Java recognizes two forms of object identity: numeric identity and qualitative
identity. If two references are numerically identical, then
they refer to the same JVM instance in memory. You can test for this using the
==
operator. Qualitative identity, on
the other hand, relies on some user-defined criteria to determine whether two
objects are "equal". You test for qualitative identity using the
equals
method. By default, this method simply relies on numeric
identity.
JPA introduces another form of object identity, called entity identity or persistent identity. Entity identity tests whether two persistent objects represent the same state in the datastore.
The entity identity of each persistent instance is encapsulated in its identity field(s). If two entities of the same type have the same identity field values, then the two entities represent the same state in the datastore. Each entity's identity field values must be unique among all other entites of the same type.
Identity fields must be primitives, primitive wrappers,
String
s, Date
s,
Timestamp
s, or embeddable types.
OpenJPA supports entities as identity fields, as the Reference Guide discusses
in Section 4.2, “
Entities as Identity Fields
”. For legacy schemas with binary
primary key columns, OpenJPA also supports using identity fields of type
byte[]
. When you use a byte[]
identity field, you must create an identity class. Identity classes are
covered below.
Changing the fields of an embeddable instance while it is assigned to an identity field has undefined results. Always treat embeddable identity instances as immutable objects in your applications.
If you are dealing with a single persistence context (see
Section 3, “
Persistence Context
”), then you do not
have to compare identity fields to test whether two entity references represent
the same state in the datastore. There is a much easier way: the ==
operator. JPA requires that each persistence context maintain only
one JVM object to represent each unique datastore record. Thus, entity identity
is equivalent to numeric identity within a persistence context. This is referred
to as the uniqueness requirement.
The uniqueness requirement is extremely important - without it, it would be impossible to maintain data integrity. Think of what could happen if two different objects in the same transaction were allowed to represent the same persistent data. If you made different modifications to each of these objects, which set of changes should be written to the datastore? How would your application logic handle seeing two different "versions" of the same data? Thanks to the uniqueness requirement, these questions do not have to be answered.
If your entity has only one identity field, you can use the value of that field
as the entity's identity object in all
EntityManager
APIs. Otherwise, you must supply an
identity class to use for identity objects. Your identity class must meet the
following criteria:
The class must be public.
The class must be serializable.
The class must have a public no-args constructor.
The names of the non-static fields or properties of the class must be the same as the names of the identity fields or properties of the corresponding entity class, and the types must be identical.
The equals
and hashCode
methods of the class must use the values of all fields or properties
corresponding to identity fields or properties in the entity class.
If the class is an inner class, it must be static
.
All entity classes related by inheritance must use the same identity class, or else each entity class must have its own identity class whose inheritance hierarchy mirrors the inheritance hierarchy of the owning entity classes (see Section 2.1.1, “ Identity Hierarchies ”).
Though you may still create identity classes by hand, OpenJPA provides the
appidtool
to automatically generate proper identity
classes based on your identity fields. See
Section 4.3, “
Application Identity Tool
” of the Reference Guide.
Example 4.2. Identity Class
This example illustrates a proper identity class for an entity with multiple identity fields.
/** * Persistent class using application identity. */ public class Magazine { private String isbn; // identity field private String title; // identity field // rest of fields and methods omitted /** * Application identity class for Magazine. */ public static class MagazineId { // each identity field in the Magazine class must have a // corresponding field in the identity class public String isbn; public String title; /** * Equality must be implemented in terms of identity field * equality, and must use instanceof rather than comparing * classes directly (some JPA implementations may subclass the * identity class). */ public boolean equals(Object other) { if (other == this) return true; if (!(other instanceof MagazineId)) return false; MagazineId mi = (MagazineId) other; return (isbn == mi.isbn || (isbn != null && isbn.equals(mi.isbn))) && (title == mi.title || (title != null && title.equals(mi.title))); } /** * Hashcode must also depend on identity values. */ public int hashCode() { return ((isbn == null) ? 0 : isbn.hashCode()) ^ ((title == null) ? 0 : title.hashCode()); } public String toString() { return isbn + ":" + title; } } }
An alternative to having a single identity class for an entire inheritance hierarchy is to have one identity class per level in the inheritance hierarchy. The requirements for using a hierarchy of identity classes are as follows:
The inheritance hierarchy of identity classes must exactly mirror the hierarchy
of the persistent classes that they identify. In the example pictured above,
abstract class Person
is extended by abstract class
Employee
, which is extended by non-abstract class
FullTimeEmployee
, which is extended by non-abstract
class Manager
. The corresponding identity classes, then,
are an abstract PersonId
class, extended by an abstract
EmployeeId
class, extended by a non-abstract
FullTimeEmployeeId
class, extended by a non-abstract
ManagerId
class.
Subclasses in the identity hierarchy may define additional identity fields until
the hierarchy becomes non-abstract. In the aforementioned example,
Person
defines an identity field ssn
,
Employee
defines additional identity field userName
, and FullTimeEmployee
adds a final identity
field, empId
. However, Manager
may not
define any additional identity fields, since it is a subclass of a non-abstract
class. The hierarchy of identity classes, of course, must match the identity
field definitions of the persistent class hierarchy.
It is not necessary for each abstract class to declare identity fields. In the
previous example, the abstract Person
and
Employee
classes could declare no identity fields, and the first
concrete subclass FullTimeEmployee
could define one or
more identity fields.
All subclasses of a concrete identity class must be equals
and hashCode
-compatible with the
concrete superclass. This means that in our example, a ManagerId
instance and a FullTimeEmployeeId
instance
with the same identity field values should have the same hash code, and should
compare equal to each other using the equals
method of
either one. In practice, this requirement reduces to the following coding
practices:
Use instanceof
instead of comparing Class
objects in the equals
methods of your
identity classes.
An identity class that extends another non-abstract identity class should not
override equals
or hashCode
.