If the timestamp of the query
result is older than the last update time of any entity in the access path of the query, the query result would not be reused and the
query result would be evicted from the query cache. To configurethe Evi ct Pol i cy to timestamp, here is an example:

Example 10.18. Query Cache Eviction Policy

<property nanme="openjpa. QueryCache" val ue="true(EvictPolicy="tinestanp')"/>

There are certain situations in which the query cache is bypassed:

 Caching isnot used for in-memory queries (queries in which the candidates are a collection instead of a class or Ext ent ).

342



../javadoc/org/apache/openjpa/persistence/QueryResultCache.html
../javadoc/org/apache/openjpa/persistence/QueryResultCache.html

Caching

» Caching isnot used in transactions that have | gnor eChanges setto f al se and in which modifications to classesin the
query's access path have occurred. If none of the classes in the access path have been touched, then cached results are still valid
and are used.

» Caching isnot used in pessimistic transactions, since OpenJPA must go to the database to lock the appropriate rows.
» Caching is not used when the data cache does not have any cached datafor anid in aquery result.

» Queriesthat use persistence-capable objects as parameters are only cached if the parameter is directly compared to field, asin:

sel ect e from Enpl oyee e where e.conpany. address = :addr

If you extract field values from the parameter in your query string, or if the parameter is used in collection element
comparisons, the query is not cached.

» Queriesthat result in projections of custom field typesor Bi gDeci mal or Bi gl nt eger fields are not cached.

Cache results are removed from the cache when instances of classes in a cached query's access path are touched. That is, if a
guery accesses datain class A, and instances of class A are modified, deleted, or inserted, then the cached query result is dropped
from the cache.

It is possible to tell the query cache that a class has been altered. Thisis only necessary when the changes occur via direct
modification of the database outside of OpenJPA's control. Y ou can also evict individual queries, or clear the entire cache.

public void evict(Query q);
public void evictAll (Class cls);
public void evictAll();

For JPA queries with parameters, set the desired parameter valuesinto the Quer y instance before calling the above methods.

Example 10.19. Evicting Queries

i nport org.apache. openj pa. per si st ence. *;

OpenJPAENt i t yManager Fact ory oenf = QpenJPAPer si st ence. cast (enf);
QueryResul t Cache qcache = oenf. get QueryResul t Cache();

/1l evict all queries that can be affected by changes to Magazi nes
gcache. evi ct Al | (Magazi ne. cl ass) ;

/1 evict an individual query with parameters
EntityManager em = enf.createEntityManager();
Query g = emcreateQuery(...).

set Paranet er (0, paranval 0).

set Paraneter (1, paranvall);
gcache. evict(q);

When using one of OpenJPA's distributed cache implementations, it is necessary to perform thisin every VM - the change
notification is not propagated automatically. When using a third-party coherent caching solution, it is not necessary to do thisin
every JVM (athough it won't hurt to do so), as the cache results are stored directly in the coherent cache.

Queries can aso be pinned and unpinned through the Quer yResul t Cache. The semantics of these operations are the same
as pinning and unpinning data from the data cache.



http://download.oracle.com/javaee/6/api/javax/persistence/Query.html

Caching

public void pin(Qery q);
public void unpin(Query q);

For JPA queries with parameters, set the desired parameter valuesinto the Quer y instance before calling the above methods.

The following example shows these APIsin action.

Example 10.20. Pinning, and Unpinning Query Results

i mport org. apache. openj pa. per si stence. *;

OpenJPAENt i t yManager Fact ory oenf = OpenJPAPersi st ence. cast (enf);
QueryResul t Cache gcache = oenf. get QueryResul t Cache();
EntityManager em = enf.createEntityManager();

Query pinQuery = emcreateQuery(...).
set Par anet er (0, paranval 0).
set Paranmeter (1, paranval 1);

gcache. pi n(pi nQuery);

Query unpinQuery = emcreateQuery(...).
set Par anet er (0, paranval 0).
set Paranmeter (1, paranval 1);

gcache. unpi n(unpi nQuery);

Pinning data into the cache instructs the cache to not expire the pinned results when cache flushing occurs. However, pinned
results will be removed from the cache if an event occurs that invalidates the results.

Y ou can disable caching on aper-Ent i t yManager or per-Quer y basis:

Example 10.21. Disabling and Enabling Query Caching

i mport org. apache. openj pa. per si stence. *;

/1 tenporarily disable query caching for all queries created fromem
OpenJPAENt i t yManager oem = QpenJPAPer si st ence. cast (en);
oem get Fet chPl an() . set Quer yResul t CacheEnabl ed(f al se);

/'l re-enabl e caching for a particul ar query
OpenJPAQuery ogq = oem createQuery(...);
og. get Fet chPl an() . set Quer yResul t CacheEnabl ed(true);

10.1.5. Cache Extension

The provided data cache classes can be easily extended to add additional functionality. If you are adding new

behavior, you should extend or g. apache. openj pa. dat acache. Concurr ent Dat aCache. Touse

your own storage mechanism, extend or g. apache. openj pa. dat acache. Abst r act Dat aCache

(preferred), or implement or g. apache. openj pa. dat acache. Dat aCache directly. If you want to

implement a distributed cache that uses an unsupported method for communications, create an implementation of

or g. apache. openj pa. event . Renot eConmi t Provi der . Thisprocessis described in greater detail in Section 12.2.2,
“ Customization ” [355].



http://download.oracle.com/javaee/6/api/javax/persistence/Query.html

Caching

The query cacheisjust as easy to extend. Add functionality by extending the default

or g. apache. openj pa. dat acache. Concur r ent Quer yCache. Implement your own storage mechanism for query
results by extending or g. apache. openj pa. dat acache. Abst r act Quer yCache (preferred) or implementing the
or g. apache. openj pa. dat acache. Quer yCache interface directly.

10.1.6.

Important Notes

10.1.7.

The default cache implementations do not automatically refresh objectsin other Ent i t yManager swhen the cacheis
updated or invalidated. This behavior would not be compliant with the JPA specification.

Invoking OpenJPAENt i t yManager . evi ct doesnot result in the corresponding data being dropped from the data cache,
unless you have set the proper configuration options as explained above (see Example 10.13, “ Automatic Data Cache
Eviction " [340]). Other methods related to the Ent i t yManager cache aso do not affect the data cache.

The data cache assumes that it is up-to-date with respect to the datastore, so it is effectively an in-memory extension of the
database. To manipulate the data cache, you should generally use the data cache facades presented in this chapter.

Known Issues and Limitations

When using datastore (pessimistic) transactions in concert with the distributed caching implementations, it is possible to read
stale data when reading data outside a transaction.

For example, if you have two WMs (JVM A and JVM B) both communicating with each other, and VM A obtains a data
store lock on a particular object's underlying data, it is possible for VM B to load the data from the cache without going to the
datastore, and therefore load data that should be locked. Thiswill only happen if VM B attemptsto read data that is already
in its cache during the period between when VM A locked the data and JVM B received and processed the invalidation
notification.

This problem isimpossible to solve without putting together a two-phase commit system for cache notifications, which would
add significant overhead to the caching implementation. As aresult, we recommend that people use optimistic locking when
using data caching. If you do not, then understand that some of your non-transactional data may not be consistent with the
datastore.

Note that when loading objects in atransaction, the appropriate datastore transactions will be obtained. So, transactional code
will maintain itsintegrity.

Ext ent sare not cached. So, if you plan on iterating over alist of all the objectsin an Ext ent on aregular basis, you will
only benefit from caching if you do sowithaQuery instead:

Example 10.22. Query Replaces Extent

i mport org. apache. openj pa. persi stence. *;

OpenJPAENt i t yManager oem = QOpenJPAPer si st ence. cast (en);
Extent extent = oem creat eExt ent (Magazi ne. cl ass, false);

/1 This iterator does not benefit from caching...
Iterator uncachedlterator = extent.iterator();

/1 ... but this one does.

OpenJPAQuery extent Query = oem createQuery(...);

ext ent Query. set Subcl asses(fal se);

Iterator cachedlterator = extentQuery.getResultList().iterator();




Caching

10.2. Query Compilation Cache

10.3

The query compilation cache isaMap used to cache parsed query strings. As aresult, most queries are only parsed oncein
OpenJPA, and cached thereafter. Y ou can control the compilation cache through the openj pa. Quer yConpi | ati onCache
configuration property. This property accepts a plugin string (see Section 2.4, “ Plugin Configuration ” [199]) describing the
Map used to associate query strings and their parsed form. This property accepts the following aliases:

Table 10.2. Pre-defined aliases

Alias Value Notes

true or g. apache. openj pa. uti | . CacheWagdefault option. Usesa CacheMap
to store compilation data. CacheMap
maintains a fixed number of cache
entries, and an optional soft reference
map for entries that are moved out of the
LRU space. So, for applications that have
amonotonically increasing number of
distinct queries, this option can be used to
ensure that a fixed amount of memory is
used by the cache.

al | org. apache. openj pa. | i b. uti | . Cohisus theriddtess bitbgm, but compilation
datais never dropped from the cache,

so if you use alarge number of dynamic
gueries, this option may result in ever-
increasing memory usage. Note that if
your queries only differ in the values

of the parameters, this should not be an
issue.

fal se none Disables the compilation cache.

Prepared SQL Cache

Prepared SQL Cache caches SQL statements corresponding to JPQL queries. If aquery is executed more than once in the same
or different persistence contexts, the SQL statement generated during the first execution is cached and executed directly for
subsequent execution. Direct execution of SQL offers significant performance gain asit saves the cost of parsing query string
and, more importantly, populating the query expression tree during every execution. Relative performance gain becomes higher
as the complexity of forming a SQL query from a JPQL string increases. For example, a JPQL query QL that involves multiple
joins across tables takes more computation to translate into a SQL statement than a JPQL query Q2 to select by simple primary
key identifier. Correspondingly, repeated execution of QL will gain more performance advantage than Q2 with Prepared SQL
Cache.

Prepared SQL Cache is configured by the openj pa. j dbc. Quer ySQ.Cache configuration property. This property accepts
aplugin string (see Section 2.4, “ Plugin Configuration ” [199]) withvalue of t r ue or f al se. Thedefaultist r ue. The
execution statistics of the cached queries can be optionally collected as

<property name="openj pa.j dbc. QuerySQ.Cache" val ue="true(Enabl eStati stics=true)">

The QueryStati sti cs canbeaccessed viaPr epar edQuer yCache. get Stati stics().

346



../javadoc/org/apache/openjpa/util/CacheMap.html
../javadoc/org/apache/openjpa/kernel/QueryStatistics.html

Caching

Table 10.3. Pre-defined aliases

Alias

Value

Notes

true

or g. apache. openj pa. util. Cache

2IVa@default option. Usesa CacheMap to
store SQL string. CacheMap maintains
afixed number of cache entries, and an
optional soft reference map for entries
that are moved out of the LRU space. So,
for applications that have a monotonically
increasing number of distinct queries, this
option can be used to ensure that a fixed
amount of memory is used by the cache.

fal se

none

Disables the SQL cache.

Following salient points to be noted regarding usage of Prepared Query Cache.

 Prepared Query Cache uses the original JPQL string as the key to index the corresponding SQL statement. Hence the JPQL
strings that are semantically identical but differ by character case or identification variables are considered as different by
this cache. One of the implicationsis that the applications can gain better advantage from the Prepared Query Cache by using
parametersin their JPQL query rather than concatenating the parameter values in the query string itself .

For example, contrast the following two examples of executing JPQL queries.

Example 10.23. Hardcoded Selection Valuein JPQL Query

String jpql

= "SELECT p FROM Person p WHERE p. name=' John'";

Li st johns = emcreateQuery(jpqgl).getResultList();

i pal

= "SELECT p FROM Person p WHERE p. nanme=' Tom ";

List toms = emcreateQuery(jpqgl).getResultList();

In Example 10.23, “Hardcoded Selection Valuein JPQL Query” [347], the queries have hardcoded the selection value
for the p. nane field. Prepared Query Cache will not recognize the second execution as same as the first, though both will

result in same SQL statement.

Whilein Example 10.24, “ Parameterized Selection Valuein JPQL Query” [347], the selection value for the p. nane
field is parameterized. Prepared Query Cache will recognize the second execution as same as the first, and will execute the

cached SQL statement directly.

Example 10.24. Parameterized Selection Valuein JPQL Query

String jpql

= "SELECT p FROM Person p WHERE p. nanme=: nanme";

Li st johns = em createQuery(jpql).setParaneter("nanme", "John").getResultList();
List toms = em createQuery(jpql).setParaneter("nanme","Ton').get ResultList();

« A JPQL query may not always trandate into asingle SQL query. The JPQL queries that require multiple select statements are

never cached.

» Same JPQL query may result into different SQL statements under different execution context. Execution context parameters
such as fetch configuration or locking mode determine the resultant SQL. However, Prepared SQL Cache does not capture the
execution context parameters while caching a generated SQL.

347



../javadoc/org/apache/openjpa/util/CacheMap.html

Caching

e Thenamed or positional parameters of a JPQL query can be set to different values across executions. In general, the
corresponding cached SQL statement will be re-parameterized accordingly. However, the parameter value itself can determine
the SQL query. For example, when a JPQL query compares arelation field for equality against a parameter p, whether
the actual value of p isnul | or not will determine the generated SQL statement. Another exampleis collection valued
parameter for | N expression. Each element of a collection valued parameter results into a SQL parameter. If acollection
valued parameter across executions are set to different number of elements, then the parameters of the cached SQL do not
correspond. If such situations are encountered while re-parameterizing the cached SQL, the cached version is not reused and
the original JPQL query is used to generate a new SQL statement for execution.

» JPQL query that returns a numeric value such as SELECT count (p) FROM PQbj ect p isnever cached.
Several mechanisms are available to the application to bypass SQL caching for a JPQL query.

» A user application can disable Prepared SQL Cache for entire lifetime of a persistence context by invoking the following
method on OpenJPA's EntityManager SPI interface:

OpenJPAENt i t yManager SPI . set Quer ySQLCache( bool ean)

» A user application can instruct particular execution of a JPQL query to ignore any cached SQL query, by setting
QueryHi nts. H NT_I GNORE_PREPARED QUERY or " openj pa. hi nt. | gnor ePrepar edQuery" tot rue via
standard j avax. persi stence. Query. setHint (String, Object) method. If aSQL query has been cached
corresponding to the JPQL query prior to this execution, then the cached SQL remains in the cache and will be reused for any
subsequent execution of the same JPQL query.

» A user application can instruct all subsegquent execution of a JPQL query to ignore any cached SQL query, by setting
Quer yHi nts. H NT_I NVALI DATE_PREPARED QUERY or " openj pa. hi nt. | nval i dat ePr epar edQuery" to
t r ue The SQL query isremoved from the cache. Also the JPQL query will never be cached again during the lifetime of the
entire persistence unit.

» Plug-in property openj pa. j dbc. Quer ySQLCache can be configured to exclude certain JPQL queries as shown below.

<property nanme="openj pa.j dbc. QuerySQ.Cache" val ue="true(excl udes='sel ect ¢ from Conpany c;select d fromDepartnent d')"/>

will never cache JPQL queriessel ect ¢ from Conpany c andsel ect d from Departnent d.




Chapter 11. Encryption Provider

OpenJPA provides an interface for a provider to implement connection password encryption.
Whenever a connection password is needed, thedecr ypt ( St ri ng) method will be invoked. See
or g. apache. openj pa.lib. encryption. Encrypti onProvi der for the detailed Javadoc.

Notes:
* Itisan OpenJPA user responsibility to implement the Encr ypt i onPr ovi der interface. There is no default implementation.

» Theinterface hasanencrypt (Stri ng) method, but it is not called by the OpenJPA runtime.

349


../javadoc/org/apache/openjpa/lib/encryption/EncryptionProvider.html
../javadoc/org/apache/openjpa/lib/encryption/EncryptionProvider.html

Chapter 12. Remote and Offline Operation

The standard JPA runtime environment was originally just local and online. It islocal in that components such as

Ent i t yManager sand queries connect directly to the datastore and execute their actions in the same JVM as the code using
them. It isonline in that al changes to managed objects must be made in the context of an active Enti t yManager . These
two properties, combined with the fact that Ent i t yManager s cannot be serialized for storage or network transfer, made the
standard JPA runtime difficult to incorporate into some enterprise and client/server program designs.

JPA has now provided offline capability through the detach() and merge() methods on the EntityManager interface. OpenJPA has
extended this to include additional detach...() and merge...() methods. All of these are documented in Detach and Attach APIs.
In addition, OpenJPA has added remote capability in the form of Remote Commit Events. The following sections explain these
capabilitiesin detail.

12.1. Detach and Attach

The JPA Overview describes the specification's standard detach and attach APIsin Section 8.2, “ Entity Lifecycle Management
" [81]. This section enumerates OpenJPA's enhancements to the standard behavior.

12.1.1. Detach Behavior

In version 2.0, the detach behavior has changed from the previous version. See the migration section Detach Behavior
for details.

In JPA, objects detach automatically when they are serialized or when a per sistence context ends. The specification also allows
objects to be explicitly detached using the following javax.persistence.EntityManager method:

public void detach(Object)

OpenJPAENt i t yManager , however, provides additional detach methods.

public <T> T detachCopy(T pc):
public Object[] detachAll (Object... pcs):
public Collection detachAll (Collection pcs):

The behavior of the detach operation is as follows:

* The detached objects are removed from the persistent context.

» The objects are not flushed to the database.

« If Cascade=detach is specified for areferenced entity, the detach operation is cascaded. Otherwiseg, it is not.

» For the detachCopy method only, the entity is copied for the return value.

12.1.2. Attach Behavior

350


../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html

Remote and Offline Operation

When attaching, OpenJPA uses severa strategies to determine the optimal way to merge changes made to the detached instance.
Asyou will see, these strategies can even be used to attach changes made to a transient instance which was never detached in the
first place.

« If theinstance was detached and detached state is enabled, OpenJPA will use the detached state to determine the object's
version and primary key values. In addition, this state will tell OpenJPA which fields were |oaded at the time of detach, and in
turn where to expect changes. L oaded detached fields with null values will set the attached instance's corresponding fields to
null.

« If theinstance hasaVer si on field, OpenJPA will consider the object detached if the version field has a non-default value,
and new otherwise. Similarly, if the instance has Gener at edVal ue primary key fields, OpenJPA will consider the object
detached if any of these fields have non-default values, and new otherwise.

When attaching null fields in these cases, OpenJPA cannot distinguish between afield that was unloaded and one that was
intentionally set to null. In this case, OpenJPA will usethe current detach state setting to determine how to handle null fields:
fields that would have been included in the detached state are treated as |oaded, and will in turn set the corresponding attached
field to null.

« If neither of the above cases apply, OpenJPA will check to see if an instance with the same primary key values existsin the
database. If so, the object is considered detached. Otherwise, it is considered new.

These strategies will be assigned on a per-instance basis, such that during the attachment of an object graph more than one of the
above strategies may be used.

If you attempt to attach a versioned instance whose representation has changed in the datastore since detachment, OpenJPA will
throw an optimistic concurrency exception upon commit or flush, just asif anormal optimistic conflict was detected. When
attaching an instance whose database record has been deleted since detaching, or when attaching a detached instance into a
manager that has a stale version of the object, OpenJPA will throw an optimistic concurrency exception from the attach method.
In these cases, OpenJPA setsthe Rol | backOnl y flag on the transaction.

12.1.3. Defining the Detached Object Graph

When detached objects lose their association with the OpenJPA runtime, they also lose the ability to load additional state from the
datastore. It isimportant, therefore, to populate objects with all the persistent state you will need before detaching them. While
you are free to do this manually, OpenJPA includes facilities for automatically populating objects when they detach.

12.1.3.1. Detached State

Theopenj pa. Det achSt at e configuration property determines which fields and relations are detached by default. All
settings are recursive. They are:

1. | oaded: Detach dl fields and relations that are already loaded, but don't include unloaded fields in the detached graph. This
isthe default.

2. f et ch- gr oups: Detach all fields and relations in the current fetch configuration. For more information on custom fetch
groups, see Section 5.7, “ Fetch Groups” [276].

3. al | : Detach al fields and relations. Be very careful when using this mode; if you have a highly-connected domain model, you
could end up bringing every object in the database into memory!

Any field that is not included in the set determined by the detach mode is set to its Java default value in the detached instance.

Theopenj pa. Det achSt at e option is actually a plugin string (see Section 2.4, “ Plugin Configuration ” [199]) that allows
you to also configure the following options related to detached state:

» Det achedSt at eFi el d: Asdescribed in Section 12.1.2, “ Attach Behavior ” [350] above, OpenJPA can take
advantage of a detached state field to make the attach process more efficient. Thisfield is added by the enhancer and is not
visible to your application. Set this property to one of the following values:

351



Remote and Offline Operation

e transi ent: Useatransient detached state field. This gives the benefits of a detached state field to local objectsthat are
never serialized, but retains serialization compatibility for client tiers without access to the enhanced versions of your classes
or the OpenJPA runtime. Thisis the default.

e true: Useanon-transient detached state field so that objects crossing serialization barriers can still be attached efficiently.
This requires, however, that your client tier have the enhanced versions of your classes and the OpenJPA runtime.

« fal se: Do not use a detached state field. No OpenJPA runtime will be required for client tiers.

The detached state field is also used to determine when proxies should be removed from entities during serialization. See the
Section 5.6.4.4, “ Serialization " [273] section for more details.

Y ou can override the setting of this property or declare your own detached state field on individual classes using OpenJPA's
metadata extensions. See Section 12.1.3.2, “ Detached State Field ” [353] below.

» Det achedSt at eManager : Whether to use a detached state manager. A detached state manager makes attachment much
more efficient. Like a detached state field, however, it breaks serialization compatibility with the unenhanced classif it isn't
transient.

This setting piggybacks on the Det achedSt at eFi el d setting above. If your detached state field is transient, the detached
state manager will also be transient. If the detached state field is disabled, the detached state manager will also be disabled.
Thisistypicaly what you'll want. By setting Det achedSt at eFi el d to true (or transient) and setting this property to
false, however, you can use a detached state field without using a detached state manager. This may be useful for debugging
or for legacy OpenJPA users who find differences between OpenJPA's behavior with a detached state manager and OpenJPA's
older behavior without one.

» AccessUnl oaded: Whether to allow access to unloaded fields of detached objects. Defaults to true. Set to false to throw
an exception whenever an unloaded field is accessed. This option is only available when you use detached state managers, as
determined by the settings above.

» LiteAut oDet ach: ThisoptionisONLY valid for thel oaded DetachState setting. Detach all fields and relations as
described by the loaded property when an explicit detach is requested or when a single Entity is being detached as part of
serialization. When the entire persistence context is being auto-detached ( openj pa. Aut oDet ach ), the minima amount of
work will be completed to disassociate all Entities from the persistence context. It is highly recommended that all Entities
have a @Version field when using this property. In addition, care needs to be taken when this valueis set to true as the
following caveats apply:

« A relationship from a managed Entity to an unmanaged Entity which was detached by the lite detach setting will not be
persisted.

* When merging a detached Entity back into the persistence context any lazily loaded fields that were marked to null when
detached will not be persisted.

» Det achProxyFi el ds: Thisoption isONLY valid when used in conjunction with theLi t eAut oDet ach DetachState
setting. When detaching the persistence context, all proxieswill be left in place. Note, that all Lar ge Resul t Set s will be
removed.

e true(default):All proxieswill beremoved and LRSfields will be removed.

« fal se: All proxieswill beleft in place and LRS fields will be removed.

Example 12.1. Configuring Detached State

<property name="openj pa. DetachState" val ue="fet ch-groups(DetachedSt at eFi el d=true)"/>

352




Remote and Offline Operation

You can also alter the set of fields that will beincluded in the detached graph at runtime. QpenJPAENt i t yManager sexpose
the following APIsfor controlling detached state:

public DetachStateType getDetachState();
public void setDetachStat e(DetachSt at eType type);

The Det achSt at eType enum contains the following values:

enum Det achSt at eType {
FETCH_GROUPS,
LOADED,
ALL

12.1.3.2. Detached State Field

When the detached state field is enabled, the OpenJPA enhancer adds an additional field to the enhanced version of your class.
Thisfield of type Obj ect . OpenJPA usesthisfield for bookkeeping information, such as the versioning data needed to detect
optimistic concurrency violations when the object is re-attached.

It is possible to define this detached state field yourself. Declaring this field in your class metadata prevents the enhancer from
adding any extra fields to the class, and keeps the enhanced class serialization-compatible with the unenhanced version. The
detached state field must not be persistent. See Section 6.4.1.3, “ Detached State” [286] for details on how to declare a detached
state field.

i mport org. apache. openj pa. persi stence. *;

@ntity
public class Magazine
inpl ements Serializable {

private String nane;
@et achedState private Object state;

12.2.

Remote Event Notification Framework

The remote event notification framework allows a subset of the information available through OpenJPA's transaction events (see
Section 9.7, “ Transaction Events” [334]) to be broadcast to remote listeners. OpenJPA's data cache, for example, uses remote
events to remain synchronized when deployed in multiple JVMs.

To enable remote events, you must configurethe Enti t yManager Factory touseaRenot eComit Provi der (see
below).

When aRenot eCommi t Pr ovi der is properly configured, you can register Renot eConmi t Li st ener sthat will be alerted
with alist of modified object ids whenever a transaction on aremote machine successfully commits.

12.2.1. Remote Commit Provider Configuration

OpenJPA includes built in remote commit providers for JIMS and TCP communication.

353



../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html
../javadoc/org/apache/openjpa/event/RemoteCommitListener.html

Remote and Offline Operation

12.2.1.1.

JMS

The JM S remote commit provider can be configured by setting the openj pa. Renot eConmi t Pr ovi der property to
contain the appropriate configuration properties. The IMS provider understands the following properties:

Topi c: Thetopic that the remote commit provider should publish notifications to and subscribe to for notifications sent from
other WMs. Defaultstot opi ¢/ OpenJPAConmi t Provi der Topi ¢

Topi cConnecti onFact ory: The JNDI nameof a j avax. j ns. Topi cConnect i onFact ory factory

to use for finding topics. Defaultsto j ava: / Connecti onFact ory. This setting may vary depending on the
application server in use; consult the application server's documentation for details of the default INDI name for

the javax. | ms. Topi cConnecti onFact ory instance. For example, under Weblogic, the INDI name for the
TopicConnectionFactory is j avax. j ms. Topi cConnecti onFactory.

Excepti onReconnect At t enpt s: The number of timesto attempt to reconnect if the IMS system notifies OpenJPA of a
serious connection error. Defaults to 0, meaning OpenJPA will log the error but otherwise ignore it, hoping the connection is
still valid.

* . All other configuration properties will be interpreted as settingsto passtothe JINDI | ni t i al Cont ext on construction.
For example, you might set thej ava. nam ng. provi der. url property to the URL of the context provider.

To configure afactory to use the IMS provider, your properties might look like the following:

Example 12.2. JMS Remote Commit Provider Configuration

<property nanme="openj pa. Renot eConmi t Provi der"

val ue="j ns( Except i onReconnect At t enpt s=5) "/ >

12.2.1.2.

Because of the nature of IMS, it isimportant that you invoke Ent it yManager Fact ory. cl ose when finished
with afactory. If you do not do so, a daemon thread will stay up in the VM, preventing the JVM from exiting.

TCP

The TCP remote commit provider has several options that are defined as host specifications containing a host name or 1P address
and an optional port separated by a colon. For example, the host specification sat ur n. bea. com 1234 represents an
| net Addr ess retrieved by invoking | net Addr ess. get ByName( " sat ur n. bea. con') and aport of 1234.

The TCP provider can be configured by setting the openj pa. Renot eCommi t Pr ovi der plugin property to contain the
appropriate configuration settings. The TCP provider understands the following properties:

Por t : The TCP port that the provider should listen on for commit notifications. Defaults to 5636.
Addr esses: A semicolon-separated list of 1P addresses to which notifications should be sent. No default value.

NunBr oadcast Thr eads: The number of threads to create for the purpose of transmitting events to peers.

Y ou should increase this value as the number of concurrent transactions increases. The maximum number

of concurrent transactionsis a function of the size of the connection pool. See the MaxAct i ve property of

openj pa. Connecti onFact or yProperti es in Section 4.1, “ Using the OpenJPA DataSource” [231]. Setting a
value of O will result in behavior where the thread invoking commi t will perform the broadcast directly. Defaultsto 2.

354




Remote and Offline Operation

e RecoveryTi meM I | i s: Amount of timeto wait in milliseconds before attempting to reconnect to a peer of the cluster
when connectivity to the peer islost. Defaults to 15000.

» Maxl dl e: The number of TCP sockets (channels) to keep open to each peer in the cluster for the transmission of events.
Defaultsto 2.

» MaxAct i ve: The maximum allowed number of TCP sockets (channels) to open simultaneously between each peer in the
cluster. Defaults to 2.

To configure afactory to use the TCP provider, your properties might look like the following:

Example 12.3. TCP Remote Commit Provider Configuration

<property nanme="openj pa. Renot eConmi t Provi der"
val ue="t cp( Addr esses=10. 0. 1. 10; 10. 0. 1. 11; 10. 0. 1. 12; 10. 0. 1. 13) "/ >

12.2.1.3. Common Properties

In addition to the provider-specific configuration options above, all providers accept the following plugin properties:

» Transm t Per si st edObj ect | ds: Whether remote commit events will include the object ids of instances persisted in the
transaction. By default only the class names of types persisted in the transaction are sent. This resultsin smaller events and
more efficient network utilization. If you have registered your own remote commit listeners, however, you may require the
persisted object ids aswell.

To transmit persisted object idsin our remote commit events using the JIM S provider, we modify the previous example as
follows:

Example 12.4. JMS Remote Commit Provider transmitting Persisted Object | ds

<property name="openj pa. Renot eConmi t Pr ovi der"
val ue="j ns( Except i onReconnect At t enpt s=5, Transnit Persi st edObj ect | ds=true)"/>

12.2.2. Customization

Y ou can devel op additional mechanisms for remote event notification be by creating an implementation of the
Renot eConmi t Provi der interface, possibly by extending the Abst r act Renot eConmi t Pr ovi der abstract class..

355


../javadoc/org/apache/openjpa/event/RemoteCommitProvider.html
../javadoc/org/apache/openjpa/event/RemoteCommitProvider.html
../javadoc/org/apache/openjpa/event/AbstractRemoteCommitProvider.html

Chapter 13. Slice: Distributed Persistence

13.1.

The standard JPA runtime environment works with a single database instance. Siceis a plug-in module for OpenJPA to work
with multiple databases within the same transaction. Following sections describe the features and usage of Slice for distributed
database environment.

Overview

13.2.

Enterprise applications are increasingly deployed in distributed database environment. A distributed, horizontally-partitioned
database environment can be an effective scaling strategy for growing data volume, to support multiple clients on a multi-tenant
hosting platform and many other practical scenarios that can benefit from data partitioning.

Any JPA-based user application has to address demanding technical and conceptual challenges to interact with multiple physical
databases within a single transaction. OpenJPA Slice encapsul ates the complexity of distributed database environment via the
abstraction of virtual database which internally manages multiple physical database instances referred as slice. Virtualization of
distributed databases makes OpenJPA object management kernel and the user application to work in the sasme way asin the case
of asingle physical database.

Salient Features

13.2.1. Transparency

The primary design objective for Slice isto make the user application transparent to the change in storage strategy where
dataresides in multiple (possibly heterogeneous) databases instead of a single database. Slice achieves this transparency by
virtualization of multiple databases as a single database such that OpenJPA object management kernel continues to interact in
exactly the same manner with storage layer. Similarly, the existing application or the persistent domain model requires no change
to upgrade from a single database to a distributed database environment.

An existing application developed for a single database can be adapted to work with multiple databases purely by configuring a
persistence unit via META- | NF/ per si st ence. xim .

13.2.2. Scaling

The primary performance characteristics for Slice isto scale against growing data volume by horizontal partitioning data across
many databases.

Slice executes the database operations such as query or flush in parallel across each physical database. Hence, scaling
characteristics against data volume are bound by the size of the maximum data partition instead of the size of the entire data

set. The use cases where the data is naturally amenable to horizontal partitions, for example, by temporal interval (e.g. Purchase
Orders per month) or by geographical regions (e.g. Customer by Zip Code) can derive significant performance benefit and
favorable scaling behavior by using Slice.

13.2.3. Distributed Query

The queries are executed in parallel across one or more slices and the individua query results are merged into asingle list before
being returned to the caller application. The merge operation is more complex for the queries that involve sorting and/or specify a
range. Slice supports both sorting and range queries.

Slice also supports aggregate queries where the aggregate operation is commutative to partitioning such as COUNT( ) or MAX()
but not AVE ) .

356



Slice: Distributed Persistence

By default, any query is executed against all available slices. However, the application can target the query only to a subset of
dlices by setting hint onj avax. per si st ence. Query. Thehint key isopenj pa. hi nt. sl i ce. Tar get and hint value
isan array of diceidentifiers. The following example shows how to target a query only to a pair of slices with logical identifier
"One" and" Two" .

EntityManager em= ...;
em get Transaction(). begin();
String hint = "openjpa.hint.slice.Target";
Query query = em createQuery("SELECT p FROM PObj ect")
.setH nt(hint, new String[]{"One", "Two"});

List result = query.getResultList();
/1 verify that each instance is originating fromthe hinted slices
for (Object pc : result) {

String sliceOigin = SlicePersistence.getSlice(pc);

assert True ("One".equal s(sliceOrigin) || "Two".equal s(sliceOigin));

}

To confine queriesto a subset of dices via setting query hints can be considered intrusive to existing application. The
alternative means of targeting queriesisto configure a Query Target Policy. This policy is configured via plug-in property
openj pa. sl i ce. QueryTar get Pol i cy. The plug-in property is fully-qualified class name of an implementation for

or g. apache. openj pa. sl i ce. QueryTar get Pol i cy interface. Thisinterface contract allows a user application to
target a query to a subset of dlices based on the query and its bound parameters. The query target policy is consulted only when
no explicit target hint is set on the query. By default, the policy executes aquery on all available dlices.

A similar policy interface or g. apache. openj pa. sl i ce. Fi nder Tar get Pol i cy isavailable to target queries that
originatefromf i nd() by primary key. Thisfinder target policy is consulted only when no explicit target hint is set on the
current fetch plan. By default, the policy executes a query on all available dlicesto find an instance by its primary key.

13.2.4. Data Distribution

The user application decides how the newly persistent instances be distributed across the slices. The user application
specifies the data distribution policy by implementing or g. apache. openj pa. slice. Di stri buti onPolicy.The
Di stri butionPol i cy interface is simple with a single method. The complete listing of the documented interface follows:

public interface DistributionPolicy {

/**

* Gets the name of the slice where the given newy persistent
instance will be stored.

@aram pc The newy persistent or to-be-nerged object.
@aram slices name of the configured slices.
@ar am cont ext persistence context managi ng the given instance.

@eturn identifier of the slice. This nane nust match one of the
configured slice nanes.
@ee DistributedConfiguration#getSliceNames()

T

*/
String distribute(Object pc, List<String> slices, Cbject context);

}

Slice runtime invokes this user-supplied method for the newly persistent instance that is explicit argument of the

j avax. persi stence. Enti t yManager . persi st (Qhj ect pc) method. The user application must return avalid
slice name from this method to designate the target dlice for the given instance. The data distribution policy may be based on the
attribute of the dataitself. For example, all Customer whose first name begins with character ‘A’ to ‘M’ will be stored in one slice

357



Slice: Distributed Persistence

while names beginning with 'N' to 'Z' will be stored in another dlice. The noteworthy aspect of such policy implementation is the
attribute values that participate in the distribution policy logic should be set before invoking Ent i t yManager . per si st ()
method.

The user application needs to specify the target slice only for the root instancei.e. the explicit argument for the
Enti t yManager . persi st (Obj ect pc) method. Slice computes the transitive closure of the graph i.e. the set of all
instances directly or indirectly reachable from the root instance and stores them in the same target dlice.

Slice tracks the original database for existing instances. When an application issues a query, the resultant instances can be loaded
from different slices. As Slice tracks the original slice for each instance, any subsequent update to an instance is committed to the
appropriate original database dlice.

Y ou can find the original slice of an instance pc by the static utility method Sl i cePer si st ence. get Sl i ce(pc).
This method returns the slice identifier associated with the given managed instance. If the instance is not being managed
then the method return null because any unmanaged or detached instance is not associated with any dlice.

13.2.5. Data Replication

While Slice ensures that the transitive closure is stored in the same slice, there can be data elements that are commonly referred
by many instances such as Country or Currency code. Such quasi-static master data can be stored as identical copiesin multiple
dlices. The user application must enumerate the replicated entity type namesin openj pa. sl i ce. Repl i cat edTypes

as a comma-separated list and implement aor g. apache. openj pa. sli ce. Repl i cati onPol i cy interface. The

Repl i cati onPol i cy interfaceisquitesimilar to Di st ri but i onPol i cy interface except it returns an array of target slice
names instead of asingle dlice.

String[] replicate(Object pc, List<String> slices, Object context);

The default implementation assumes that replicated instances are stored in all available dlices. If any such replicated instance
is modified then the modification is updated to all target slices to maintain the critical assumption that the state of areplicated
instanceisidentical acrossal itstarget slices.

13.2.6. Heterogeneous Database

Each dice can be configured independently with its own JDBC driver and other connection parameters. Hence the target database
environment can constitute of heterogeneous databases.

13.2.7. Distributed Transaction

The database dlices participate in aglobal transaction provided each dlice is configured with a XA-compliant JDBC driver, even
when the persistence unit is configured for RESOURCE_L OCAL transaction.

If any of the configured slicesis not XA-compliant and the persistence unit is configured for RESOURCE L OCAL
transaction then each slice is committed without any two-phase commit protocol. If commit on any dlice fails, then
atomic nature of the transaction is not ensured.

358



Slice: Distributed Persistence

13.2.8. Collocation Constraint

No relationship can exist across database slices. In O-R mapping parlance, this condition translates to the limitation that the
transitive closure of an object graph must be collocated in the same database. For example, consider a domain model where
Person relates to Address. Person X refersto Address A while Person Y refersto Address B. Collocation Constraint means that
both X and A must be stored in the same database slice. Similarly Y and B must be stored in asingle dlice.

Slice, however, helps to maintain collocation constraint automatically. The instances in the closure set of any newly persistent

instance reachabl e via cascaded relationship is stored in the same slice. The user-defined distribution policy requires to supply the
dlice for the root instance only.

13.3. Usage

Sliceis activated viathe following property settings:

13.3.1. How to activate Slice Runtime?

The basic configuration property is

<property nanme="openj pa. Broker Factory" val ue="slice"/>

Thiscritical configuration activates a specialized object management kernel that can work against multiple databases.

13.3.2. How to configure each database slice?

Each database sliceisidentified by alogical name unique within a persistent unit. The list of the slicesis specified by
openj pa. sl i ce. Names property. For example, specify three dlicesnamed " One" , " Two" and " Thr ee" asfollows:

<property name="openj pa.slice. Nanes" val ue="One, Two, Three"/>

This property is not mandatory. If this property is not specified then the configuration is scanned for logical slice names. Any
property "abc" of theformopenj pa. sl i ce. XYZ. abc will register adlice with logical name " XYZ" .

The order of the names is significant when no openj pa. sl i ce. Mast er property is not specified. The persistence unit is then
scanned to find all configured slice names and they are ordered alphabetically.

Each database slice properties can be configured independently. For example, the following configuration will register two slices
with logical name One and Two.

<property name="openj pa.slice. One. Connecti onURL" val ue="j dbc: nysql : | ocal host//slicel"/>
<property name="openj pa.slice. Two. Connecti onURL" val ue="j dbc: nysql : | ocal host//slice2"/>

Any OpenJPA specific property can be configured per slice basis. For example, the following configuration will use two different
JDBC driversfor slice One and Two.

359



Slice: Distributed Persistence

<property nanme="openj pa.slice. One. ConnectionDriver Nane" val ue="com nysql.jdbc.Driver"/>
<property nanme="openj pa.slice. Two. Connecti onDri ver Nane" val ue="com nysql .jdbc.j dbc2. optional . Mysqgl XADat aSour ce"/ >

Any property if unspecified for a particular slice will be defaulted by corresponding OpenJPA property. For example, consider

following three dlices

<property name="openj pa.
<property name="openj pa.
<property name="openj pa.

<property name="openj pa.
<property name="openj pa.

slice. One. Connect i onURL" val ue="j dbc: nysql : | ocal host//slicel"/>
sl i ce. Two. Connect i onURL" val ue="j dbc: nysql : | ocal host//slice2"/>
slice. Three. Connecti onURL" val ue="j dbc: oracl e: | ocal host//slice3"/>

Connecti onDri ver Name" val ue="com nysql . j dbc. Dri ver"/>
slice. Three. Connecti onDri ver Nane" val ue="oracl e.j dbc. Driver"/>

In thisexample, Thr ee will use slice-specificor acl e. j dbc. Dri ver driver while dice One and Two will use the driver
com nysql . j dbc. Dri ver asspecified by openj pa. Connecti onDri ver Nane property value.

A connection pool may also be used with Slice by using the openj pa. Connecti onPr opert i es property. For exampleto
use commons-dbcp with Derby you might use the following properties :

<property name="
<property name="
<property name="
<property name="

<property name="
<property name="

<property name="

openj pa.
openj pa.
openj pa.
openj pa.

openj pa.
openj pa.

openj pa

Br oker Factory" val ue="slice"/>

Connecti onDri ver Name" val ue="or g. apache. commons. dbcp. Basi cDat aSour ce"/ >
slice. Nanes" val ue="0One, Two"/ >

slice. Master" val ue="Two"/>

slice. One. Connecti onProperties" val ue="Url =j dbc: derby: t ar get/ dat abase/ openj pa-slicel;cr
slice. Two. Connecti onProperties" val ue="Url =j dbc: derby: t ar get/ dat abase/ openj pa-slice2; cr

.jdbc. DBDi cti onary" val ue="derby"/>

Be aware that you need to set the DBDictionary when using commons-dbcp.

13.3.3. Implement DistributionPolicy interface

Slice needs to determine which slice will persist anew instance. The application can only decide this policy (for example, al
PurchaseOrders before April 30 goesto slice One, all the rest goesto slice Two). Thisiswhy the application has to implement
or g. apache. openj pa. slice. Di stributi onPol i cy and specify the implementation classin configuration

<property name="openjpa.slice.DistributionPolicy" value="com acne. foo. MyOptini al Di stributionPolicy"/>

Theinterface or g. apache. openj pa. sli ce. Di stri buti onPol i cy issimplewith asingle method. The complete
listing of the documented interface follows:

360




Slice: Distributed Persistence

public interface DistributionPolicy {

/**
* CGets the nane of the slice where a given instance will be stored.
@aram pc The newl y persistent or to-be-nerged object.

@aram slices nane of the configured slices.
@ar am cont ext persi stence context managi ng the given instance.

I T

@eturn identifier of the slice. This name nust natch one of the
configured slice nanes.

* @ee DistributedConfiguration#getSliceNames()

S
String distribute(Object pc, List<String> slices, Object context);

While implementing a distribution policy the most important thing to remember is collocation constraint. Because Slice can
not establish or query any cross-database relationship, al the related instances must be stored in the same database slice. Slice
can determine the closure of aroot object by traversal of cascaded relationships. Hence user-defined policy hasto only decide
the database for the root instance that is the explicit argument to Ent i t yManager . per si st () call. Slice will ensure that
all other related instances that get persisted by cascade are assigned to the same database slice as that of the root instance.
However, the user-defined distribution policy must return the same slice identifier for the instances that are logically related but
not cascaded for persist.

13.3.4. Implement ReplicationPolicy interface

The entities that are enumerated in openj pa. sl i ce. Repl i cat edTypes property can be stored in multiple slices as
identical copies. Specify the implementation class of Repl i cat i onPol i cy in configuration as

<property name="openj pa.slice.ReplicationPolicy" val ue="com acne. foo. M/Repl i cati onPolicy"/>

13.4. Configuration Properties

The properties to configure Slice can be classified in two broad groups. The global properties apply to all the slices, for example,
the thread pool used to execute the queriesin paralel or the transaction manager used to coordinate transaction across multiple
dices. The per-dlice properties apply to individua dlice, for example, the JIDBC connection URL of adlice.

13.4.1. Global Properties

13.4.1.1. openjpa.slice.DistributionPolicy

This mandatory plug-in property determines how newly persistent instances are distributed across individual slices. The value of
this property isafully-qualified class name that implements or g. apache. openj pa. sli ce. Di stri buti onPolicy
interface.

13.4.1.2. openjpa.slice.Lenient

This boolean plug-in property controls the behavior when one or more slice can not be connected or unavailable for some other
reasons. If t r ue, the unreachable slices are ignored. If f al se then any unreachable slice will raise an exception during startup.

By default thisvalueissettof al se i.e. al configured slices must be available.

361


../javadoc/org/apache/openjpa/slice/DistributionPolicy.html

Slice: Distributed Persistence

13.4.1.3. openjpa.slice.Master

The user application often directs OpenJPA to generate primary keys for persistence instances automatically or from a specific
database sequence. For such primary key value generation strategy where a database instance is required, Slice uses a designated
dlice referred to as master dlice.

The master slice can be specified explicitly viaopenj pa. sl i ce. Mast er property and whose value is one of the configured

dlice names. If this property is not explicitly specified then, by default, the master diceisthefirst slicein thelist of configured
slice names.

Currently, thereis no provision to use sequence from multiple slices.

13.4.1.4. openjpa.slice.Names

This plug-in property can be used to register the logical slice names. The value of this property is comma-separated list of dlice
names. The ordering of the namesin thislist is significant because DistributionPolicy and ReplicationPolicy receive the input
argument of the slice names in the same order.

If logical slice names are not registered explicitly viathis property, then all logical slice names available in the persistence unit
are registered. The ordering of the slice names in this case is alphabetical.

If logical slice names are registered explicitly viathis property, then any logical dicethat is available in the persistence unit but
excluded from thislist isignored.

13.4.1.5. openjpa.slice.ThreadingPolicy

This plug-in property determines the nature of thread pool being used for database operations such as query

or flush on individual dlices. The value of the property is a fully-qualified class name that implements

java. util.concurrent.Executor Servi ce interface. Two pre-defined pools can be chosen viatheir aliases namely
fi xed or cached.

The pre-defined dlias cached activates a cached thread pool. A cached thread pool creates new threads as needed, but will
reuse previously constructed threads when they are available. This pool is suitable in scenarios that execute many short-lived
asynchronous tasks. The way Slice uses the thread pool to execute database operations is akin to such scenario and hence
cached isthe default value for this plug-in property.

Thef i xed aliasactivates afixed thread pool. The fixed thread pool can be further parameterized with Cor ePool Si ze,
Maxi murPool Si ze, KeepAl i veTi me and Rej ect edExecut i onHandl er . The meaning of these parameters are
described in JavaDoc. The users can exercise finer control on thread pool behavior via these parameters. By default, the core
pool sizeis 10, maximum pool sizeisalso 10, keep alivetimeis 60 seconds and rejected execution is aborted.

Both of the pre-defined aliases can be parameterized with afully-qualified class name that implements
java.util.concurrent. ThreadFactory interface.

13.4.1.6. openjpa.slice.TransactionPolicy

This plug-in property determines the policy for transaction commit across multiple slices. The value of this property isafully-
qualified class name that implements j avax. t r ansacti on. Transact i onManager interface.

Three pre-defined policies can be chosen by their aliases namely def aul t , xa andj ndi .

Thedef aul t policy employs a Transaction Manager that commits or rolls back transaction on individual slices without atwo-
phase commit protocol. It does not guarantee atomic nature of transaction across all the slices because if one or more slice failsto
commit, there is no way to rollback the transaction on other dlices that committed successfully.

362


http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ExecutorService.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ExecutorService.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/Executors.html#newCachedThreadPool()
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/Executors.html#newFixedThreadPool(int)
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ThreadPoolExecutor.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ThreadPoolExecutor.AbortPolicy.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ThreadFactory.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ThreadFactory.html
http://download.oracle.com/javaee/6/api/javax/transaction/TransactionManager.html

Slice: Distributed Persistence

The xa policy employs a Transaction Manager that that commits or rolls back transaction on individual slices using atwo-phase

commit protocol. The prerequisite to use this schemeis, of course, that all the slices must be configured to use XA-compliant
JDBC driver.

Thej ndi policy employs a Transaction Manager by looking up the INDI context. The prerequisite to use this transaction
manager is, of course, that all the slices must be configured to use XA-compliant JDBC driver.

This INDI based policy is not available currently.

13.4.2. Per-Slice Properties

Any OpenJPA property can be configured for each individual slice. The property name is of the form openj pa. sl i ce.

[ Logi cal slice nane].[OpenJPA Property Nane].For example openj pa. slice. One. Connecti onURL
where One isthelogica slice name and Connect i onURL isan OpenJPA property name.

If aproperty is not configured for a specific slice, then the value for the property equalsto the corresponding openj pa. *
property.

363



Chapter 14. Third Party Integration

OpenJPA provides a number of mechanisms for integrating with third-party tools. The following chapter will illustrate these
integration features.

14.1. Apache Ant

Ant isavery popular tool for building Java projects. It is similar to the make command, but is Java-centric and has more modern
features. Ant is open source, and can be downloaded from Apache's Ant web page at http://ant.apache.org/ . Ant has become
the de-facto standard build tool for Java, and many commercial integrated devel opment environments provide some support for
using Ant build files. The remainder of this section assumes familiarity with writing Ant bui | d. xm files.

OpenJPA provides pre-built Ant task definitions for all bundled tools:

* Enhancer Task

» Application Identity Tool Task

* Mapping Tool Task

* Reverse Mapping Tool Task

» Schema Tool Task

The source code for al the Ant tasks is provided with the distribution under the sr ¢ directory. This allows you to customize
various aspects of the Ant tasks in order to better integrate into your development environment.

14.1.1. Common Ant Configuration Options

All OpenJPA tasks accept anested conf i g element, which defines the configuration environment in which the specified task
will run. The attributes for the conf i g tag are defined by the JDBCConf i gur at i on bean methods. Note that excluding the
confi g element will cause the Ant task to use the default system configuration mechanism, such as the configuration defined in
theor g. apache. openj pa. xm file

Following is an example of how to usethe nested conf i g taginabui | d. xm file:

Example 14.1. Using the <config> Ant Tag

<mappi ngt ool >
<fileset dir="$%${basedir}">
<include name="**/nodel /*.java" />
</fileset>

<confi g connectionUser Name="scott" connecti onPassword="ti ger"
connecti onURL="j dbc: oracl e: t hi n: @at urn: 1521: sol arsi d"
connectionDriver Name="oracl e.jdbc.driver.OacleDriver" />

</ mappi ngt ool >

It isalso possibleto specify apr operti es or properti esFil e attribute ontheconf i g tag, which will be used to locate
aproperties resource or file. The resource will be loaded relative to the current CLASSPATH.

364


http://ant.apache.org/
../javadoc/org/apache/openjpa/jdbc/conf/JDBCConfiguration.html

Third Party Integration

Example 14.2. Using the Properties Attribute of the <config> Tag

<mappi ngt ool >
<fileset dir="${basedir}">
<i ncl ude name="**/nodel / *.java"/>
</fileset>
<confi g properties="openjpa-dev.xm"/>
</ mappi ngt ool >

Example 14.3. Using the PropertiesFile Attribute of the <config> Tag

<mappi ngt ool >
<fileset dir="${basedir}">
<i ncl ude name="**/nodel /*.java"/>
</fileset>
<config propertiesFile="../conf/openjpa-dev.xm"/>
</ mappi ngt ool >

Tasks also accept anested cl asspat h element, which you can use in place of the default classpath. Thecl asspat h
argument behaves the same as it does for Ant's standard j avac element. It is sometimes the case that projects are compiled to
a separate directory than the source tree. If the target path for compiled classes is not included in the project's classpath, then a
cl asspat h element that includes the target class directory needs to be included so the enhancer and mapping tool can locate
the relevant classes.

Following is an example of using acl asspat h tag:

Example 14.4. Using the <classpath> Ant Tag

<openj pac>
<fileset dir="${basedir}/source">
<i nclude name="**/nodel /*.java" />
</fileset>
<cl asspat h>
<pat hel ement | ocati on="${basedir}/cl asses"/>
<pat hel enent | ocati on="${basedir}/source"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>
</ cl asspat h>
</ openj pac>

Finally, tasks that invoke code-generation tools like the application identity tool and reverse mapping tool accept a nested
codef or nat element. See the code formatting documentation in Section 2.3.1, “ Code Formatting” [198] for alist of code
formatting attributes.

Example 14.5. Using the <codeformat> Ant Tag

<r ever semappi ngt ool package="com xyz.j do" directory="${basedir}/src">
<codef ormat tabSpaces="4" spaceBeforeParen="true" braceOnSaneLi ne="fal se"/>
</ rever semappi ngt ool >

14.1.2. Enhancer Ant Task

365



Third Party Integration

The enhancer task allows you to invoke the OpenJPA enhancer directly from within the Ant build process.
The task's parameters correspond exactly to the long versions of the command-line arguments to the
or g. apache. openj pa. enhance. PCEnhancer.

The enhancer task acceptsanested f i | eset tag to specify the files that should be processed. Y ou can specify . j ava

or. cl ass files. If you do not specify any files, the task will run on the classeslisted in your per si st ence. xm or

openj pa. Met aDat aFact ory property. You must, however, supply the classpath you wish the enhancer to run with. This
classpath must include, at minimum, the openjpajar(s), persistence.xml and the target classes.

Following is an example of using the enhancer task inabui | d. xm  file:

Example 14.6. Invoking the Enhancer from Ant

<target name="enhance">

<!-- Define the classpath to include the necessary files. -->
<!-- ex. openjpa jars, persistence.xm, ormxnl, and target classes -->
<pat h i d="j pa. enhancenent. cl asspat h" >

<!-- Assuming persistence.xm/ormxm are in resources/ META-INF -->

<pat hel enent | ocati on="resources/" />

<!-- Location of the .class files -->
<pat hel enent |ocation="bin/" />

<!-- Add the openjpa jars -->
<fileset dir=".">

<include name="**/lib/*.jar" />
</fileset>

</ pat h>
<!-- define the openjpac task; this can be done at the top of the -->
<!-- build.xm file, soit will be available for all targets -->

<t askdef name="openjpac" cl assnane="org. apache. openj pa. ant. PCEnhancer Task" cl asspat href ="j pa. enhancenent. cl asspath" />

<!-- invoke enhancer on all .class files below the nodel directory -->
<openj pac>

<cl asspath refid="j pa. enhancenent.cl asspath" />

<fileset dir=".">

<i ncl ude name="**/nodel /*.class" />

</fileset>
</ openj pac>
<echo nmessage="Enhancenent conplete" />

</target>

14.1.3. Application Identity Tool Ant Task

The application identity tool task allows you to invoke the application identity tool directly from within the Ant
build process. The task's parameters correspond exactly to the long versions of the command-line arguments to the
or g. apache. openj pa. enhance. Appl i cati onl dTool .

The application identity tool task acceptsanested f i | eset tag to specify the files that should be processed. Y ou can specify
.javaor. cl ass files. If you do not specify any files, the task will run on the classes listed in your per si st ence. xni
fileor openj pa. Met aDat aFact ory property.

Following is an example of using the application identity tool task inabui | d. xm file:

366



Third Party Integration

Example 14.7. Invoking the Application | dentity Tool from Ant

<target nanme="appi ds">
<!-- define the appidtool task; this can be done at the top of -->
<!-- the build.xm file, so it will be available for all targets -->
<t askdef name="appi dtool " cl assnane="org. apache. openj pa. ant. Appl i cati onl dTool Task"/>

<!-- invoke tool on all .jdo files below the current directory -->
<appi dt ool >
<fileset dir=".">

<include name="**/nodel /*.java" />
</fileset>
<codef or mat spaceBef or eParen="true" braceOnSaneLi ne="fal se"/>
</ appi dt ool >
</target>

14.1.4. Mapping Tool Ant Task

The mapping tool task allows you to directly invoke the mapping tool from within the Ant build process. It is useful for making
sure that the database schema and object-relational mapping datais always synchronized with your persistent class definitions,
without needing to remember to invoke the mapping tool manually. The task's parameters correspond exactly to the long versions
of the command-line argumentsto the or g. apache. openj pa. j dbc. net a. Mappi ngTool .

The mapping tool task acceptsanested f i | eset tag to specify the files that should be processed. Y ou can specify . j ava
or. cl ass files. If you do not specify any files, the task will run on the classeslisted in your per si st ence. xm fileor
openj pa. Met aDat aFact ory property.

Following isan example of abui | d. xnl target that invokes the mapping tool:

Example 14.8. Invoking the Mapping Tool from Ant

<target name="refresh">
<!-- define the mappi ngtool task; this can be done at the top of -->
<!-- the build.xm file, so it will be available for all targets -->
<t askdef name="nmappi ngtool " cl assname="or g. apache. openj pa. j dbc. ant. Mappi ngTool Task"/ >

<!-- add the schema conponents for all .jdo files below the -->
<!-- current directory -->
<mappi ngt ool acti on="buil dSchema" >

<fileset dir=".">

<i nclude name="**/*_jdo" />
</fileset>
</ mappi ngt ool >
</target>

14.1.5. Reverse Mapping Tool Ant Task

The reverse mapping tool task allows you to directly invoke the reverse mapping tool from within Ant.
While many users will only run the reverse mapping process once, others will make it part of their build
process. The task's parameters correspond exactly to the long versions of the command-line arguments to the
or g. apache. openj pa. j dbc. net a. Rever seMappi ngTool .

Following isan example of abui | d. xml target that invokes the reverse mapping tool:

367



Third Party Integration

Example 14.9. Invoking the Reverse Mapping Tool from Ant

<target nane="reversemap">
<I-- define the reversemappi ngtool task; this can be done at the top of -->
<I-- the build.xm file, soit will be available for all targets -->
<t askdef name="rever semappi ngt ool "
cl assname="or g. apache. openj pa. j dbc. ant . Rever seMappi ngTool Task"/ >

<I-- reverse map the entire database -->
<rever semappi ngt ool package="com xyz. nodel " directory="%${basedir}/src"
custom zer Properti es="${basedir}/conf/reverse. properties">
<codef ormat tabSpaces="4" spaceBeforeParen="true" braceOnSaneLi ne="fal se"/>
</ rever semappi ngt ool >
</target>

14.1.6. Schema Tool Ant Task

The schematool task allows you to directly invoke the schematool from within the Ant build process.
The task's parameters correspond exactly to the long versions of the command-line arguments to the
or g. apache. openj pa. j dbc. schena. SchemaTool .

Following is an example of abui | d. xm target that invokes the schematool:

Example 14.10. Invoking the Schema Tool from Ant

<target nanme="schema">
<!-- define the schematool task; this can be done at the top of -->
<!-- the build.xm file, so it will be available for all targets -->
<taskdef name="schematool " cl assnane="org. apache. openj pa. j dbc. ant. SchenmaTool Task"/>

<!-- add the schemn conponents for all .schena files below the -->
<!-- current directory -->
<schemat ool action="add">

<fileset dir=".">

<i nclude name="**/* schema" />
</fileset>
</ schemat ool >
</target>

14.2

Apache Commons DBCP

OpenJPA does not provide its own JDBC connection pooling, as this should already be supplied to applications running in a
Java EE application server in container managed mode. For Java SE or applications running in application managed mode, the
OpenJPA aggregate openj pa- al | . j ar artifact and the binary assembly contains copies of Apache Commons DBCP, which
provides arobust connection pooling implementation.

14.2.1. Apache Commons DBCP Configuration Options

The JDBC DataSour ce configur ation options that we will need to modify in order to use Apache Commons DBCP for
connection pooling are:

connecti onDri ver Name="or g. apache. commons. dbcp. Basi cDat aSour ce"
connectionProperti es="Driverd assName=<pri or connectionDriverNane>, ..."

368


http://commons.apache.org/dbcp/

Third Party Integration

Additional Commons DBCP arguments can be provided in the connectionProperties value, such as;

MaxAct i ve=10, Maxl dl e=5, M nl dl e=2, MaxWai t =60000

Please visit the Commons DBCP website for the entire list of configuration options and explanations.

Example 14.11. Using Commons DBCP with Apache Derby

For example, to use Commons DBCP with an Apache Derby database server, we would need to provide the following settings, as
either settings in the persistence.xml or as system environment overrides:

<property nanme="openj pa. ConnectionDriverNanme" val ue="org. apache. commons. dbcp. Basi cDat aSour ce"/ >
<property nanme="openj pa. ConnectionProperties" val ue="Driverd assNane=or g. apache. der by. j dbc. EnbeddedDri ver, Url=jdbc:derby://Ioc

Notice that we supplied Username and Password settings, which are required by Commons DBCP for connecting to a database
over the network, but can be dummy valuesif database security is not enabled.

369


http://commons.apache.org/dbcp/configuration.html

Chapter 15. Optimization Guidelines

There are numerous techniques you can use in order to ensure that OpenJPA operatesin the fastest and most efficient manner.
Following are some guidelines. Each describes what impact it will have on performance and scalability. Note that general
guidelines regarding performance or scalability issues are just that - guidelines. Depending on the particular characteristics of
your application, the optimal settings may be considerably different than what is outlined below.

In the following table, each row islabeled with alist of italicized keywords. These keywords identify what characteristics the
row in question may improve upon. Many of the rows are marked with one or both of the performance and scalability labels. It
isimportant to bear in mind the differences between performance and scalability (for the most part, we are referring to system-
wide scalability, and not necessarily only scalability within asingle JVM). The performance-related hints will probably improve
the performance of your application for a given user load, whereas the scalability-related hints will probably increase the total
number of users that your application can service. Sometimes, increasing performance will decrease scalability, and vice versa.
Typically, options that reduce the amount of work done on the database server will improve scalability, whereas those that push
more work onto the server will have a negative impact on scalability.

Table 15.1. Optimization Guidelines

Use a connection pool

performance, scalability

OpenJPA's built-in datasource does not perform connection pooling or prepared statement caching, but
it can use Apache Commons DBCP for connection pooling if it is provided on the classpath. Check
out the Driver DataSour ce section, which describes how to use and configure Commons DBCP.

Also, you can manually plug in athird-party pooling datasource like Apache Commons DBCP,
included in the binary distribution and openjpa-all artifact, which may drastically improve application
performance.

Optimize database
indexes

performance, scalability

The default set of indexes created by OpenJPA's mapping tool may not always be the most appropriate
for your application. Manually setting indexes in your mapping metadata or manually manipulating
database indexes to include frequently-queried fields (as well as dropping indexes on rarely-queried
fields) can yield significant performance benefits.

A database must do extrawork on insert, update, and delete to maintain an index. This extrawork will
benefit selects with WHERE clauses, which will execute much faster when the termsin the WHERE
clause are appropriately indexed. So, for aread-mostly application, appropriate indexing will slow
down updates (which are rare) but greatly accelerate reads. This means that the system as awhole will
be faster, and also that the database will experience less |oad, meaning that the system will be more
scalable.

Bear in mind that over-indexing is abad thing, both for scalability and performance, especially for
applications that perform lots of inserts, updates, or deletes.

JVM optimizations

performance, reliability

Manipulating various parameters of the Java Virtual Machine (such as hotspot compilation modes
and the maximum memory) can result in performance improvements. For more details about
optimizing the VM execution environment, please see http://www.or acle.com/technetwork/java/
hotspotfag-138619.html.

Usethe data cache

performance, scalability

Using OpenJPA's data and query caching features can often result in a dramatic improvement in
performance. Additionaly, these caches can significantly reduce the amount of load on the database,
increasing the scalability characteristics of your application.

Set

Lar geTransacti on
totrue, or set

Popul at eDat aCache
tofalse

performance vs.
scalability

When using OpenJPA's data caching features in atransaction that will delete, modify, or

create avery large number of objects you can set Lar geTr ansact i on to true and perform
periodic flushes during your transaction to reduce its memory requirements. See the Javadoc:
OpenJPAENtityM anager .setTrackChangesByType. Note that transactions in large mode have to
more aggressively flush items from the data cache.

If your transaction will visit objects that you know are very unlikely to be accessed by other
transactions, for example an exhaustive report run only once a month, you can turn off population

370



http://www.oracle.com/technetwork/java/hotspotfaq-138619.html
http://www.oracle.com/technetwork/java/hotspotfaq-138619.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html
../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html

Optimization Guidelines

of the data cache so that the transaction doesn't fill the entire data cache with objects that won't be
accessed again. Again, see the Javadoc: OpenJPAEnNtityM anager .setPopulateDataCache

Run the OpenJPA
enhancer on your
persistent classes,
either at build-time or
deploy-time.

performance,
scalability, memory
footprint

OpenJPA performs best when your persistent classes have been run through the OpenJPA post-
compilation bytecode enhancer. When dealing with enhanced classes, OpenJPA can make a number
of assumptions that reduce memory footprint and accel erate persistent data access. When evaluating
OpenJPA's performance, build-time or deploy-time enhancement should be enabled. See Section 5.2,
“ Enhancement " [260] for details.

Disablelogging,
performance tracking

performance

Developer options such as verbose logging and the IDBC performance tracker can result in serious
performance hits for your application. Before evaluating OpenJPA's performance, these options should
all be disabled.

Set | gnor eChanges
totrue, or set

Fl ushBef oreQueri ¢
totrue

performance vs.
scalability

When both the openj pa. | gnor eChanges and openj pa. Fl ushBef or eQueri es
properties are set to false, OpenJPA needs to consider in-memory dirty instances during queries. This
an sometimes result in OpenJPA needing to evaluate the entire extent objects in order to return the
correct query results, which can have drastic performance conseguences. If it is appropriate for your
application, configuring FI ushBef or eQueri es toautomatically flush before queriesinvolving
dirty objects will ensure that this never happens. Setting | gnor eChanges to falsewill result in a
small performance hit even if Fl ushBef or eQueri es istrue, asincremental flushing is not as
efficient overall as delaying al flushing to a single operation during commit.

Setting | gnor eChanges tot r ue will help performance, since dirty objects can be ignored for
queries, meaning that incremental flushing or client-side processing is not necessary. It will also
improve scalability, since overall database server usage is diminished. On the other hand, setting

I gnor eChanges tof al se will have a negative impact on scalability, even when using automatic
flushing before queries, since more operations will be performed on the database server.

Configure
openj pa. Connecti o

appropriately

performance vs.
scalability

The Connect i onRet ai nMbde configuration option controls when OpenJPA will obtain a
reBametti oivbethd how long it will hold that connection. The optimal settings for this option will vary
considerably depending on the particular behavior of your application. Y ou may even benefit from
using different retain modes for different parts of your application.

The default setting of on- denand minimizes the amount of time that OpenJPA holds onto a
datastore connection. Thisis generally the best option from a scalability standpoint, as database
resources are held for aminimal amount of time. However, if you are not using connection pooling,
or if your Dat aSour ce is not efficient at managing its pool, then this default value could cause
undesirable pool contention.

Useflat inheritance

performance, scalability

Mapping inheritance hierarchies to a single database table is faster for most operations than other
strategies employing multiple tables. If it is appropriate for your application, you should use this
strategy whenever possible.

vs. disk space
However, this strategy will require more disk space on the database side. Disk spaceis relatively
inexpensive, but if your object model is particularly large, it can become afactor.
High sequence For applications that perform large bulk inserts, the retrieval of sequence numbers can be a bottleneck.
increment Increasing sequence allocation sizes can reduce or eliminate this bottleneck. In some cases,

performance, scalability

implementing your own sequence factory can further optimize sequence number retrieval.

Use optimistic
transactions

performance, scalability

Using datastore transactions trand ates into pessimistic database row locking, which can be a
performance hit (depending on the database). If appropriate for your application, optimistic
transactions are typically faster than datastore transactions.

371



../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html

Optimization Guidelines

Optimistic transactions provide the same transactional guarantees as datastore transactions, except
that you must handle a potential optimistic verification exception at the end of atransaction instead

of assuming that a transaction will successfully complete. In many applications, it is unlikely

that different concurrent transactions will operate on the same set of data at the sametime, so
optimistic verification increases the concurrency, and therefore both the performance and scalability
characteristics, of the application. A common approach to handling optimistic verification exceptions
isto simply present the end user with the fact that concurrent modifications happened, and require that
the user redo any work.

Use query aggregates
and projections

performance, scalability

Using aggregates to compute reporting data on the database server can drastically speed up queries.
Similarly, using projections when you are interested in specific object fields or relations rather than
the entire object state can reduce the amount of data OpenJPA must transfer from the database to your
application.

Always close resour ces

scalability

Under certain settings, Enti t yManager s, OpenJPA Ext ent iterators, and Quer y results may
be backed by resourcesin the database.

For example, if you have configured OpenJPA to use scrollable cursors and lazy object instantiation
by default, each query result will hold opena Resul t Set object, which, in turn, will hold open
a St at ement object (preventing it from being re-used). Garbage collection will clean up these
resources, so it is never necessary to explicitly close them, but it is always faster if it is done at the
application level.

Use detached state
manager s

performance

Attaching and even persisting instances can be more efficient when your detached objects use
detached state managers. By default, OpenJPA does not use detached state managers when serializing
an instance acrosstiers. See Section 12.1.3, “ Defining the Detached Object Graph ” [351] for how
to force OpenJPA to use detached state managers across tiers, and for other options for more efficient
attachment.

The downside of using a detached state manager acrosstiersisthat your enhanced persistent classes
and the OpenJPA libraries must be available on the client tier.

Utilizethe
Enti t yManager
cache

performance, scalability

When possible and appropriate, re-using Ent i t yManager sand setting the Ret ai nSt at e
configuration option to t r ue may result in significant performance gains, since the
Ent i t yManager 'sbuilt-in object cache will be used.

Enable multithreaded
operation only when
necessary

performance

OpenJPA respectsthe openj pa. Mul t it hr eaded option in that it does not impose as much
synchronization overhead for applications that do not set thisvaluetot r ue. If your applicationis
guaranteed to only use single-threaded access to OpenJPA resources and persistent objects, leaving
thisoption asf al se will reduce synchronization overhead, and may result in a modest performance
increase.

Enable lar ge data set
handling

performance, scalability

If you execute queries that return large numbers of objects or have relations (collections or maps)

that are large, and if you often only access parts of these data sets, enabling lar ge result set handling
where appropriate can dramatically speed up your application, since OpenJPA will bring the data sets
into memory from the database only as necessary.

Disablelarge data set
handling

performance, scalability

If you have enabled scrollable result sets and on-demand loading but you do not require it, consider
disabling it again. Some JDBC drivers and databases (SQL Server for example) are much slower when
used with scrolling result sets.

Usethe
Dynani cSchemaFact

performance, validation

If youareusingan openj pa.j dbc. SchemaFact ory setting of something other than the default
@f yynam c, consider switching back. While other factories can ensure that object-relational mapping
information is valid when a persistent classisfirst used, this can be a slow process. Though the
validation is only performed once for each class, switching back to the Dynani cSchenmaFact ory
can reduce the warm-up time for your application.

372




Optimization Guidelines

Do not use XA
transactions

performance, scalability

XA transactions can be orders of magnitude slower than standard transactions. Unless distributed
transaction functionality is required by your application, use standard transactions.

Recall that XA transactions are distinct from managed transactions - managed transaction services
such asthat provided by EJB declarative transactions can be used both with XA and non-XA
transactions. XA transactions should only be used when a given business transaction involves multiple
different transactional resources (an Oracle database and an IBM transactional message queue, for
example).

Use Set sinstead of
Li st/ Col | ecti ons

performance, scalability

Thereisasmall amount of extra overhead for OpenJPA to maintain collections where each element
is not guaranteed to be unique. If your application does not require duplicates for a collection, you
should always declare your fieldsto be of type Set, SortedSet, HashSet, or TreeSet.

Use query parameters
instead of encoding
search datain filter
strings

performance

If your queries depend on parameter data only known at runtime, you should use query parameters
rather than dynamically building different query strings. OpenJPA performs aggressive caching of
query compilation data, and the effectiveness of this cache is diminished if multiple query filters are
used where a single one could have sufficed.

Tuneyour fetch
groups appropriately

performance, scalability

The fetch groups used when loading an object control how much datais eagerly loaded, and by
extension, which fields must be lazily loaded at afuture time. The ideal fetch group configuration
loads all the data that is needed in one fetch, and no extrafields - this minimizes both the amount of
data transferred from the database, and the number of trips to the database.

If extrafields are specified in the fetch groups (in particular, large fields such as binary data, or
relations to other persistence-capable objects), then network overhead (for the extra data) and database
processing (for any necessary additional joins) will hurt your application's performance. If too few
fields are specified in the fetch groups, then OpenJPA will have to make additional trips to the
database to load additional fields as necessary.

Use eager fetching

performance, scalability

Using eager fetching when loading subclass data or traversing relations for each instance in alarge
collection of results can speed up data loading by orders of magnitude.

Disable BrokerImpl
finalization

performance, scalability

Outside of a Java EE application server or other JPA persistence container, OpenJPA's
EntityManagers use finalizers to ensure that resources get cleaned up. If you are properly

managing your resources, this finalization is not necessary, and will introduce unneeded
synchronization, leading to scalability problems. Y ou can disable this protective behavior by setting
theopenj pa. Br oker | npl property tonon-fi nal i zi ng. See Section 9.1.1, “ Broker
Finalization ” [322] for details.

Preload
M etaDataRepository

scalability

By default, the MetaDataRepository is lazily loaded which means that fair amounts of locking is used
to ensure that metadata is processed properly. Enabling preloading allows OpenJPA to load metadata
upfront and remove locking. See Section 6.2, “ M etadata Repository” [283] for details.

373




Chapter 16. Instrumentation

16.1.

OpenJPA provides the ability to instrument various aspects of runtime operation. Instrumentation involves an instrumentation
provider for base instrumentation capabilities and instruments for instrumenting various aspects of OpenJPA. OpenJPA includes
a default instrumentation provider for IMX Platform MBeans. MBean-based instruments are provided for the data cache,

guery cache, and query SQL cache. When enabled, IM X-based remote monitoring tools such as JConsol e can be used to
monitor various metrics tracked by OpenJPA's caches by accessing M Beans registered under domain or g. apache. openj pa.
Additionally, custom applications can gather metrics by using the IMX API to query OpenJPA's MBeans. The openj pa-

i nt egrati on-j mx integration module contains an example of how to access the cache M Beans within program code.

Configuration

Instrumentation is enabled using the openj pa. | nst runent at i on configuration property. The base value is the
instrumentation provider. The alias "jmx" enables the IMX Platform MBean provider. Instruments are specified on the

I nst runment attribute of the provider. Multiple instruments can be specified by enclosing the value in single quotes and
specifying each instrument or instrument alias as a comma separated list. For example:

<!-- Enable caches and cache statistics -->

<property nanme="openj pa. Dat aCache" val ue="true(Enabl eStatistics=true)"/>
<property name="openj pa. QueryCache" val ue="true(Enabl eStati stics=true)"/>
<property name="openj pa.j dbc. QuerySQ.Cache" val ue="true(Enabl eStatistics=true)"/>

<!-- Enable jnx provider and instruments for Data, Query, and QuerySQ. caches -->
<property name="openj pa.|nstrunmentation" val ue="j mx(I nstrunment="Dat aCache, QueryCache, Quer ySQ.Cache')"/>

16.1.1. JMX Platform MBean Enablement

The built-in IMX Platform MBean provider can be used to monitor OpenJPA runtime information out-of-band. This provider
is based upon the Platform MBean support included in the JDK. The JDK provides options for enabling secure connectivity
and authentication. These options require additional configuration options and may require encryption keysto be installed on
the local and remote systems. To enable simple, non-secure, non-authenticated monitoring of your application, specify the -
Dcom.sun.management.jmxremote.authenti cate=fal se and -Dcom.sun.management.jmxremote.ssl=fal se directives on the java
command line invocation. To enable remote instrumentation on a specific port, specify which port to use on the directive -
Dcom.sun.management.jmxremote.port=<port>. For example:

java -cp openjpa-all-2.2.0.jar:nyApplication.jar -Dcom sun. managenent.j nxrenote. aut henti cat e=f al se
- Dcom sun. nanagenent . j nxr enot e. ssl =f al se - Dcom sun. managenent . j nxr enot e. port =8888 com ny. app. Mai n

16.2.

Additional information regarding the use and configuration of IMX Platform MBeans can be found inthe Java Managenent
Ext ensi ons (JMX) Technol ogy Overvi ew.

Custom Providers and Instruments

OpenJPA includes built-in support for a IMX Platform MBean provider, but a custom instrumentation providers

can be created by implementing the | nst runent at i onPr ovi der interface or more simply by extending

Abst ract | nst runment ati onProvi der . To use the custom instrumentation provider, include the class in your classpath
and specify the class name as the base value on the openj pa. | nst r unent at i on configuration property.

374



http://download.oracle.com/javase/6/docs/technotes/tools/share/jconsole.html
http://download.oracle.com/javase/6/docs/technotes/guides/jmx/overview/JMXoverviewTOC.html
http://download.oracle.com/javase/6/docs/technotes/guides/jmx/overview/JMXoverviewTOC.html
../javadoc/org/apache/openjpa/lib/instrumentation/InstrumentationProvider.html
../javadoc/org/apache/openjpa/lib/instrumentation/AbstractInstrumentationProvider.html
../javadoc/org/apache/openjpa/lib/instrumentation/AbstractInstrumentationProvider.html

Instrumentation

OpenJPA includes instruments for various caches, but you can also create your own instruments. To create a custom instrument
you need to implement the | nst r unent interface or more smply extend Abstract | nstrunent . If youarebuilding

a Platform MBean JM X-based instrument this effort can be simplified by extending JMXI nst r unent . If you create

your own custom provider, class name aliases can be registered within the provider to simplify configuration. For example,
theinstrument com ny. app. MySQLI nst r unent could be aliased as My SQLI nst r unent within custom provider

com ny. app. | nstrunent ati onProvi der.

OpenJPA provides the ability to plug in custom instruments and gives instruments direct access to the configuration, but it isup
to the creator of the instrument to add the internal monitoring. This often requires modifying or extending base OpenJPA classes
(such as the Broker) or using a byte-code weaving tool such as AspectJ to produce aspect-based instruments.

Here is an example of how a custom instrumentation provider could be enabled with an instrument class aliased by the provider
asMySQLI nstrunent .

<!-- Enable custom provider and instrunent -->
<property name="openj pa.|nstrunmentation" val ue="com ny. app. | nstrunmentati onProvi der (I nstrument="M/SQLI nstrunent"')"/>

375



../javadoc/org/apache/openjpa/lib/instrumentation/Instrument.html
../javadoc/org/apache/openjpa/lib/instrumentation/AbstractInstrument.html
../javadoc/org/apache/openjpa/instrumentation/jmx/JMXInstrument.html

Part 4. Appendices




I o oS 0T | (o == PP 379

S 00100 = o [T - o7 = = 380
P O = a1 PSP 380
2.2. Verified Daf@hase IMELIIX ....u..iiiiii et e e et e e et et e e ettt s e e e eateneeeeatn e e e aetn e e e et aaaae 380
RGN 00000107z 1] o [ BT r= o 7= = S AV I (N 380
2.4, UNVEXfied DaaDase IMAIIX .....cieeei et e et e ettt s e e ettt e e e ettt e e e et s e e e ett s e e eett s e e aett e e e eettnaeeeentnaeaee 381
2.5, APACNE DY et e 382
2 = To g o T = 7= = PP 382

2.6.1. KNOWN iSSUES With INEEIDESE ......uiiiiii it e e et eeeaaa e aeees 382
p2 BN D T = (] S PP 382
P2 S T = 11 PSSP 382
2.8.1. KNOWN ISSUES WIth DB2 .. .oeuiiiiiiiiiiieeeei ettt e e e e et e e e et e e e et e e e e et 382
P T 4] o == T PPN 383
2.9.1. KNOWN ISSUES WIth EIMPIESS ....uuiiiiiiii i eiii e et e e e e e e e e e e e e e et e e e et e e et e e e e e e et e eeanaaetnees 383
A O o DT o= Y =l oo 1 = 383
2.10.1. Known issues With H2 Databhase ENQINE .......cvuueiiiiiii e e e e e e e e e e e eaes 383
280 T Y701 £ o) 3T o 384
2.11.1. KNOWN iSSUES WIth HYPEISONIC ....ivvniie i e e e s e e e e e e e e e e et e e et e e eaneeaens 384
P T = o 11 (o PSP 384
2.12.1. KNOwnN iSSUES WIith FITEDITA ....cceeveieeiii et e e e et e eeaae s 384
P20 G I o1 (10 11 PPN 384
2.13.1. KNown iSSUES WIth INFOIMIX .eeuuuiiiiii et e e et e e et s e e e et aeeeeaaaeeees 384
A 0T | (=S BT v o = = 385
2.14.1. KNOWN iSSUES WIth INQIES ... eeiiii et e e e e e e e e e e e et e e et e e et e e e eeanaas 385
A LT 01 (= SV 1= 1 11O o 1= 385
2.15.1. Known issues With InterSystems CaChie ........ccouuiiiiiiiiii e e e e e e e 385
P Y T (0o AN e === ST 385
2.16.1. KNOwWN iSSUES With MICIOSOft ACCESS ...uuiiiiiiieeeiii e ettt e et e e e e et e e et e eeeaen s 385
N o (0 oS = = 385
2.17.1. KNOWN iSSUES WIth SQL SEIVEN ..oovuiiiiiicii it e et e e e e e e e et e et e e et e e e eanaas 386
B S Y T (0o A e )t o T PP 386
2.18.1. Known issues With MiCroSOft FOXPIO ........uuiiiiiiiiiie e e e e ees 386
P20 R Y Y PP 386
2.19.1. Using Query HintS With MYSQL ......iiiiiiiiiii et e et e et e e et e e eaean s 387
2.19.2. KNOWN iSSUES With MYSQL ....iiuiiiiiiiii et e e e e e e e e e e et e e et e e eaneeeees 387
L I O o [ PSPPSR 387
2.20.1. Using Query HINtS With OraCle ........couuiiiii i e e e e e e aeas 387
2.20.2. KNOWN 1SSUES WIth OFACIE ...eevuiiiiiii ettt e et e e et s e e e et e e aeat e eeennes 388
B T o ] 110 = TSP 389
2.21.1. KNOwn iSSUES With POINTDASE ... .ceeeiiieiei e eeeaens 389
B o= (o =S O | PSP 389
2.22.1. KNOwN iSSUES With POSIOIrESQL .....cvuiiiiiieiiiieeii e e e e e e e e e e e e e et e e et e e et e e e e eaaeees 389
2.23. IBM SOIADB ... ittt e ettt e e et e e e ettt e e et e e e e et r e e e et e e e et e e aeraaaaae 389
2.23.1. M-type tables vs. D-type tableS ....uuciie i 390
2.23.2. Concurrency control MECHANISIM .......iiui i e e e e e e e e e e e e et e e et e e e eeaens 390
2.24, Syhase AGADLIVE SEIVES ......iiii it e e e e e e e e et e e et e e e e et e e e e e e e e e e e e aaa 390
2.24.1. KNOWN iSSUES WIth SYDASE ....uuiiiiiiiii e e e e e e e e e e e e et e et eean s 390

IV, T T (o g M @0 =T L= = o) N 391

TN @ o= g N 0 PRSP 391
300 50 O 1 o 1o = ] o 1 == 391
00 O = 0= == (N 391
I N D 1= o g I =T 0= Y o PP 391
3.1.1.3. Use of private persistent ProPErtiES .......ccuuuiiiiiieiiii e e e e e e e e e et e e e e e 391
3.1.1.4. QUENY.SEEPAraMELEN() . .eeeevuieeiiii e ettt ettt e et e et e e e e a e 392

377



Appendices

3.1.1.5. Seri@ization Of ENLITIES .....iiieii et e et e e e et e e et e e e eae e aen 392
3.1.1.6. openjpajdbC.QUENYSQLCACNE ......u i 392
3.1.2. Disabling AutoOff Collection TraCKing .........ieeuuieiiiiiiie e e e e e e e e e eeas 392
3.1.3. Interna Behavioral DIiffErenCES ........iiiieiiii e e e e 392
3.1.3.1. PreUpdate/PostUpdate Life Cycle Callbacks ..........cocvuviiiiiiiiii e 393
3.1.3.2. createEntityManagerFactory EXCEPLIONS ..........veiuuieiiieiii e e e e e e e e e e 393
3.1.3.3. openjpa.QueryCache defalllt ............cooviiiiii e 393

I @)1= N O USRS 393
250 W 1 o 010 ] o 1 == 393
3.2.1.1. dlocationSize Property of SEqQUENCE GENEIAON .. ...uueiviieii e e e e e e e e e e e e e e e e eanas 393
3.2.1.2. MetaModel AttribULES FOr ATTAYS ...cuuiiiii e e e e e e e e e e eaeas 394
3.2.1.3. SUPPOISSELCIOD PrOPEITY. ovuiiiiiciii et e e e e e e e 394
3.2.1.4. useNativeSequenCeCaCthe PrOPEITY. .......iiiiu it e e e e e e e 394
3.2.1.5. Cascade persist DENAVION .......ccouuiiii e 395

378



Appendix 1. JPA Resources

» Java Persistence 2.0 page
» Enterprise JavaBeans 3.1 page
* javax.persistence Javadoc

* OpenJPA Javadoc

379


http://www.jcp.org/en/jsr/detail?id=317
http://jcp.org/en/jsr/detail?id=318
http://download.oracle.com/javaee/6/api/index.html
../javadoc/index.html

Appendix 2. Supported Databases

2.1.

Overview

2.2.

The following appendix covers the database and JDBC driver versions that are known to work with OpenJPA, along with any
database specific configuration parameters, known issues or limitations. The Verified Database M atrix, contains the list of
databases and drivers that were tested extensively against this release of OpenJPA, while the Compatible Database Matrix
contains the list of databases and drivers that were tested against prior releases or by OpenJPA users and may not support every
feature of thisrelease. The Unverified Database Matrix contains alist of databases which have been reported to work, but have
not been tested by the devel opment team.

Verified Database Matrix

Following is atable of the supported database and JDBC driver versions that have been verified against this version of OpenJPA.
For thelist of other databases and drivers that were tested in prior releases or by other OpenJPA users, but may not support every
feature of this release, please refer to the Compatible Database M atrix section.

Table 2.1. Supported Databases and JDBC Drivers

Driver

Database Name Database Version JDBC Driver Name JDBC Driver Version

Apache Derby 10.2.2.0, 10.3.3.0, 10.4.2.0, Apache Derby Embedded Same as Database Version
10.5.3.0, 10.8.2.2 JDBC Driver

IBM DB2 8.1,8.2,9.1,95,9.7 IBM DB2 JDBC Universd 3.50.152

Enterprise

IBM Informix Dynamic 10.00xC6, 11.10xC1, 11.5xC1 |Informix JDBC driver 3.00JC3, 3.10JC1, 3.50 JC1
Server
Microsoft SQL Server 2005 (9.00), 2008 (10.00) Microsoft SQL Server DBC (1.2 0r 2.0
Driver
MySQL 5.0.26,5.1.6 MySQL Driver 5.1.6
Oracle 10g (10.1, 10.2), 11g (11.1, Oracle JDBC driver 11.2.0.1
11.2)
PostgreSQL 8.35,84 PostgreSQL Native Driver 8.3 JDBC3 (build 603), 8.4
JDBC3 (build 701)
IBM solidDB 6.5.0.0 solidDB JDBC Driver 20
Sybase Adaptive Server 125, 15.0 jConnect 55,6.0

2.3. Compatible Database Matrix

Following is atable of the database and JDBC driver versions that are compatible with OpenJPA. Some of these databases have
been tested against this version of OpenJPA, while others were added or tested in prior releases and may not support al of the
new features of this release. For the list of databases that have been fully tested against this release, please refer to the Verified

Database M atrix section.

380




Supported Databases

2.4.

Table 2.2. Compatible Databases and JDBC Drivers

Enterprise

Database Name Database Version JDBC Driver Name JDBC Driver Version
Apache Derby 10.1.2.1 Apache Derby Embedded 10.1.2.1
JDBC Driver
Borland Interbase 7.1.0.202 Interclient 451
Borland JDataStore 6.0 Borland JDataStore 6.0
DB2 8.1 IBM DB2 JDBC Universd 1.0.581, 2.10.72
Driver
Empress 8.62 Empress Category 2 JDBC 8.62
Driver
Firebird 15,2021 JayBird JCA/JDBC driver 216
H2 Database Engine 1.1.118 H2 Same as Database Version
Hyper sonic Database Engine {1.8.0, 2.0.1 RC2 Hypersonic Same as Database Version
Informix Dynamic Ser ver 9.30.UC10, 9.4xC7 Informix JDBC driver 2.21.JC2, 3.00JC3, 3.10 JC1
Ingres Database 9.2 Ingres JDBC Driver 9.2-3.4.8
I nter Systems Cache 5.0 Cache JDBC Driver 5.0
Microsoft Access 9.0 (a.k.a. "2000") DataDirect SequeLink 5.4.0038
Microsoft SQL Server 2000 (8.00) Microsoft SQL Server IDBC |1.2
Driver
Microsoft Visual FoxPro 7.0 DataDirect SequeLink 5.4.0038
MySQL 3.23.43-log MySQL Driver 3.0.14
Oracle 8.1,92 Oracle IDBC driver 10.2.0.1
Pointbase 4.4 Pointbase JDBC driver 4.4 (4.4)
PostgreSQL 721,815 PostgreSQL Native Driver 8.1
IBM solidDB 6.5.0.0 solidDB JDBC Driver 20
Sybase Adaptive Server 125 jConnect 55(5.5)

Unverified Database Matrix

Following is atable of the database and JDBC driver versions that have been reported to work with OpenJPA by the community
but have not been verified by the development team. In some casesthisis a question of availability since the developers may not
be able to obtain alicense to test, or have experience configuring these databases. For the list of databases that have been fully

tested against this release, please refer to the Verified Database Matrix section.

Table 2.3. Unverified Databases and JDBC Drivers

Database Name

Database Version

JDBC Driver Name

JDBC Driver Version

SAP MaxDB

381




Supported Databases

2.5. Apache Derby

Example 2.1. Example propertiesfor Derby

openj pa. Connecti onDri ver Nane: org. apache. der by. j dbc. EnmbeddedDri ver
openj pa. Connecti onURL: j dbc: der by: DB_NAME; cr eat e=t rue

2.6. Borland Interbase

Example 2.2. Example propertiesfor I nterbase

openj pa. Connecti onDri ver Name: interbase.interclient.Driver
openj pa. Connecti onURL: j dbc:interbase:// SERVER_NAME: SERVER _PORT/ DB_PATH

2.6.1. Known issues with Interbase

* Interbase does not support record locking, so datastore transactions cannot use the pessimistic lock manager.

* Interbase does not support the LOAER, SUBSTRI NG, or | NSTR SQL functions.

2. 7. JDataStore

Example 2.3. Example propertiesfor JDataStore

openj pa. Connecti onDri ver Name: com bor | and. dat ast ore. j dbc. Dat aSt oreDri ver
openj pa. Connecti onURL: j dbc: borl and: dsl ocal : db-j dat ast ore.j ds; create=true

2.8. IBM DB2

Example 2.4. Example propertiesfor IBM DB2

openj pa. Connecti onDri ver Nane: com i bm db2.jcc. DB2Dri ver
openj pa. Connecti onURL: j dbc: db2:// SERVER NAME: SERVER _PORT/ DB_NAME

2.8.1. Known issues with DB2

* Floats and doubles may |ose precision when stored.
e Empty char values are stored as NULL.

» Fields of type BLOB and CLOB are limited to 1M. This number can be increased by extending DB2Di ct i onary.

382



Supported Databases

 Explicit creation of indexes specified by the OpenJPA @Index annotation will fail on DB2 for iSeries if the default schema
used by the JDBC driver does not exist. If adefault schemais not specified on the connection, the iSeries will default to the
user profile name. If a schema of that name does not exist, DB2 on iSeries will not create the schema, resulting in afailure
when creating the index. The failure message will look similar to: "[SQL0204] USERNAME in QSY Stype *LIB not found."
To work around thisissue, specify adefault schema on the JIDBC URL or data source property and make sure that schema
exists or create a schema which matches the user profile of the connection.

» Use of DB2 on z/OS with the IBM JCC driver requiresthe DESCSTAT subsystem parameter valueto be set to 'YES. If
this parameter is set to 'NO', the mapping tool will fail with a persistence exception containing this text: "Invalid parameter:
Unknown column name TABLE_SCHEM". After changing the value of DESCSTAT, DB2 metadata tables must be recreated
by running the DSNTIJMS job. See DB2 for Z/OS documentation for additional information.

» When using LOBs with persistent attributes of a streaming datatype (e.g.j ava. i 0. | nput St r eam) in the case of very
large LOB, DB2 JCC driver will automatically use progressive streaming to retrieve the LOB data. With progressiveStreaming,
the inputStream retrieved must be fully materialized before the next iteration of call to rs.next(). By default thiswill resultin a
L obClosedException when OpenJPA processes the InputStream.

To work around this condition you may force fullyMaterializedL obData to true in the connection URL as shown below :

openj pa. Connecti onURL: j dbc: db2://1 ocal host: 50000/ denodb: ful | yMat eri al i zeLobDat a=t r ue; pr ogr essi veSt r eam ng=NO

2.9. Empress

Example 2.5. Example properties for Empress

openj pa. Connecti onDri ver Name: enpress.jdbc. enpressDriver
openj pa. Connecti onURL: j dbc: enpress: // SERVER=your server ; PORT=6322; DATABASE=your db

2.9.1. Known issues with Empress

» Empress enforces pessimistic semantics (lock on read) when not using Al | owConcur r ent Read property (which bypasses
row locking) for Enpr essDi cti onary.

» Only the category 2 non-local driver is supported.

2.10. H2 Database Engine

Example 2.6. Example propertiesfor H2 Database Engine

openj pa. Connecti onDri ver Nane: org. h2.Driver
openj pa. Connecti onURL: j dbc: h2: DB_NAME

2.10.1. Known issues with H2 Database Engine

¢ None

383



Supported Databases

2.11. Hypersonic

Example 2.7. Example propertiesfor Hypersonic

openj pa. Connecti onDri ver Nane: org. hsqgl db. j dbcDri ver
openj pa. Connecti onURL: j dbc: hsqgl db: DB_NAME

2.11.1. Known issues with Hypersonic

 Hypersonic does not support pessimistic locking, so non-optimistic transactions will fail unlessthe Si mul at eLocki ng
property is set for the openjpa.jdbc.DBDictionary

2.12. Firebird

Example 2.8. Example propertiesfor Firebird

openj pa. ConnectionDri ver Nane: org.firebirdsql.jdbc. FBDriver
openj pa. Connecti onURL: jdbc: firebirdsqgl: SERVER NAME/ 3050: DB_PATH_OR_ALI AS

2.12.1. Known issues with Firebird

* Firebird does not support auto-increment columns.

* Inorder to use many of JPQL functions with Firebird 1.5, Interbase UDFs have to be available in the database.

2.13. Informix

Example 2.9. Example propertiesfor Informix Dynamic Server

openj pa. Connecti onDri ver Name: com i nform x.jdbc. |fxDriver
openj pa. Connecti onURL: \
jdbc:informni x-sqli://SERVER NAMVE: SERVER PORT/ DB_NAME: | NFORM XSERVER=SERVER | D

2.13.1. Known issues with Informix

¢ None

384



Supported Databases

2.14. Ingres Database

Example 2.10. Example propertiesfor Ingres

openj pa. Connecti onDri ver Name: com i ngres.jdbc. | ngresDriver
openj pa. Connecti onURL: \
jdbc:ingres:// SERVER_NAVE: DAS_SERVER _PORT/ DB_NAMVE

2.14.1. Known issues with Ingres

 Databases must be created with the -n flag for Unicode compatibility in order to use LOBSs.

2.15. InterSystems Cache

Example 2.11. Example propertiesfor Inter Systems Cache

openj pa. Connecti onDri ver Name: com i ntersys.jdbc. CacheDriver
openj pa. Connecti onURL: j dbc: Cache: // SERVER_NAME: SERVER_PORT/ DB_NAME

2.15.1. Known issues with InterSystems Cache

» Support for Cacheis done via SQL access over JDBC, not through their object database APIs.

2.16. Microsoft Access

Example 2.12. Example propertiesfor Microsoft Access

openj pa. Connecti onDri ver Name: com ddt ek. j dbc. sequel i nk. SequeLi nkDri ver
openj pa. Connecti onURL: j dbc: sequel i nk:// SERVER_NAME: SERVER_PORT

2.16.1. Known issues with Microsoft Access

* Using the Sun JDBC-ODBC bridge to connect is not supported.

2.17. Microsoft SQL Server

Example 2.13. Example propertiesfor Microsoft SQL Server

openj pa. Connecti onDri ver Nane: com mi crosoft. sql server.jdbc. SQLServerDriver
openj pa. Connecti onURL: \
jdbc: sqgl server:// SERVER _NANE: 1433; Dat abaseNane=DB_NANE,; sel ect Met hod=cur sor ; sendSt ri ngPar anet er sAsUni code=f al se

385



Supported Databases

2.17.1.

Known issues with SQL Server

2.18.

When using a Microsoft SQL Server JDBC Driver v1.2 or earlier, the ConnectionURL must always contain the
sel ect Met hod=cur sor string, which is necessary for the driver to properly support large result sets.

When using a Microsoft SQL Server JDBC Driver v1.2 or earlier, the JIDBC driver has bugs that manifest themselves when
prepared statements are pooled. Please disable prepared statement pooling by including the MaxCachedSt at enent s=0
configuration property in your org.apache.openjpa.ConnectionFactoryProperties.

SQL Server date fields are accurate only to the nearest 3 milliseconds, possibly resulting in precision lossin stored dates.
Adding sendSt ri ngPar anet er sAsUni code=f al se to the ConnectionURL may significantly increase performance.

The Microsoft SQL Server driver only emulates batch updates. The DataDirect JDBC driver has true support for batch updates,
and may result in asignificant performance gain.

Floats and doubles may lose precision when stored.
TEXT columns cannot be used in queries.

When using a SQL Server instance that has been configured to be case-sensitive in schema names, you need to set the
"schemaCase=preserve' parameter in the openjpa.jdbc.DBDictionary property.

SQL Server 2005 does not support native sequences. If you would like to use generated values with SQL Server you should
use GenerationType.lDENTITY, GenerationType. TABLE, or GenerationType. AUTO.

The use of L OB streaming islimited. When reading LOB data from the database, the Microsoft SQL Server driver will
actually load al the datainto memory at the same time.

The SQL Server 2008 DATETIMEZ2 data type supports 7 digits sub-second precision. When DataDirect JDBC driver is used
with SQL Server 2008, setTimestamp method call with ajava.sgl. Timestamp argument of more than 3 digits precisionin a
prepared statement will result in truncation. This may cause loss of data precision or optimistic lock exception if an entity uses
Timestamp type as version field.

Microsoft FoxPro

Example 2.14. Example propertiesfor Microsoft FoxPro

openj pa. Connecti onDri ver Nane: com ddt ek. j dbc. sequel i nk. SequeLi nkDri ver
openj pa. Connecti onURL: j dbc: sequel i nk:// SERVER_NAME: SERVER_PORT

2.18.1.

Known issues with Microsoft FoxPro

2.19.

Using the Sun JDBC-ODBC bridge to connect is not supported.

MySQL

Example 2.15. Example propertiesfor MySQL

openj pa. ConnectionDri ver Nane: com nysql . jdbc. Driver
openj pa. Connecti onURL: jdbc: nysql:// SERVER_NAVE/ DB_NAME

386




Supported Databases

2.19.1. Using Query Hints with MySQL

MySQL has support for "query hints', which are keywords embedded in SQL that provide some hint for how the query should be
executed. These hints are usually designed to provide suggestions to the MySQL query optimizer for how to efficiently perform
acertain query, and aren't typically needed for any but the most intensive queries. OpenJPA supports hints to be placed between
SELECT keyword and column list.

Example 2.16. Using MySQL Hints

Query query = emcreateQuery(...);
query. set H nt (" openj pa. hi nt. My\SQLSel ect H nt", "SQL_NO CACHE");
List results = query.getResultList();

2.19.2. Known issues with MySQL

2.20.

» The default table types that MySQL uses do not support transactions, which will prevent OpenJPA from being able to roll back
transactions. Use the | nno DB table type for any tables that OpenJPA will access.

» MySQL does not support sub-selectsin versions prior to 4.1, so some operations (such asthei sEnpt y() method in a query)
will fail dueto this.

* Rollback dueto database error or optimistic lock violation is not supported unless the table type is one of the MySQL
transactional types. Explicit callstor ol | back() before atransaction has been committed, however, are always supported.

* Floats and doubles may lose precision when stored in some datastores.

» When storing afield of typej ava. mat h. Bi gDeci mal , some datastores will add extraneous trailing O characters, causing
an equality mismatch between the field that is stored and the field that is retrieved.

» When using large result sets with MySQL there are a number of documented limitations. Please read the section titled
"ResultSet" in the "MySQL JDBC API Implementation Notes'. The net effect of these limitationsis that you will haveto
read all of the rows of aresult set (or close the connection) before you can issue any other queries on the connection, or an
exception will be thrown. Setting openjpa.FetchBatchSize to any value greater than zero will enable streaming result sets.

e Theuseof LOB streamingislimited. When reading LOB data from the database, the MySQL JDBC driver will actually load
al the datainto memory at the same time.

Oracle

Example 2.17. Example propertiesfor Oracle

openj pa. Connecti onDri ver Nane: oracl e.jdbc.driver. O acleDriver
openj pa. Connecti onURL: j dbc: oracl e: t hi n: GBERVER_NAME: 1521: DB_NAME

2.20.1. Using Query Hints with Oracle

Oracle has support for "query hints*, which are formatted comments embedded in SQL that provide some hint for how the query
should be executed. These hints are usually designed to provide suggestions to the Oracle query optimizer for how to efficiently
perform acertain query, and aren't typically needed for any but the most intensive queries.

387




Supported Databases

Example 2.18. Using Oracle Hints

Query query = emcreateQuery(...);
query. set Hi nt ("openj pa. hint. Oracl eSel ectHint", "/*+ first_rows(100) */");
List results = query.getResultlList();

2.20.2. Known issues with Oracle

» The Oracle JDBC driver has significant differences between different versions. It isimportant to use the officially supported
version of the drivers (10.2.0.1.0/11.2.0.x.0), which is backward compatible with previous versions of the Oracle server. It can
be downloaded from http://www.or acle.com/technetwor k/database/featur es/jdbc/index-091264.html.

» Empty string/char values are stored as NULL.

 Oracle corp's JDBC driver for Oracle has only limited support for batch updates. The result for OpenJPA is that batching
of some statements may fail and in some cases, the exact object that failed an optimistic lock check cannot be determined.
OpenJPA will throw an Opt i mi st i cExcept i on with more failed objects than actually failed. This situation may be
resolved by disabling statement batching by setting the batchLimit value to zero or by using a more recent Oracle JDBC Driver
(11.2.0.1) with batch support improvements. Attempting to resolve the issue with a more current driver is recommended since
disabling statement batching can result in a decrease in performance.

Example 2.19. Property to disable statement batching for Oracle

openj pa. j dbc. DBDi ctionary: oracl e(batchLi m t=0)

 Oracle cannot store numbers with more than 38 digits in numeric columns.
* Floats and doubles may lose precision when stored.
e CLOB columns cannot be used in queries.

» Theuse of LOBswith persistent attributes of a streaming datatype (ex.j ava. i o. I nput St r eamor j ava. i 0. Reader)
may reguire the same connection to be used over the life of the transaction or entity manager. If the same connection is
not used for persistent operationsaj ava. i 0. | OExcept i on with message Cl osed Connecti on may result. The
OpenJPA property openj pa. Connect i onRet ai nMbde can be used to control how OpenJPA uses datastore connections.
See Section 4.8, “ Configuring the Use of JDBC Connections” [249] for details.

Example 2.20. Property to retain connection over the lifetime of the entity manager

openj pa. Connect i onRet ai nMbde: al ways

» Mapping persistent attributesto XML columns requires a JDBC 4 compliant driver if XML strings are longer than 4000 bytes,
as counted in database. Otherwise an ORA- 01461: can bind a LONG value only for insert into a LONG
col unm error may result.

* If Oracledictionary property MaxEnbeddedBl obSi ze or MaxEnbeddedC obSi ze
is set to some limit (i.e. not -1) and embedded collection with BLOB/CLOB attribute
isused, a" or g. apache. openj pa. per si st ence. Ar gunent Except i on:

388


http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

Supported Databases

"X.y.z. EnbedOnner . enbedCol | ecti on<el enent: cl ass x.y. z. EnbedVal ue>" i s mapped as
enbedded, but enbedded field "x.y.z. EnbedOaner. enbedCol | ecti on. x.y. z. EnbedVal ue. bl ob"
i s not enbeddabl e. Enbedded el enent/key/value types are linmted to sinple fields and
direct relations to other persistent types" error may result. To overcome this limitation, either use
JDBC driver 11.2.0.x.0 (or later version) or set both MaxEnbeddedBl obSi ze and MaxEnbeddedC obSi ze propertiesto
-1

2.21. Pointbase

Example 2.21. Example propertiesfor Pointbase

openj pa. Connecti onDri ver Nane: com poi nt base. j dbc. j dbcUni versal Dri ver
openj pa. Connecti onURL: \
j dbc: poi nt base: DB_NAME, dat abase. home=poi nt basedb, cr eat e=t r ue, cache. si ze=10000, dat abase. pagesi ze=30720

2.21.1. Known issues with Pointbase

» Fieldsof type BLOB and CLOB are limited to 1M. Set the Bl obTypeNane and/or Cl obTypeNane properties of the
openj pa. j dbc. DBDi cti onary setting to override.

2.22. PostgreSQL

Example 2.22. Example propertiesfor PostgreSQL

openj pa. Connecti onDri ver Name: org. postgresql.Driver
openj pa. Connecti onURL: j dbc: postgresql :// SERVER_NAME: 5432/ DB_NAME

2.22.1. Known issues with PostgreSQL

* Floats and doubles may |ose precision when stored.

» PostgreSQL cannot store very low and very high dates.

Empty string/char values are stored as NULL.

Persistent fields of typej ava. i 0. Reader are not supported when using L OB streaming.

2.23. IBM solidDB

Example 2.23. Example propertiesfor IBM solidDB

openj pa. ConnectionDri ver Nane: solid.jdbc. SolidDriver
openj pa. Connecti onURL: jdbc:solid://Iocal host: 2315/ dba/ dba

389



Supported Databases

2.23.1. M-type tables vs. D-type tables

IBM solidDB supports two types of tables: in-memory tables (M-tables) and on-disk tables (D-tables). Since cursor hold over
commit can not apply to M-tables (which will cause SOLID Table Error 13187: The cursor cannot continue accessing M-
tables after the transaction has committed or aborted. The statement must be re-executed), the default OpenJPA tables are D-
tables. One can set the whole server to disk-based mode by adding [General] DefaultStorelsMemory=no in solid.ini. The table
types can also be determined by setting OpenJPA property "openjpa.jdbc.DBDictionary” with value "storel sSMemory=true" or
"storelsMemory=false" in the persistence.xml. The "STORE MEMORY" and "STORE DISK" will be appended to the create
table DDL, respectively.

2.23.2. Concurrency control mechanism

The default concurrency control mechanism depends on the table type: Disk-based tables (D-tables) are by default optimistic.
Main-memory tables (M-tables) are always pessimistic. Since OpenJPA applications expects lock waits as usually is done with
normal pessimistic databases, the server should be set to the pessimistic mode. The optimistic mode is about not waiting for the
locks at all. That increases concurrency but requires more programming. The pessimistic mode with the READ COMMITTED
isolation level (default) should get as much concurrency as one might need. The pessimistic locking mode can be set in

solid.ini: [General] Pessimistic=yes One can override the locking mode on the per table base by setting OpenJPA property
"openjpa.jdbc.DBDictionary” to value "lockingM ode=PESSIMISTIC" in the persistence.xml. An extra SQL will be generated
along with CREATE TABLE DDL: ALTER TABLE EX_POBJECT SET PESSIMISTIC. The possible values for lockingM ode
isOPTIMISTIC/PESSIMISTIC.

2.24. Sybase Adaptive Server

Example 2.24. Example propertiesfor Sybase

openj pa. Connecti onDri ver Name: com sybase. j dbc2.j dbc. SybDri ver
openj pa. Connecti onURL: \
j dbc: sybase: Tds: SERVER_NAME: 4100/ DB_NAME?Ser vi ceNane=DB_NAME&BE_AS_JDBC_COMPLI ANT_AS_POSSI BLE=t r ue

2.24.1. Known issues with Sybase

e The"DYNAM C_PREPARE" parameter of the Sybase JDBC driver cannot be used with OpenJPA.

 Datastore locking cannot be used when manipulating many-to-many relations using the default OpenJPA schema created by
the schematool, unless an auto-increment primary key field is manually added to the table.

 Persisting a zero-length string results in a string with a single space character being returned from Sybase, Inc.'s JIDBC driver.

e TheBE_AS _JDBC COWPLI ANT_AS POSSI BLE isrequired in order to use datastore (pessimistic) locking. Failure to set
this property may lead to obscure errorslike" FOR UPDATE can not be used in a SELECT which is not
part of the declaration of a cursor or which is not inside a stored procedure. "

» Applications performing update/insert data of the BigDecimal Java type may fail with OptimisticException if the data exceeds
the scale or precision of the column on Sybase. To avoid this problem, applications can specify the precision and scale for
the numeric type by setting numericTypeName='NUMERIC(p,s)' for the column type mapped by the BigDecimal Javatype.
See openjpa.jdbc.DBDictionary for more detail. Alternatively, application can set the precision and scale using the standard
Col umm annotation, described in Section 13.3, “ Column ” [150].

390



Appendix 3. Migration Considerations
3.1. OpenJPA 2.0.0

3.1.1. Incompatibilities

The following sections indicate changes that are incompatible between OpenJPA 1.x.x releases and the 2.0 release. Some
may require application changes. Others can be remedied through the use of compatibility options. If your application uses
aversion 1.0 persistence.xml, compatibility options will be set appropriately to maintain backward compatibility. OpenJPA
2.0 applications using aversion 2.0 persistence.xml and requiring OpenJPA 1.x.x compatibility may need to configure the
appropriate compatibility options to get the desired behavior.

3.1.1.1. getProperties()

The OpenJPAEntityManagerFactory interface getProperties() method was changed to return a Map instead of a Properties object.
This change was made in order to support the getProperties() method defined in the JPA 2.0 specification.

3.1.1.2. Detach Behavior

The detach behavior has changed in several ways:
 Inthe 1.x.x release, managed entities were flushed to the database as part of the detach operation. Thisis no longer donein 2.0.

* Inthe 1.x.x release, entities were copied and returned. In 2.0, for those methods that have return values, the original entities are
returned.

 Inthe 1.x.x release, managed entities still exist in the persistent context. In 2.0, they are removed.

» Inthe 1.x.x release, the detach operation is recursively cascaded to al referenced entities. In 2.0, the detach operation is only
cascaded to those entities for which Cascade=detach has been specified.

Applications that use a 1.0 persistence.xml will automatically maintain OpenJPA 1.x.x behavior. It is possible for aversion 2.0
application to revert back to the 1.x.x behavior for some of these items by setting the openjpa.Compatibility property as follows:

CopyOnDetach=true
FlushBeforeDetach=true
CascadeWithDetach=true

In addition, a new method has been provided onthe OpenJPAENt i t yManager interface to return a copy of the entity:

public <T> T detachCopy(T pc):

3.1.1.3. Use of private persistent properties

In 1.x.x releases of OpenJPA, if property access was used, private properties were considered persistent. Thisis contrary to the
JPA specification, which states that persistent properties must be public or protected. In OpenJPA 2.0 and later, private properties
will not be persistent by default.

Applications that use a 1.0 persistence.xml will automatically maintain OpenJPA 1.x.x behavior. It is possible for aversion
2.0 application to revert back to the 1.x.x behavior by setting the value of the openj pa. Conpati bi | i ty property

391


../javadoc/org/apache/openjpa/persistence/OpenJPAEntityManager.html

Migration Considerations

Pri vat ePersi st ent Properti es tot rue. If compile time enhancement is used, this property must be specified at the
time of enhancement and at runtime.

3.1.1.4. Query.setParameter()

The Query interface setParameter() method behavior has changed to throw an Illegal ArgumentException (as required by the
JPA specification) if more parameter substitutions are supplied than defined in the createQuery(), createNamedQuery(), or
createNativeQuery() invocation. OpenJPA 1.2.x and prior versions silently ignored these extraneous parameter substitutions and
allowed the Query to be processed.

3.1.1.5. Serialization of Entities

In 1.x.x releases of OpenJPA, when an entity was serialized after calling EntityManager.find(), detach() or detachAll() then all
Section 5.6.4, “ Proxies” [271] references were removed as expected, but when the same entity instance was serialized after
calling EntityManager.clear() the proxy classes were not removed.

This has two side-effects: when entities are remoted across JVM boundaries (RPC) or deserialized the OpenJPA runtime must
be available on the classpath (both client and server containers); when entities are deserialized the OpenJPA runtime must be
the exact same revision as used to serialize the entities due to the proxy classes using dynamically generated serialVersionUID
values.

Starting with OpenJPA 2.0, this behavior has been modified, so that by default all proxies will be removed during serialization.
See Section 5.6.4.4, “ Serialization " [273] on how the behavior changes based on the Det achedSt at eFi el d setting along
with Section 12.1.3.1, “ Detached State” [351] for more details on how to override the default Det achedSt at eFi el d
Setting.

Applications that use a 1.0 persistence.xml will automatically maintain the old behavior. It is possible for aversion 2.0
application to revert back to the prior 1.x.x behavior by setting the following openjpa.Compatibility property as follows:

| gnoreDetachedStateFi el dForProxy Serialization=true

3.1.1.6. openjpa.jdbc.QuerySQLCache

3.1.2.

In prior 1.x.x releases, the openjpa.jdbc.QuerySQL Cache configuration property for Prepared SQL Cache accepted valueal | to
never drop items from the cache, but this option is no longer supported and will cause a PersistenceException with aroot cause
of a ParseException to be thrown. See Section 10.3, “ Prepared SQL Cache” [346] for details on the available configuration
values.

Disabling AutoOff Collection Tracking

3.1.3.

The default behavior of OpenJPA in tracking collectionsisthat if the number of modifications to the collection exceeds the
current number of elementsin collection then OpenJPA will disable tracking the collections. OpenJPA 2.0 added a compatibility
property to disable turning off the collection tracking.

The behavior of Auto disabling of collection tracking can be avoided by setting the value of the openj pa. Conpati bility
property aut oOf f tof al se. The default behavior of auto disabling the collection tracking is not changed. But when the above
property is set then the collection tracking will not be disabled automatically.

Internal Behavioral Differences

The following sectionsindicate internal changes between OpenJPA 1.x.x releases and the 2.0 release. Asthese are internal
implementation specific behaviors not covered by the JPA specification, no changes should be required for applications that did
not use or depend upon OpenJPA specific APIs or behavior.

392



Migration Considerations

3.1.3.1. PreUpdate/PostUpdate Life Cycle Callbacks

If an entity was updated between the persist() and commit() operations in OpenJPA 1.x, then any PreUpdate and PostUpdate life
cycle callback methods would be executed. Starting in OpenJPA 1.3 and 2.0, these callbacks will not get executed.

The JPA 2.0 specification section on "Semantics of the Life Cycle Callback Methods for Entities' has been updated to include
aNote that the callback behavior for updating an entity after the persist operation isimplementation specific and should not be
relied upon.

3.1.3.2. createEntityManagerFactory Exceptions

The JPA 2.0 specification section on "Bootstrapping in Java SE Environments" states that persistence providers must return null
if they are not aqualified provider for the given persistence unit.

However, OpenJPA may throw a RuntimeException if an error occurs while trying to create a qualified persistence unit, like for
invalid openjpa.* specific configuration settings or for schema validation failures.

If the Apache Geronimo JPA 2.0 Spec APIs are used, then any exceptions returned by a persistence provider will be wrapped
within a PersistenceException. When the JPA 2.0 API reference implementation is used, any RuntimeExceptions will be returned
to the calling application without being wrapped. Other JPA 2.0 API and implementation providers or versions may behave
differently.

3.1.3.3. openjpa.QueryCache default

In previous releases, the default value for the openjpa.QueryCache property wast r ue when the openjpa.DataCache was
enabled. Depending on application characteristics, this default QueryCache enablement actually could negate much of the
potential gains achieved by using the DataCache. Thus, the default value for the openjpa.QueryCache property isnow f al se.

To re-enable the default QueryCache behavior, you need to include the following property in your persistence.xml configuration.

<property nanme="openjpa. QueryCache" val ue="true"/>

If your configuration had previously enabled the QueryCache explicitly, then you might have to includethet r ue value into your
configuration (if you relied on the previous default). Otherwise, your current QueryCache enablement will continue to work.

<property name="openj pa. QueryCache" val ue="true(CacheSi ze=1000, Soft ReferenceSi ze=100)"/>

3.2.

OpenJPA 2.2.0

3.2.1.

Incompatibilities

The following sections indicate changes that are incompatible between OpenJPA 2.1.x releases and the 2.2.0 release.

3.2.1.1. allocationSize Property of Sequence Generator

In previous releases, specifyingtheal | ocat i onSi ze property of sequence generator affected only sequence definition in
the database. During schema creation, the | NCREMENT BY clause of CREATE SEQUENCE statement always had a value of

393




Migration Considerations

1 and on DB2, Oracle and PostgreSQL databases a CACHE clause was added with thevalue of al | ocat i onSi ze property.
Such a statement caused sequence values being cached in the database. Starting with OpenJPA 2.2.0, sequence values are cached
inthejvm memory andtheal | ocat i onSi ze property determines size of that cache. The CACHE clause is no longer used,
instead the | NCREMENT BY clause getsitsvalue equal to theal | ocat i onSi ze property. Such a strategy reduces the number
of database roundtrips required for retrieving sequence values considerably.

In order for the existing applications to work with OpenJPA 2.2.0, you have to manually recreate or redefine sequences,
specifying the correct | NCREMENT BY value and, possibly, correct initial sequence value. Note that the default value of the
al | ocati onSi ze property is50 and that value is used if the property is not specified.

The requirement for sequence modification applies to all databases that support sequences, regardless of the CACHE clause being
supported. The only exception is Firebird database - since with this database the increment step is determined during sequence
value fetch, no migration activity is needed.

To maintain the old behavior of sequence generator in OpenJPA 2.2.0, you can:
» Settheal | ocati onSi ze property valueto 1.

» Additionally, if the CACHE clause has to be emitted in sequence definition, this can be accomplished by overriding the
DBDi cti onary. get Cr eat eSequenceSQL method.

3.2.1.2. MetaModel Attributes for Arrays

In previous rel eases OpenJPA's MetaM odel implementation generated a ListAttribute for every array. This behavior is correct
if the array is annotated as a PersistentCollection, but not correct for un-annotated arrays (e.g. byte[], char[]). In OpenJPA 2.2.0
this behavior was corrected so that arrays which are not stored as PersistentCollections will use a SingularAttribute instead of a
ListAttribute.

If your application uses the MetaModel API and your entities contain arrays of any of the following types: byte[], Byte][], char|],
Character[] and do not use the @PersistentCollection annotation with those fields you will need to update your application to use
OpenJPA 2.2.0.

In order for the existing applications to work with OpenJPA you may:
» Regenerate the canonical metamodel classes

 Set the Compatibility property UselLi st Attri but eFor Arrays tot r uein persistence.xml

<property nanme="openj pa. Conpati bility" val ue="UseListAttributeForArrays=true"/>

3.2.1.3. supportsSetClob Property.

In OpenJPA 2.2.0, code was added to allow the setting of CLOB or XML data larger than 4000 bytes. This functionality was
eventually back ported to previous releases, and enabled by the suppor t sSet Cl ob property on the OracleDictionary. Setting
this property has no effect in 2.2.0 and later releases and any occurrence of it should be removed.

3.2.1.4. useNativeSequenceCache Property.

In OpenJPA 2.2.0, code was added which changed the way sequences were generated, please see Section 3.2.1.1, “
allocationSize Property of Sequence Generator ” [393] for details. This functionality was eventually back ported to

previous rel eases, and enabled by theuseNat i veSequenceCache property on the DBDictionary. Setting this property

has no effect in 2.2.0 and later releases and any occurrence of it should be removed. If previous behavior is desired (i.e.
useNat i veSequenceCache=t r ue), please see the detail s described in section Section 3.2.1.1, “ allocationSize Property
of Sequence Generator " [393].

394


../javadoc/org/apache/openjpa/jdbc/sql/DBDictionary.html#getCreateSequenceSQL(org.apache.openjpa.jdbc.schema.Sequence)
../javadoc/org/apache/openjpa/jdbc/sql/DBDictionary.html#getCreateSequenceSQL(org.apache.openjpa.jdbc.schema.Sequence)

Migration Considerations

3.2.1.5. Cascade persist behavior

In previous releases, OpenJPA would check the database for the existence of the related Entity before persisting the relationship
to that Entity. Thisresulted in an extra Select being sent to the database. In 2.2.0, code was added so that when cascading a persist
to arelated Entity without persistence state, the persist (insert) will happen without first checking the database. This may result

in an EntityExistsException if the related Entity already existsin the database. To revert this behavior to the previous release, set
the value of theopenj pa. Conpati bi | i ty property CheckDat abaseFor CascadePer si st ToDet achedEntity to

true.

395



	Apache OpenJPA 2.2 User's Guide
	Table of Contents
	Part 1. Introduction
	Chapter 1.  About
	Chapter 2.  Legal
	2.1.  License
	2.2.  Notice
	2.3.  Copyrights
	2.3.1. Apache
	2.3.2. Serp
	2.3.3. Sun
	2.3.4. Other



	Part 2. Java Persistence API
	Chapter 1.  Introduction
	1.1.  Intended Audience
	1.2.  Lightweight Persistence

	Chapter 2.  Why JPA?
	Chapter 3.  Java Persistence API Architecture
	3.1.  JPA Exceptions

	Chapter 4.  Entity
	4.1.  Restrictions on Persistent Classes
	4.1.1.  Default or No-Arg Constructor
	4.1.2.  Final
	4.1.3.  Identity Fields
	4.1.4.  Version Field
	4.1.5.  Inheritance
	4.1.6.  Persistent Fields
	4.1.7.  Conclusions

	4.2.  Entity Identity
	4.2.1.  Identity Class
	4.2.1.1.  Identity Hierarchies


	4.3.  Lifecycle Callbacks
	4.3.1.  Callback Methods
	4.3.2.  Using Callback Methods
	4.3.3.  Using Entity Listeners
	4.3.4.  Entity Listeners Hierarchy

	4.4.  Conclusions

	Chapter 5.  Metadata
	5.1.  Class Metadata
	5.1.1.  Entity
	5.1.2.  Id Class
	5.1.3.  Mapped Superclass
	5.1.4.  Embeddable
	5.1.5.  EntityListeners
	5.1.6.  Example

	5.2.  Field and Property Metadata
	5.2.1.  Explicit Access
	5.2.2.  Transient
	5.2.3.  Id
	5.2.4.  Generated Value
	5.2.5.  Embedded Id
	5.2.6.  Version
	5.2.7.  Basic
	5.2.7.1.  Fetch Type

	5.2.8.  Embedded
	5.2.9.  Many To One
	5.2.9.1.  Cascade Type

	5.2.10.  One To Many
	5.2.10.1.  Bidirectional Relations

	5.2.11.  One To One
	5.2.12.  Many To Many
	5.2.13.  Order By
	5.2.14.  Map Key
	5.2.15.  Persistent Field Defaults

	5.3.  XML Schema
	5.4.  Conclusion

	Chapter 6.  Persistence
	6.1.  persistence.xml
	6.2.  Non-EE Use

	Chapter 7.  EntityManagerFactory
	7.1.  Obtaining an EntityManagerFactory
	7.2.  Obtaining EntityManagers
	7.3.  Persistence Context
	7.3.1.  Transaction Persistence Context
	7.3.2.  Extended Persistence Context

	7.4.  Retrieving Properties Information
	7.5.  Closing the EntityManagerFactory
	7.6.  PersistenceUnitUtil

	Chapter 8.  EntityManager
	8.1.  Transaction Association
	8.2.  Entity Lifecycle Management
	8.3.  Lifecycle Examples
	8.4.  Entity Identity Management
	8.5.  Cache Management
	8.6.  Query Factory
	8.7.  Entity Locking
	8.8.  Retrieving Properties Information
	8.9.  Closing

	Chapter 9.  Transaction
	9.1.  Transaction Types
	9.2.  The EntityTransaction Interface

	Chapter 10.  JPA Query
	10.1.  JPQL API
	10.1.1.  Query Basics
	10.1.2.  Relation Traversal
	10.1.3.  Embeddable Traversal
	10.1.4.  Fetch Joins
	10.1.5.  JPQL Functions
	10.1.6.  Polymorphic Queries
	10.1.7.  Query Parameters
	10.1.8.  Query Hints
	10.1.8.1.  Locking Hints
	10.1.8.2.  Lock Timeout Hint
	10.1.8.3.  Query Timeout Hint
	10.1.8.4.  Result Set Size Hint
	10.1.8.5.  Isolation Level Hint
	10.1.8.6.  Other Fetchplan Hints
	10.1.8.7.  Database-Specific Hints
	10.1.8.8.  Named Query Hints
	10.1.8.9.  Handling of Multiple Similar Query Hints

	10.1.9.  Ordering
	10.1.10.  Aggregates
	10.1.11.  Named Queries
	10.1.12.  Delete By Query
	10.1.13.  Update By Query

	10.2.  JPQL Language Reference
	10.2.1.  JPQL Statement Types
	10.2.1.1.  JPQL Select Statement
	10.2.1.2.  JPQL Update and Delete Statements

	10.2.2.  JPQL Abstract Schema Types and Query Domains
	10.2.2.1.  JPQL Entity Naming
	10.2.2.2.  JPQL Schema Example

	10.2.3.  JPQL FROM Clause and Navigational Declarations
	10.2.3.1.  JPQL FROM Identifiers
	10.2.3.2.  JPQL Identification Variables
	10.2.3.3.  JPQL Range Declarations
	10.2.3.4.  JPQL Path Expressions
	10.2.3.5.  JPQL Joins
	10.2.3.5.1.  JPQL Inner Joins (Relationship Joins)
	10.2.3.5.2.  JPQL Outer Joins
	10.2.3.5.3.  JPQL Fetch Joins

	10.2.3.6.  JPQL Collection Member Declarations
	10.2.3.7.  JPQL FROM Clause and SQL
	10.2.3.8.  JPQL Polymorphism

	10.2.4.  JPQL WHERE Clause
	10.2.5.  JPQL Conditional Expressions
	10.2.5.1.  JPQL Literals
	10.2.5.2.  JPQL Identification Variables
	10.2.5.3.  JPQL Path Expressions
	10.2.5.4.  JPQL Input Parameters
	10.2.5.4.1.  JPQL Positional Parameters
	10.2.5.4.2.  JPQL Named Parameters

	10.2.5.5.  JPQL Conditional Expression Composition
	10.2.5.6.  JPQL Operators and Operator Precedence
	10.2.5.7.  JPQL Comparison Expressions
	10.2.5.8.  JPQL Between Expressions
	10.2.5.9.  JPQL In Expressions
	10.2.5.10.  JPQL Like Expressions
	10.2.5.11.  JPQL Null Comparison Expressions
	10.2.5.12.  JPQL Empty Collection Comparison Expressions
	10.2.5.13.  JPQL Collection Member Expressions
	10.2.5.14.  JPQL Exists Expressions
	10.2.5.15.  JPQL All or Any Expressions
	10.2.5.16.  JPQL Subqueries

	10.2.6.  JPQL Scalar Expressions
	10.2.6.1.  Arithmetic Expressions
	10.2.6.2.  String, Arithmetic, and Datetime Functional Expressions
	10.2.6.2.1.  JPQL String Functions
	10.2.6.2.2.  JPQL Arithmetic Functions
	10.2.6.2.3.  JPQL Datetime Functions

	10.2.6.3.  Case Expressions
	10.2.6.4.  Entity Type Expressions

	10.2.7.  JPQL GROUP BY, HAVING
	10.2.8.  JPQL SELECT Clause
	10.2.8.1.  JPQL Result Type of the SELECT Clause
	10.2.8.2.  JPQL Constructor Expressions
	10.2.8.3.  JPQL Null Values in the Query Result
	10.2.8.4.  JPQL Embeddables in the Query Result
	10.2.8.5.  JPQL Aggregate Functions
	10.2.8.5.1.  JPQL Aggregate Examples
	10.2.8.5.2.  JPQL Numeric Expressions in the SELECT Clause


	10.2.9.  JPQL ORDER BY Clause
	10.2.10.  JPQL Bulk Update and Delete
	10.2.11.  JPQL Null Values
	10.2.12.  JPQL Equality and Comparison Semantics
	10.2.13.  JPQL BNF


	Chapter 11.  JPA Criteria
	11.1. Constructing a CriteriaQuery
	11.2. Executing a CriteriaQuery
	11.3. Extension to Criteria API
	11.4. Generation of Canonical MetaModel classes

	Chapter 12.  SQL Queries
	12.1.  Creating SQL Queries
	12.2.  Retrieving Persistent Objects with SQL

	Chapter 13.  Mapping Metadata
	13.1.  Table
	13.2.  Unique Constraints
	13.3.  Column
	13.4.  Identity Mapping
	13.5.  Generators
	13.5.1.  Sequence Generator
	13.5.2.  Table Generator
	13.5.3.  Example

	13.6.  Inheritance
	13.6.1.  Single Table
	13.6.1.1.  Advantages
	13.6.1.2.  Disadvantages

	13.6.2.  Joined
	13.6.2.1.  Advantages
	13.6.2.2.  Disadvantages

	13.6.3.  Table Per Class
	13.6.3.1.  Advantages
	13.6.3.2.  Disadvantages

	13.6.4.  Putting it All Together

	13.7.  Discriminator
	13.8.  Field Mapping
	13.8.1.  Basic Mapping
	13.8.1.1.  LOBs
	13.8.1.2.  Enumerated
	13.8.1.3.  Temporal Types
	13.8.1.4.  The Updated Mappings

	13.8.2.  Secondary Tables
	13.8.3.  Embedded Mapping
	13.8.4.  Direct Relations
	13.8.5.  Join Table
	13.8.6.  Bidirectional Mapping
	13.8.7.  Map Mapping

	13.9.  The Complete Mappings

	Chapter 14.  Conclusion

	Part 3. Reference Guide
	Chapter 1.  Introduction
	1.1.  Intended Audience

	Chapter 2.  Configuration
	2.1.  Introduction
	2.2.  Runtime Configuration
	2.3.  Command Line Configuration
	2.3.1.  Code Formatting

	2.4.  Plugin Configuration
	2.5.  OpenJPA Properties
	2.5.1.  openjpa.AutoClear
	2.5.2.  openjpa.AutoDetach
	2.5.3.  openjpa.BrokerFactory
	2.5.4.  openjpa.BrokerImpl
	2.5.5. openjpa.Callbacks
	2.5.6.  openjpa.ClassResolver
	2.5.7.  openjpa.Compatibility
	2.5.8.  openjpa.ConnectionDriverName
	2.5.9.  openjpa.Connection2DriverName
	2.5.10.  openjpa.ConnectionFactory
	2.5.11.  openjpa.ConnectionFactory2
	2.5.12.  openjpa.ConnectionFactoryName
	2.5.13.  openjpa.ConnectionFactory2Name
	2.5.14.  openjpa.ConnectionFactoryMode
	2.5.15.  openjpa.ConnectionFactoryProperties
	2.5.16.  openjpa.ConnectionFactory2Properties
	2.5.17.  openjpa.ConnectionPassword
	2.5.18.  openjpa.Connection2Password
	2.5.19.  openjpa.ConnectionProperties
	2.5.20.  openjpa.Connection2Properties
	2.5.21.  openjpa.ConnectionURL
	2.5.22.  openjpa.Connection2URL
	2.5.23.  openjpa.ConnectionUserName
	2.5.24.  openjpa.Connection2UserName
	2.5.25.  openjpa.ConnectionRetainMode
	2.5.26.  openjpa.DataCache
	2.5.27.  openjpa.DataCacheManager
	2.5.28.  openjpa.DataCacheMode
	2.5.29.  openjpa.DataCacheTimeout
	2.5.30.  openjpa.DetachState
	2.5.31.  openjpa.DynamicDataStructs
	2.5.32.  openjpa.FetchBatchSize
	2.5.33.  openjpa.EncryptionProvider
	2.5.34.  openjpa.FetchGroups
	2.5.35.  openjpa.FlushBeforeQueries
	2.5.36.  openjpa.IgnoreChanges
	2.5.37. openjpa.Id
	2.5.38.  openjpa.InitializeEagerly
	2.5.39.  openjpa.Instrumentation
	2.5.40.  openjpa.InverseManager
	2.5.41.  openjpa.LockManager
	2.5.42.  openjpa.LockTimeout
	2.5.43.  openjpa.Log
	2.5.44.  openjpa.ManagedRuntime
	2.5.45.  openjpa.Mapping
	2.5.46.  openjpa.MaxFetchDepth
	2.5.47.  openjpa.MetaDataFactory
	2.5.48.  openjpa.MetaDataRepository
	2.5.49.  openjpa.Multithreaded
	2.5.50.  openjpa.Optimistic
	2.5.51.  openjpa.OrphanedKeyAction
	2.5.52.  openjpa.NontransactionalRead
	2.5.53.  openjpa.NontransactionalWrite
	2.5.54.  openjpa.ProxyManager
	2.5.55.  openjpa.PostLoadOnMerge
	2.5.56.  openjpa.QueryCache
	2.5.57.  openjpa.QueryCompilationCache
	2.5.58.  openjpa.ReadLockLevel
	2.5.59.  openjpa.RemoteCommitProvider
	2.5.60.  openjpa.RestoreState
	2.5.61.  openjpa.RetainState
	2.5.62.  openjpa.RetryClassRegistration
	2.5.63. openjpa.RuntimeUnenhancedClasses
	2.5.64. openjpa.DynamicEnhancementAgent
	2.5.65.  openjpa.SavepointManager
	2.5.66.  openjpa.Sequence
	2.5.67.  openjpa.Specification
	2.5.68.  openjpa.TransactionMode
	2.5.69.  openjpa.WriteLockLevel

	2.6.  OpenJPA JDBC Properties
	2.6.1.  openjpa.jdbc.ConnectionDecorators
	2.6.2.  openjpa.jdbc.DBDictionary
	2.6.3.  openjpa.jdbc.DriverDataSource
	2.6.4.  openjpa.jdbc.EagerFetchMode
	2.6.5.  openjpa.jdbc.FetchDirection
	2.6.6.  openjpa.jdbc.JDBCListeners
	2.6.7.  openjpa.jdbc.LRSSize
	2.6.8.  openjpa.jdbc.MappingDefaults
	2.6.9.  openjpa.jdbc.MappingFactory
	2.6.10.  openjpa.jdbc.QuerySQLCache
	2.6.11.  openjpa.jdbc.ResultSetType
	2.6.12.  openjpa.jdbc.Schema
	2.6.13.  openjpa.jdbc.SchemaFactory
	2.6.14.  openjpa.jdbc.Schemas
	2.6.15.  openjpa.jdbc.SQLFactory
	2.6.16.  openjpa.jdbc.SubclassFetchMode
	2.6.17.  openjpa.jdbc.SynchronizeMappings
	2.6.18.  openjpa.jdbc.TransactionIsolation
	2.6.19.  openjpa.jdbc.UpdateManager
	2.6.20. Compatibility with Specification


	Chapter 3.  Logging and Auditing
	3.1.  Logging Channels
	3.2.  OpenJPA Logging
	3.3.  Disabling Logging
	3.4.  Log4J
	3.5.  Apache Commons Logging
	3.5.1.  JDK java.util.logging

	3.6.  SLF4J
	3.7.  Custom Log
	3.8. OpenJPA Audit
	3.8.1. Configuration
	3.8.2. Developing custom auditing


	Chapter 4.  JDBC
	4.1.  Using the OpenJPA DataSource
	4.1.1.  Optional Connection Pooling
	4.1.2.  Configuring the OpenJPA DataSource
	4.1.3.  Configuring Apache Commons DBCP

	4.2.  Using a Third-Party DataSource
	4.2.1.  Managed and XA DataSources
	4.2.2. Setting the DataSource at runtime
	4.2.2.1. Using different DataSources for each EntityManager
	4.2.2.1.1. Benefits
	4.2.2.1.2. Limitations
	4.2.2.1.3. Error handling



	4.3.  Runtime Access to DataSource
	4.4.  Database Support
	4.4.1.  DBDictionary Properties
	4.4.2.  FirebirdDictionary Properties
	4.4.3.  MySQLDictionary Properties
	4.4.4.  OracleDictionary Properties
	4.4.5.  SybaseDictionary Properties
	4.4.6.  DB2 Properties
	4.4.7.  Delimited Identifiers Support

	4.5.  Setting the Transaction Isolation
	4.6.  Setting the SQL Join Syntax
	4.7.  Accessing Multiple Databases
	4.8.  Configuring the Use of JDBC Connections
	4.9.  Statement Batching
	4.10.  Large Result Sets
	4.11.  Default Schema
	4.12.  Schema Reflection
	4.12.1.  Schemas List
	4.12.2.  Schema Factory

	4.13.  Schema Tool
	4.14.  XML Schema Format

	Chapter 5.  Persistent Classes
	5.1.  Persistent Class List
	5.2.  Enhancement
	5.2.1.  Enhancing at Build Time
	5.2.2.  Enhancing JPA Entities on Deployment
	5.2.3.  Enhancing at Runtime
	5.2.4.  Enhancing Dynamically at Runtime
	5.2.5.  Omitting the OpenJPA enhancer

	5.3. Managed Interfaces
	5.4.  Object Identity
	5.4.1.  Datastore Identity
	5.4.2.  Entities as Identity Fields
	5.4.3.  Application Identity Tool
	5.4.4.  Autoassign / Identity Strategy Caveats

	5.5.  Managed Inverses
	5.6.  Persistent Fields
	5.6.1.  Restoring State
	5.6.2.  Typing and Ordering
	5.6.3.  Calendar Fields and TimeZones
	5.6.4.  Proxies
	5.6.4.1.  Smart Proxies
	5.6.4.2.  Large Result Set Proxies
	5.6.4.3.  Custom Proxies
	5.6.4.4.  Serialization

	5.6.5.  Externalization
	5.6.5.1.  External Values


	5.7.  Fetch Groups
	5.7.1.  Custom Fetch Groups
	5.7.2.  Custom Fetch Group Configuration
	5.7.3.  Per-field Fetch Configuration
	5.7.4.  Implementation Notes

	5.8.  Eager Fetching
	5.8.1.  Configuring Eager Fetching
	5.8.2.  Eager Fetching Considerations and Limitations


	Chapter 6.  Metadata
	6.1.  Metadata Factory
	6.2. Metadata Repository
	6.3.  Additional JPA Metadata
	6.3.1.  Datastore Identity
	6.3.2.  Surrogate Version
	6.3.3.  Persistent Field Values
	6.3.4. Persistent Collection Fields
	6.3.5. Persistent Map Fields

	6.4.  Metadata Extensions
	6.4.1.  Class Extensions
	6.4.1.1.  Fetch Groups
	6.4.1.2.  Data Cache
	6.4.1.3.  Detached State

	6.4.2.  Field Extensions
	6.4.2.1.  Dependent
	6.4.2.2.  Load Fetch Group
	6.4.2.3.  LRS
	6.4.2.4.  Inverse-Logical
	6.4.2.5.  Read-Only
	6.4.2.6.  Type
	6.4.2.7.  Externalizer
	6.4.2.8.  Factory
	6.4.2.9.  External Values

	6.4.3.  Example
	6.4.4.  XML extensions


	Chapter 7.  Mapping
	7.1.  Forward Mapping
	7.1.1.  Using the Mapping Tool
	7.1.2.  Generating DDL SQL
	7.1.3.  Runtime Forward Mapping

	7.2.  Reverse Mapping
	7.2.1.  Customizing Reverse Mapping

	7.3.  Meet-in-the-Middle Mapping
	7.4.  Mapping Defaults
	7.5.  Mapping Factory
	7.6.  Non-Standard Joins
	7.7.  Additional JPA Mappings
	7.7.1.  Datastore Identity Mapping
	7.7.2.  Surrogate Version Mapping
	7.7.3.  Multi-Column Mappings
	7.7.4.  Join Column Attribute Targets
	7.7.5.  Embedded Mapping
	7.7.6.  Collections
	7.7.6.1.  Container Table
	7.7.6.2.  Element Join Columns
	7.7.6.3.  Order Column

	7.7.7.  One-Sided One-Many Mapping
	7.7.8.  Maps
	7.7.8.1. Key Columns
	7.7.8.2. Key Join Columns
	7.7.8.3. Key Embedded Mapping
	7.7.8.4. Examples

	7.7.9.  Indexes and Constraints
	7.7.9.1.  Indexes
	7.7.9.2.  Foreign Keys
	7.7.9.3.  Unique Constraints

	7.7.10.  XML Column Mapping
	7.7.11.  LOB Streaming

	7.8.  Mapping Limitations
	7.8.1.  Table Per Class

	7.9.  Mapping Extensions
	7.9.1.  Class Extensions
	7.9.1.1.  Subclass Fetch Mode
	7.9.1.2.  Strategy
	7.9.1.3.  Discriminator Strategy
	7.9.1.4.  Version Strategy

	7.9.2.  Field Extensions
	7.9.2.1.  Eager Fetch Mode
	7.9.2.2.  Nonpolymorphic
	7.9.2.3.  Class Criteria
	7.9.2.4.  Strategy


	7.10.  Custom Mappings
	7.10.1.  Custom Class Mapping
	7.10.2.  Custom Discriminator and Version Strategies
	7.10.3.  Custom Field Mapping
	7.10.3.1.  Value Handlers
	7.10.3.2.  Field Strategies
	7.10.3.3.  Configuration


	7.11.  Orphaned Keys

	Chapter 8.  Deployment
	8.1.  Factory Deployment
	8.1.1.  Standalone Deployment
	8.1.2.  EntityManager Injection

	8.2.  Integrating with the Transaction Manager
	8.3.  XA Transactions
	8.3.1.  Using OpenJPA with XA Transactions


	Chapter 9.  Runtime Extensions
	9.1.  Architecture
	9.1.1.  Broker Finalization
	9.1.2.  Broker Customization and Eviction

	9.2.  JPA Extensions
	9.2.1.  OpenJPAEntityManagerFactory
	9.2.2.  OpenJPAEntityManager
	9.2.3.  OpenJPAQuery
	9.2.4.  Extent
	9.2.5.  StoreCache
	9.2.6.  QueryResultCache
	9.2.7.  FetchPlan
	9.2.8.  OpenJPAEntityTransaction
	9.2.9.  OpenJPAPersistence

	9.3.  Object Locking
	9.3.1.  Configuring Default Locking
	9.3.2.  Configuring Lock Levels at Runtime
	9.3.3.  Object Locking APIs
	9.3.4.  Lock Manager
	9.3.5.  Rules for Locking Behavior
	9.3.6.  Known Issues and Limitations

	9.4.  Savepoints
	9.4.1.  Using Savepoints
	9.4.2.  Configuring Savepoints

	9.5.  MethodQL
	9.6.  Generators
	9.6.1.  Runtime Access

	9.7.  Transaction Events
	9.8.  Non-Relational Stores

	Chapter 10.  Caching
	10.1.  Data Cache
	10.1.1.  Data Cache Configuration
	10.1.1.1. Distributing instances across cache partitions

	10.1.2.  Data Cache Usage
	10.1.2.1. Using the JPA standard Cache interface
	10.1.2.2. Using the OpenJPA StoreCache extensions

	10.1.3.  Cache Statistics
	10.1.4.  Query Cache
	10.1.5.  Cache Extension
	10.1.6.  Important Notes
	10.1.7.  Known Issues and Limitations

	10.2.  Query Compilation Cache
	10.3. Prepared SQL Cache

	Chapter 11.  Encryption Provider
	Chapter 12.  Remote and Offline Operation
	12.1.  Detach and Attach
	12.1.1.  Detach Behavior
	12.1.2.  Attach Behavior
	12.1.3.  Defining the Detached Object Graph
	12.1.3.1.  Detached State
	12.1.3.2.  Detached State Field


	12.2.  Remote Event Notification Framework
	12.2.1.  Remote Commit Provider Configuration
	12.2.1.1.  JMS
	12.2.1.2.  TCP
	12.2.1.3.  Common Properties

	12.2.2.  Customization


	Chapter 13.  Slice: Distributed Persistence
	13.1. Overview
	13.2. Salient Features
	13.2.1. Transparency
	13.2.2. Scaling
	13.2.3. Distributed Query
	13.2.4. Data Distribution
	13.2.5. Data Replication
	13.2.6. Heterogeneous Database
	13.2.7. Distributed Transaction
	13.2.8. Collocation Constraint

	13.3. Usage
	13.3.1. How to activate Slice Runtime?
	13.3.2. How to configure each database slice?
	13.3.3. Implement DistributionPolicy interface
	13.3.4. Implement ReplicationPolicy interface

	13.4. Configuration Properties
	13.4.1. Global Properties
	13.4.1.1. openjpa.slice.DistributionPolicy
	13.4.1.2. openjpa.slice.Lenient
	13.4.1.3. openjpa.slice.Master
	13.4.1.4. openjpa.slice.Names
	13.4.1.5. openjpa.slice.ThreadingPolicy
	13.4.1.6. openjpa.slice.TransactionPolicy

	13.4.2. Per-Slice Properties


	Chapter 14.  Third Party Integration
	14.1.  Apache Ant
	14.1.1.  Common Ant Configuration Options
	14.1.2.  Enhancer Ant Task
	14.1.3.  Application Identity Tool Ant Task
	14.1.4.  Mapping Tool Ant Task
	14.1.5.  Reverse Mapping Tool Ant Task
	14.1.6.  Schema Tool Ant Task

	14.2.  Apache Commons DBCP
	14.2.1.  Apache Commons DBCP Configuration Options


	Chapter 15.  Optimization Guidelines
	Chapter 16.  Instrumentation
	16.1.  Configuration
	16.1.1.  JMX Platform MBean Enablement

	16.2.  Custom Providers and Instruments


	Part 4. Appendices
	Appendix 1.  JPA Resources
	Appendix 2.  Supported Databases
	2.1.  Overview
	2.2.  Verified Database Matrix
	2.3.  Compatible Database Matrix
	2.4.  Unverified Database Matrix
	2.5.  Apache Derby
	2.6.  Borland Interbase
	2.6.1.  Known issues with Interbase

	2.7.  JDataStore
	2.8.  IBM DB2
	2.8.1.  Known issues with DB2

	2.9.  Empress
	2.9.1.  Known issues with Empress

	2.10.  H2 Database Engine
	2.10.1.  Known issues with H2 Database Engine

	2.11.  Hypersonic
	2.11.1.  Known issues with Hypersonic

	2.12.  Firebird
	2.12.1.  Known issues with Firebird

	2.13.  Informix
	2.13.1.  Known issues with Informix

	2.14.  Ingres Database
	2.14.1.  Known issues with Ingres

	2.15.  InterSystems Cache
	2.15.1.  Known issues with InterSystems Cache

	2.16.  Microsoft Access
	2.16.1.  Known issues with Microsoft Access

	2.17.  Microsoft SQL Server
	2.17.1.  Known issues with SQL Server

	2.18.  Microsoft FoxPro
	2.18.1.  Known issues with Microsoft FoxPro

	2.19.  MySQL
	2.19.1.  Using Query Hints with MySQL
	2.19.2.  Known issues with MySQL

	2.20.  Oracle
	2.20.1.  Using Query Hints with Oracle
	2.20.2.  Known issues with Oracle

	2.21.  Pointbase
	2.21.1.  Known issues with Pointbase

	2.22.  PostgreSQL
	2.22.1.  Known issues with PostgreSQL

	2.23.  IBM solidDB
	2.23.1.  M-type tables vs. D-type tables
	2.23.2.  Concurrency control mechanism

	2.24.  Sybase Adaptive Server
	2.24.1.  Known issues with Sybase


	Appendix 3.  Migration Considerations
	3.1.  OpenJPA 2.0.0
	3.1.1.  Incompatibilities
	3.1.1.1.  getProperties()
	3.1.1.2.  Detach Behavior
	3.1.1.3.  Use of private persistent properties
	3.1.1.4.  Query.setParameter()
	3.1.1.5.  Serialization of Entities
	3.1.1.6.  openjpa.jdbc.QuerySQLCache

	3.1.2.  Disabling AutoOff Collection Tracking
	3.1.3.  Internal Behavioral Differences
	3.1.3.1.  PreUpdate/PostUpdate Life Cycle Callbacks
	3.1.3.2.  createEntityManagerFactory Exceptions
	3.1.3.3.  openjpa.QueryCache default


	3.2.  OpenJPA 2.2.0
	3.2.1. Incompatibilities
	3.2.1.1.  allocationSize Property of Sequence Generator
	3.2.1.2.  MetaModel Attributes for Arrays
	3.2.1.3.  supportsSetClob Property.
	3.2.1.4.  useNativeSequenceCache Property.
	3.2.1.5.  Cascade persist behavior





